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The EPR and F¥ electron-nuclear double resonance (ENDOR) of an (FeFg)3—-associated defect in CdTe
have been studied. Very well resolved F hyperfine structure is observed and analyzed in terms of multiple
reorientations of F* nuclei. Splittings of the ¥ ENDOR transitions are interpreted as nuclear spin-spin
multiplet structure. The positions and intensities of all observed EPR transitions are in excellent agreement
with the calculations. A theory of the ENDOR line splittings is presented which accounts for the observed
nuclear multiplet structure including the enhancement of the ENDOR line splittings by the cubic crystal-
line fields. The hyperfine structure due to Fe’” has also been observed. The experimentally determined
parameters are S=3§, g=2.0029, T1¥=(435.50+0.02)X10* cem™, Tol= (4-14.664-0.02) X 10~ cm™,
a=(+499.2840.05) X10™* cm™, and |457| =10.7X10~* cm™,

I. INTRODUCTION

HE EPR detection of isolated paramagnetic de-
fects in II~VI semiconducting compounds has so
far been limited to transition-metal and rare-earth ions,
and centers thought to consist of chemical impurities
associated with zinc and cadmium vacancies.! The
observation of isolated shallow donors in #-type crystals
appears to be prevented by impurity banding in pres-
ently available materials.?

In this paper we wish to report on a defect in CdTe
which is created when fluorine, diffusing into single-
crystal material containing trace amounts of iron,
associates with the iron to form octahedrally coordi-
nated paramagnetic FeFs complexes in the cubic zinc-
blende lattice. The EPR spectra of these complexes
exhibit extremely well-resolved F* hyperfine structure
and provide an exceptionally clean-cut example of the
phenomenon of multiple nuclear transitions in EPR
spectroscopy. A related problem concerning F¥ hyper-
fine interactions of Mn?" in ZnF has received consider-
able study by Tinkham?® and by Clogston ef al.* The
FeFg complex has been studied previously by Helmholz
in KoNaAlF¢ and by Hall et al. in KMgF; and KCdF;.5
The experimental conditions in these studies did not,
however, justify a detailed analysis of the hyperfine
structure such as that reported here.

II. EXPERIMENTAL TECHNIQUES

Single-crystal samples of CdTe were cleaved from
ingots grown by zone-refining an ingot sealed in a
quartz tube.® The samples were etched lightly, coated

1 Supported in part by the Aeronautical Research Laboratories,
Office of Aerospace Research, U. S. Air Force.

1 See review article by R. S. Title, in 7I-VI Compounds, edited
by M. Aven and J. S. Prener (North-Holland Publishing Com-
pany, Amsterdam, to be published).

2 K. A. Muller and J. Schneider, Phys. Letters 4, 288 (1963).

3 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956).

4 A. M. Clogston, J. P. Gordon, V. Jaccarino, M. Peter, and
L. R. Walker, Phys. Rev. 117, 1222 (1960).

5 L. Helmholz, J. Chem. Phys. 31, 172 (1958); L. Helmholz
and A. V. Guzzo, sbid. 32, 302 (1960); T. P. P. Hall, W. Hayes,
R. W. H. Stevenson, and J. W. Wilkins, zbsd. 38, 1977 (1963) and
39, 35 (1963).

6 M. R. Lorenz and R. E. Halsted, J. Electrochem. Soc. 110,
343 (1963).
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with a CdF, slurry, and air-dried at about 80°C.
Thereafter the sample was sealed in an evacuated
quartz vial and heated to 650°C for 24 h. One ingot was
grown with the addition of 0.019 Fe (enriched to 809,
Fe®) to the charge.” Although none of the other crystals
was intentionally doped with iron, all samples treated
with CdF, produced the FeFs center.

Thermoelectric-probe measurements showed all of
the fluorine-doped samples to be p-type, including
those which were #-type before firing.

The EPR and electron nuclear double-resonance
(ENDOR) measurements were carried out at 20.4 and
1.3°K using a 14-kMc/sec spectrometer, which has
been described previously.® One additional measure-
ment was made at 20.5 kMc/sec.

III. EPR RESULTS AND ANALYSIS
A. H Parallel to [100]

The resonance spectrum shown in Fig. 1 is seen when
the magnetic field is oriented along a cube axis. In this
orientation five fine-structure lines are observed, each
of which is split into 15 resolved hyperfine lines. An
examination of these fine-structure lines reveals that
they each consist of three groups of five lines each. The
groups have relative intensities 1:2:1 and the five lines
within each group have relative intensities 1:4:6:4:1.

The entire spectrum of lines can be described by the
Hamiltonian®

JC= gﬁs ° H+?1§a|:Sa:4+Sy4+Sz4
—35(S+1)(38*+35—1)]

6
+2 S Ti- Li—veBxI-H}, (1)

1=l

where the first and second terms are, respectively, the
Zeeman and cubic field energies of the electronic spin

” We are indebted to H. D. Coghill for growing this ingot for us.
18 G. W. Ludwig and H. H. Woodbury, Phys. Rev. 113, 1014
(1959).
9 See, for example, W. Low, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1963},
Suppl. 2, p. 114.
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Fic. 1. Spectrum with H parallel to
a [100] axis. T=20.4°K. Central line
of each fine-structure set is marked.
ve=14.2 kMc/sec.

system and the last term is the interaction energy of
the six ¥ nuclear moments (I=%) with the electronic
spin S=$% (Fe*) and with the external magnetic field
H. The axis of the axially symmetric hyperfine tensors,
T,, is the [1007; direction connecting the Fe ion with
the sth F¥ nuclear moment (see Fig. 2).

For H along a [100]y,» direction the energy levels
given by Eq. (1) are®

W st oms -« mg= gBHM+C (M)

6 6 2
—I—M[Tl 2mi+Te 2, mi]_'YFﬁNH 2mi (2)

=1

where M and m; are the electronic and nuclear quantum
numbers and C(M) is the electronic energy associated
with the cubic-field term of Eq. (1). The observed
transitions occur for AM = =41 and are given by

hoy=gBHAD(MELM)+ TN+ ToNs,  (3)

where
D(3,—3)=0,
D(x3,%3) =% (GaF6a*/hv),
D(£3,+£5)==2a,
and

2 6
lez mig, N2=Z My

i=1 =3
The experimentally determined parameters are

| g] =2.0029,
a=(4+99.284-0.05)X10~* cm™,
T1=(+35.5040.02) X 10~* cm™,
To=(4+14.6640.02) X 10~ cm™.
The sign of ¢ was determined by measurements of fine-
structure-line intensities at 1.3°K. The positive signs
of T, and T were determined from the results of the

next section where ‘“forbidden” hyperfine transition
intensities are shown to depend upon M T, and M T,.
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Once M is known from the low-temperature measure-
ments, the positive sign of 7'y and T’ can be deduced.
Each hyperfine line within the group associated with
one M — (M-+1) fine-structure transition may be
labeled (NV1,Vs). The intensity of the line (V1,IVs) is
proportional to the number of combinations of
which result in N; and N, and thus to the product
BB, where B; and B, are the binomial coefficients

Bi=2l/(1—=N)!(1+N)!,
and 4)
By=41/(2—Ny)!(2+Ny)!.

This intensity variation is clearly shown in Fig. 3.

B. H Parallel to [111]

A more complicated spectrum results for arbitrary
orientations of the magnetic field. Portions of one
spectrum which we have studied in some detail are
shown in Figs. 4 and 5 for a spectrometer frequency of
14.2 kMc/sec and in Fig. 6 for a frequency of 20.5
kMc/sec. H was oriented parallel to a [1117] axis and
thus the angles between the magnetic field direction
and the six hyperfine axes are all equal. While Eq. (3)
predicts a seven-line hyperfine spectrum, it is seen from
Figs. 4 and 6 that (a) more than seven lines are ob-
served, and (b) the spectrum is dependent upon the
microwave frequency employed. These additional lines

F16. 2. A model of
the (FeFg)3~ defect,
as oriented in coordi-
nates of the cubic
zinc-blende lattice.
The labeling of the
F® jons corresponds
to that used in the
text.
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F16. 3. The (+3% to —3) portion of the spectrum in Fig. 1. The
hyperfine quantum numbers, N; and N,, and the tensor com-
ponents, T and T, are indicated. v,=14.2 kMc/sec.

and their frequency dependence can be understood as
electronic transitions for which the anisotropic F"
hyperfine interaction induces a simultaneous reorienta-
tion of one or more F nuclei. Such electron nuclear
transitions have been discussed by Clogston et al.* who
assumed that each F nuclear moment responds
independently to the electronic transition. Following
this approach we will first review the effect of a single
nuclear spin on the EPR spectrum and then indicate
the method employed to superimpose the effects of the
six nuclear moments.

The Hamiltonian for a nuclear moment, interacting
with an electronic spin and a magnetic field, can be
written as in Eq. (1) as

3,=S-T-I—vpsyH-1.

In what follows we assume that the electronic spin S is
quantized along H with a quantum number M and that
the nuclear states are quantized along the T’ axis of the
axial tensor T. The contribution of 3¢, to the energy of
the system is then given, to second order in the hyper-
fine interaction, by

E(M m)=me(3)=m(M/| M)

X[(A—p)? cos+ (B—r)?sin?0 ]2, (5)

where m==-1, 0 is the angle between H and the axis T,

v=vypByH, A=MT—T2[S(S+1)—M?*]/2¢8H, and
B=MTy—T:1To[ S(S+1)—M?]/2¢8H.

The corresponding nuclear-spin functions are
o(M,%3)=a cosdy—p sinda, (6a)
o(M,—%)=q sindy B cosdys, (6b)

where tandz= — (4 —v») sinf/{e(M)— (B—») cosf} and
o and B are the nuclear-spin basis functions.
The electron-nuclear wave function is

V(M m)=y(M)o(M,m),
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and the M <> (M 1) transition probability is propor-

tional to

[(¥ (M m) | S| (M+1,m")) |2
=i[SE+D-MM+1)][ oM m)| (M +1,m")) |2

Thus, for a given M <> (M +1) fine-structure line the

hyperfine-structure intensity may be proportional

either to

pu=[{o(M;m)| ¢(M+1,m))|*=cos*(Gur—bsr1), (7)

where m'=m, or to

qu= [{e(M,m)| o(M+1,m"))|>=sin? (G —06us1), (8)
where |m'—m|=1.

Combining Eqs. (5) and (1) we see that lines of
strength p,r occur at

hve=gBH-+D(M4-1,M)x3(et—¢), )

where et=¢(M-+1) and e=e(M). Additional lines of
strength ¢ occur at

hve=g8H+D (M+1,M)+3(e+e). (10)

D(M+1,M) is a function of magnetic-field orientation.?

It will be convenient in making the extension from a
single interacting nuclear moment to the case of several
nuclear moments to characterize the hyperfine-line
positions and intensities of the M <> (M 1) electronic
transition by the algebraic expression

Yol5)
=pX(E)+9X (E+F), (11

where X (y)=xv4x"Y 2E=¢et—¢, and F=¢ and where
the subscripts on pi and ¢ have been dropped.
Equation (11) is a polynomial in # with each of the

et—

#(00) = px(

2E=26.4 GAUSS’ F=-19.8G6AUSS

i

(2,2)].

(0,2) 2,2) 22) 02 (2,2)

@0 NN @“hiol) 0D N (206 @,n

(6,0 (4,0) (200 (000 (2,00 (4,0) (60

Fi16. 4. (+3 to —}) transitions with H parallel to a [111] axis.
Lines are labeled (7,k) [see Eq. (14) in text for definition]. All

(4,0) lines are the normally allowed transitions. Lines with 50
are so-called forbidden (“g” type) transitions. v,=14.2 kMc/sec.
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TasiLE I. Comparison of constants for observed line positions
and line positions predicted from the [100] data. H is parallel to
a [111] direction. Energies are in Mc/sec.

(M+1) & (M) 2E(a10 2E (obs) F ea1) F (ons)
A. Microwave frequency =14.2 kMc/sec.
% 3 71.32 714
% 3% 69.58 69.5 19.10 18.9
5 —3 74.35 74.1 —55.66 —55.5
—3, —3 70.49 70.3
—3,—% 70.62 70.9
B. Microwave frequency =20.5 kMc/sec.
3 —3 79.62 79.6 —64.39 —64.0

four terms corresponding to one of the resonances
given by Eqgs. (9) and (10). The coefficient of each term
is proportional to the transition intensity while the
exponent gives the shift of the hyperfine line relative to
the average position

hv=gBH~+D(M~1,M).

The expression ® (M) is useful in dealing with several
nuclear moments, each of which may have a different
hyperfine interaction with the electron spin and thus a
different ®;(M).® The entire spectrum of possible
hyperfine lines for # nuclear moments will then be con-
tained_in the expression ®;(M )P (M) - -®,(M).

As an example, the hyperfine spectrum due to two
equivalent nuclear moments is given by

&, (M)Do(M) = (p>+¢)X (0)+2p¢X 2E+F)
+2p9X (F)+*X (2E)+¢*X (2E+2F).
Each value of the argument of X specifies the positions

of a pair of symmetric lines and the coefficient of the
term is proportional to the line intensity. When

F=6.7 GAUSS *‘ [

2E=24.8GAUSS

@0 |@an |

l_
o

|
(6,0) (4,0) (20) 0,0 (20) (4,0) (6,0
F16. 5. (+% to +3%) and (—3% to —$%) transitions with H parallel
to a [1117] axis. Only (3 to 3) undergo g-type transitions and are
labeled (j,k). Other g¢-type transitions (k#0) lie under lines
belonging to the (—% to —%) set and are not marked. »,=14.2
kMc/sec.

10 An equivalent formulation of this problem has been given
r(ecelgt)ly by R. Lefebvre and J. Macuari, J. Chem. Phys. 42, 1480
1965).
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Fi1G. 6. The same transitions shown in Fig. 4
except that »,=20.5 kMc/sec.

p=1, ¢=0 (Am= =1 forbidden), the expression reduces
to

&1 (M)Bs(M) =X (0)+ X (2E) == 2y g~ (o) |

which represents three hyperfine lines of intensity 1:2:1
equally spaced by 2E=¢et—e.

The extension of this technique to the case of
(FeF )%, which has six equivalent F¥ nuclear moments
when H is parallel to the (111) axis, is made by evalu-
ating the polynomial

L8001 = 5 C;u(p)XGE+E).

=1 dok=1

(12)

The lines in Figs. 4 and 5 and Table II are identified
by (j,k) corresponding to these indices in Eq. (12).
Using vr=4.0061 Mc/sec-kG for F¥ and values of T}
and T measured with H parallel to [1007, the values
of p, ¢, €, and e were computed from Egs. (5), (6b),
(7), and (8) and used to evaluate Cj;(p) and the
arguments of X in Eq. (12). All of these computations
were carried out with the aid of a GE 235 computer.
The excellent agreement between the calculated and
experimental line positions and intensities, shown in
Tables I and II, confirms the adequacy of the defect
model and identifies the interacting nuclei as F?°
independently of the ENDOR results. To demonstrate
this latter point we have calculated the values of 2E,
F, and p for the M =3 to M = —1% electronic tranitions
at 14.2 kMc/sec assuming that instead of F°
(vr=4.0061 Mc/sec-kG) the interacting nucleus was
H! (4.2576 Mc/sec-kG). With this assumption the
values of the parameters are changed as follows:
A(2E)=0.5 Mc/sec, AF=1.2 Mc/sec, and Ap= —0.02.
The sensitivity of the “g type” transitions (Ams0) to
changes in p is such that for Ap=—0.02 the intensity
of the (0,1) line increases from 0.346 to 0.406. It is thus
clear from Tables I and II that the data are sufficiently
precise to distinguish between F* and the only other
comparable nuclear moment H! and that only the F*®
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Tasie II. Comparison of line intensities predicted from [100]
data with integrated line intensities observed with H parallel to
a [1117 direction. Each set has been normalized to unity for the
(4,k) = (0,0) line. All (j,%) intensities for which 7(ea1c)>0.001 are
tabulated. The position of the (7,k) line relative to the central
(0,0) line is given by E(4,k) = (FE+kF) with the values of E and
F shown in Table I in units of Mc/sec.

(j:k) :!:E(]‘:k)calc Icalc Iobsa
A (M+1) & M=(+3< —3)
1. v,=14.2 kMc/sec, $=0.888
0,0) 0.00 1000 1.00
43 18.20 .
22,1; 1566 03ls 0.351 0.36
22 36.9 .
E4,2§ 5756 0012 0.106 0.10
0.1 5. .
56,33 56.04 0.002/0-348 0.35
(2,0) .33 0739 0.74
2.3 9.6 . .
24,13 5301 0170 0.175 0.18
0.2 111, )
Ec,zg 111,69 0.010/0-052 0.05
@2,~1) 129.98 0.170 0.17
(20) 118,66 0.283 0.30
0.3 166. )
§G,1§ 167.34 0.033}0-035 0.04
2,22) 185.63 0.010 0.01
-1 204.31 0.033 0.04
(6,0) 222.99 0.044 0.05
2. »,=20.5 kMc/sec, p=0.675
©0,0) 0.00 1.00 1.00
2.1) 15.23 0.705 0.74
(6.4) 18.70 0.011 b
(4.2) 3046 0.239 0.27
(43) 33.93 0.104 0.12
63) 15.60 0.031 b
2.2) 1916 0.384 0.42
0.1 64.39 0.705 0.73
(2,0) 79.62 0.665 0.72
1) 94.85 0.295 0.35
(4.4) 08.32 0.024 0.015
6.2) 110,08 0.049 0.06
23) 113.55 0.104 0.12
(0.2) 128778 0.239 0.27
221 14401 0.295 034
(40) 159.24 0.181 0.23
6.1) 174.47 0.040 0.06
2.4) 177.04 0.011 0.015
0.3) 193.17 0.031 0.04
2,-2) 208.40 0.049 0.06
@-1 223.63 0.040 0.05
(6,0) 238.86 0.014 0.02
B. M+1) o M=(G<3)
ve=14.2 kMc/sec, p=0.963
0,0 0.00 1.000 1.00
©.1) 19.10 0.114 0.11
2,—-1) 5046 0.057 0.06°
2,0) 69.56 0.749 0.75]
1) 88.66 0.114 0.11
@-1) 120,02 0.011 0.01
(4.0) 13012 0.298 0.30
1) 158.22 0.057 0.06
(6,0 208.68 0.049 0.06
6.0) 227.78 0.011 0.01

a Time constant of recorded signal at 20.5 kMc/sec depressed larger

signals disproportionately. X . .
gb Line is completely or partially unresolved from a strong neighboring

line.

nuclear moment gives results in good agreement with
the EPR observations. '
The EPR spectrum of a CdTe sample containing
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0.019% Fe (80%, enriched) consists of three component
spectra, each of which are identical to that of Fig. 1.
Two displaced components result from the hyperfine
splitting of the 809, abundant Fe¥ (I57=1), while a
third central component is due to the other Fe isotopes
(I=0). The two displaced-component spectra are
described by adding to Eq. (2) a term

FaST=A5I5-§,
where |45 =10.7X 10~ cm™, [57=1.

IV. F¥* ENDOR ANALYSIS

ENDOR measurements' were performed by partially
saturating the central hyperfine line of the (% «» —1)
fine-structure transition and simultaneously exposing
the sample to rf magnetic fields in the frequency range
of 40 to 50 Mc/sec. The change in intensity of the EPR
signal due to F* transitions between nuclear states
resulted in the ENDOR signal shown in Fig. 7 for H
parallel to the [100] direction.

The splitting of the ENDOR lines of Fig. 7 is thought
to arise from an indirect nuclear-nuclear magnetic
interaction, somewhat similar to that observed in
high-resolution NMR spectroscopy.’* This interaction
lifts the degeneracy of the energy levels of equivalent
nuclei, such as, for example, the four F*® nuclei labeled
F(3), F(4), F(35), and F(6) in Fig. 2, which are equiva-
lent when X is parallel to (100). Multiplet structure!®
is then observed since the energy required for the transi-
tion of any one of these four nuclear moments will
depend upon the orientations of the others to which it
is coupled.

=
3
&
@
a
o
w
o
e
ro
ou
o

Fre. 7. ENDOR
spectrum of the (0,0)
| EPR  transition of
Fig. 3. v,=14.05 kMc/
sec. T=13°K. The
arrows indicate the line
positions calculated by
Eq. (14) and shown in
Fig. 8.

Mc/sec =

438981
43660
43628
43(572 =
434921—
43412
43,356
433221
43,084

11 G. Feher, Phys. Rev. 114, 1219 (1959).
2J. A. Pople, W. G. Schneider, and H. J. Bernstein, High
f;ggl)ution NMR (McGraw-Hill Book Company, Inc., New York,

13 A previous observation of structure in F center ENDOR has
been reported by W. C. Holton, H. Blum, and C. P. Slichter,
Phys. Rev. Letters 5, 197 (1960). The analysis given in W. C.
Holton and H. Blum, Phys. Rev. 125, 89 (1962), neglects the
hyperfine anisotropy and therefore does not reveal all of the
structure reported here. An ENDOR analysis which includes
hyperfine anisotropy and quadrupole effects of nuclear pairs is
given in T. E. Feuchtwang, Phys. Rev. 126, 1628 (1962). We wish
tofthank Professor Slichter for calling our attention to this latter
reference.
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TasLE III. Zero-order spin functions for equivalent nuclei F(3),
F(4), F(5), and F(6) in permutation group symmetry Dy,

5(A1g)2 aaaa

5(A1g)1 } (acaB-+aaBatafact-Baaa)

5(dg)e  (1/4/6) (aBB+aBBatBaaB~+BBaa+afef+BaBa)
5(419)1  5(BBBa+BBaB+BaBB+aBBB)

5(41)—2 BBB

3(Bag)1 3 (eaaf—acBatafaa—Pacc)

3(Bzg)o  (1/V2)(aBoB—Bofc)

3(Bag)-1  3(BBBa—pBaB~+BafB—aBBB)

(B (1/2) (aaaB—aBaa) ; (1/V2) (aafa—Baac)

3(Eu)o (1/V2) (capB—BBaa) ; (1/V2) (afBa—Baaf)

Ew) 2 (1/v2) (B8Ba—PBeBB) ; (1/V2) (BBaB—aBBB)

1(A1g)o (1/4/12) (aaBB+aBBo-tBaaf-+BBac—20B08 —2B0p)
}(Big)o 3 (a0BB—afBa—PBacB~+pBBac)

The energy levels of the system of six nuclear
moments may be calculated, as shown in the Appendix,
by applying second-order perturbation theory to the
electronic operators in the Hamiltonian

6

=1

(13)

The nuclear Hamiltonian which remains has the sym-
metry of point group Dy, with regard to the permuta-
tions of nuclear indices when H is parallel to [100]. It
may therefore be conveniently treated using the
nuclear-product wave functions shown in Table III,
which comprise the irreducible representations of the
permutation group Dy;. ENDOR transitions are allowed
only between nuclear states of the same irreducible
representations since the interaction of the nuclei with
the oscillating rf fields is completely symmetric with
regard to permutation of the nuclei.

As shown in the Appendix, two terms of the nuclear
Hamiltonian are diagonal in the nuclear states of
Table ITI. These terms are

f}cno(M) =N1{T1M—7F5NH—"#—(M)T22}
+Nof ToM —y sy H —p_(M)T1T2} ,
and

3eny (M) = py (M) {3 (T4 T9?) (Uss~+Uls)
F TR0+ T1To(Usat-Uss+Uss+Usgs)},  (14)

where

2 6
N1=Z Iz,;, Nz‘—"z Izj, U,;j=Ii+Ij—+Ii_Ij+

=1 7=3

and py (M) are parameters which depend upon the
state of the electronic system. For any electronic state
M, 3Cno represents the sum of individual nuclear
energies, while 3C,1 represents the coupling of the
various equivalent nuclei. These terms lead to the
zero-order nuclear energy levels shown in Fig. 8 for the
four nuclei in the (100) plane. Transitions between
these energy levels result in eight ENDOR frequencies

COMPLEX HYPERFINE STRUCTURE
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N,=2 5mlq, I(Alq‘ 3(310, 3(5“)
-y +1) -(=%) n‘—
N, =1 o [y __
: \__ 1_— —\_L h
io -4 +1) -2y-21,)
Fic. 8. (a) Energy g -“--g- —c=im ——— —
levels of the nuclear 2 \ I
Hamiltonian of Eq. (14) hen)
with N;=0. The initial npot U IR I
degeneracies of JC,0 are 1 N3 Y
shown split by 3Cn. ,
(b) The theoretically e
calculated multiplet N2
structure for transitions
in  which AN;=0,
ANy==1. (b)
l 3 J A S S
8,
——=E,—

A

lg

which are shown in Fig. 8:
v(A1g)= o= (v1t+72),

V(Bzg) =pot= (Vl‘“ V2) ;
v(Eu)=voztr1;

Vo= (V1+ 1/2>/3 5

where
vo=|MTy—ypByH—p_(M)T1Ts|,
n=(u(M)/2)(T2+T%),

and
ve=py. (M) (2T1T5).

The ENDOR measurements shown in Fig. 7 were

carried out on the M = —1% state for which
1 a
w(—h=—— (120,
4g8H g8H

1
u-(—%):—-—(ﬂ—zo—a—) X
4¢8H gBH

Since a/gBH =0.021, the effect of the crystal field is to
increase the multiplet splitting, proportional to u, (—32),
by about 289%.

The values of Ty, T, and e/gBH determined in
Sec. III, together with M = —3%, and the F* frequency,
vr=4.0061 Mc/sec-kG, give vo=43.44 Mc/sec, as
compared with the measured frequency »p=43.49
Mc/sec. These same parameters give the multiplet
spectrum shown in Fig. 8 and indicated by the arrows
in Fig. 7. Thus the observed number and spacings of
the ENDOR lines are very satisfactorily accounted for
by the hyperfine interactions of four equivalent nuclear
moments with an electronic moment of S=% in a cubic
crystalline field.
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TaBLE IV. Parameters of the EPR spectra
of FeFg complexes. Units are 10~ cm™.
g la] |45 [45°]

CdTe:Fe,F 2.0029 99.28+0.05 21.614+0.02 6.9540.02

K:NaAlFg: Fe 58 2 224 £0.5 6.5 £0.5

KMgF;:Fe 2.0031 51.2 0.5 24.0 0.5 6.0 £0.5

KCdF;:Fe 2.0027 53.0 2.0 22.6 0.5 5.6 +0.5

V. DISCUSSION

The observed spectra have been interpreted in terms
of the model shown in Fig. 2, although little direct
evidence exists to suggest how the lattice accommodates
this complex. Indirect evidence concerning the nature
of the complex is available through a comparison of our
measurements with those of Helmholz and of Hall et al.5
on (FeFs)*~. The parameters to be compared are the
F*¥ hyperfine coupling constants 4, which is related to
the spin density of delocalized 3d electrons at the F¥
nuclei, and 4,, which is related to the dipolar inter-
action between the unpaired electrons and the F¥
nuclei. These parameters are listed in Table IV.

The apparent similarity between the value of 4, and
A, in these dissimilar materials strongly suggests that
we are dealing with a (FeFe)*~ ion in CdTe. Two addi-
tional bits of evidence further suggest that this ion
occupies a lattice site in which it does not covalently
bond appreciably with the neighboring lattice atoms.
First, the width (1.3 G) of the M=% to M = —1% transi-
tion indicates very little hyperfine broadening due to the
magnetic isotopes of neighboring Cd and Te ions.
Second, the M ==+% to M ==+3 transitions, which are
sensitive to strain-induced variations in the cubic
fine-structure parameter a, are almost as sharp as the

=% to M=—% transitions although the crystals
probably are somewhat strained.

The size of the (FeFg)*~ complex is known for several
inorganic fluorides in which the trivalent metal ion is
surrounded by an octahedron of fluorine ions.* Avail-
able x-ray data give the average Fe-F distance in
crystals isomorphic to (NHy);FeFs as about 2.0 A.
More precise data are available for FeFs in which case
the Fe3* ion occupies a nearly octahedral site and
Fe-F=1.94 A. In the compound studied by Helmholz,
K,NaAlF, the trivalent Al occupies the octahedral site
and Al-F=1.92 A. Tt thus appears that a reasonable
estimate for the Fe-F spacing in the FeF¢~ ion for both
K;NaAlF; and CdTe is (1.954-0.05).

The lattice positions possessing the cubic symmetry
required by the complex are the two interstitial sites as
well as the Cd and Te sites. The two interstitial sites
are both unlikely, due to their relatively small available
volumes. The Te site provides a minimum of electro-

4R, W. G. Wykoff, Crystal Structures (Interscience Publishers,
Inc., New York, 1948). See also L. Helmholz, A. V. Guzzo, and
R. N. Sanders, J. Chem. Phys. 35, 1349 (1961).
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static energy for the trivalent negative ion as well as
sufficient free volume for the (FeFs)*~ complex.
Alternatively, since the Fe is incorporated into the
lattice first, very likely at a Cd site, the (FeFs)3~ com-
plexes may form by the diffusion of fluorine to the
relatively immobile Fe. Sufficient free volume is avail-
able for the complex at a Cd site if the electronic charge
on neighboring Te atoms takes the form of directed
covalent bonds. The available evidence does not permit
a clear choice between these two possibilities.
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APPENDIX

Equation (14) may be derived by starting with
Eq. (13) and setting

6 6
C=Z TZIfL and F=Z I,;.
7=l =1

Computing the electronic terms to second order in the

hyperfine interaction gives

In= C2M~7N:8NHF2+%”+ (M) (C—C++C+C—)
+iu-(M)(C-C+—C+C),

where
1 ((M|StS—|M) (M|S-St|M)
ﬂ:t(M)'_:— =+ ’
4 EM—EM_l EM_EM+1
Ct=C,+iCy, and S*=S5,4%15,.

With the magnetic field oriented parallel to [100],
the matrix elements are, to first order in a/g8H, inde-
pendent of the admixtures resulting from the crystal
fields. The shifts of the energy levels do give measurable
effects, however, and must be included in the energy
denominators. Thus

where e(+3)=a, e(42)=—3%q, and e(%)=a/2. For
H parallel to [100], the components of C are
Co=Ti{IssH+Ise}+Tof{ Izt ToutTaat 1oz},
Cy= T1{14y+-[6u}+T2{I3y+l5y+llu+l2y} ’
Cz= Tl{Ilz+12z}+T2{I3z+15z+l4z+162} .
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Using the commutation rules of angular momentum
and the components of C, we find

C—Ct+—C*tC—=—=2{T2N+T1T:N5},
C-CH-C+HC—=2(C24-C,2).
Expanding C.*4-C,?, we find that
3 =3Cno+3n11+3Cna+3Crs+3Cps,
where JCyo and 3C,1 are given in Eq. (14) and
3Cne=pt (M) (To(T1+T2)/2)
X (Ut Urt-Uss+UretUss+ UzstUas+Us)

Ins=p+ (M)(T12—T2)/2)
X{UTstIst+ 15157 — (I e+ 1 T60)}y,

COMPLEX HYPERFINE STRUCTURE
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Hna=ps (M)(To(T1—T>2)/2)
X{Ist+Ist—IF—I) (Iit-157)
+ (IS—+IE—+I4_'—IG_) (11_+Iz_)} .

The states which 3C,2, 3C,3, and 3C,4 connect have energy
separations, due to 3C,o and 3C,.i, of 33, 84, and 117
Mc/sec, respectively. These operators therefore do not
perturb the energy levels appreciably.

One complication arises due to the matrix element

(5(A16)0|3Cn1|* (A 1g)0) = (ut (M) /3V2) (T1—T)*.

In principle, such a matrix element requires a diagonali-
zation of the two initially degenerate (41,), states. In
the present case, this matrix element is sufficiently
small as to be negligible.
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Spin-Lattice Interaction in Ruby Measured by Electron Spin Resonance
in Uniaxially Stressed Crystals*
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(Received 28 January 1966)

The spin-lattice Hamiltonian first proposed by Van Vleck to explain electronic spin-lattice relaxation
has been experimentally determined for Cr®+ ions in ruby single crystals. Its magnitude was obtained through
measurements on the effect of applied uniaxial stress on the ESR spectrum of the Cr®+ ions. The spin-lattice
Hamiltonian was found to be a quadratic spin operator, in agreement with Van Vleck’s prediction, with no
evidence for any other spin dependence. It was also determined through these measurements that the Cr3*
ions can be considered, for interactions with lattice modes, to occupy two inequivalent types of site in the

Al;O; lattice.

I. INTRODUCTION

HE spin-lattice interaction for an insulating para-
magnetic crystal was first treated successfully by
Van Vleck! in terms of an interaction Hamiltonian
derived from crystal-field theory. In Van Vleck’s treat-
ment the interaction between the magnetic moment of
an ion and vibrations of the crystal lattice comes about
indirectly: the lattice vibrations modulate the crystal
field, thereby perturbing the orbital state of the ion;
spin-orbit coupling then transmits this perturbation of
the orbital electronic motion to the spin of the ion.
Because this interaction between the lattice vibrations
and the spin of the ion is a second order process, Van
Vleck found for the iron-group ions that he considered,
which have strongly quenched orbital angular momen-
tum, that the dominant part of the interaction can be
expressed as an operator quadratic in the effective
spin of the ion. This spin operator, the spin-lattice
Hamiltonian, is also, to first order, linearly dependent
on the lattice strain, and it therefore leads to the one-
* Supported by National Aeronautics and Space Administration.

1 Now at Texas Instruments, Inc., Dallas, Texas.

I Now at Texaco, Inc., Houston, Texas.
1]. H. Van Vleck, Phys. Rev. 57, 426 (1940).

phonon spin-lattice relaxation which dominates relaxa-
tion processes at low temperature.

Using microwave-ultrasonic techniques Shiren and
Tucker? verified Van Vleck’s prediction of the quad-
ratic spin dependence of the spin-lattice Hamiltonian,
and they determined the magnitude of the interaction
for several iron-group ions.? It was shown by Shiren®
and by Donoho® that one-phonon relaxation times pre-
dicted from experimentally measured values of Van
Vleck’s spin-lattice Hamiltonian are in good agree-
ment with observed relaxation times. An excellent
review of experimental and theoretical work on spin-
lattice interactions for iron-group ions has recently
been published by Tucker.”

This paper describes a measurement of the spin-
lattice Hamiltonian for Cr®* ions in ruby. In this experi-
ment uniaxial stress was applied to single crystals of

1;N. S. Shiren and E. B. Tucker, Phys. Rev. Letters 6, 105
( 3?\}) S. Shiren, Bull. Am. Phys. Soc. 7, 29 (1962).
4 E. B. Tucker, Phys. Rev. Letters 6, 183 (1962).

5N. S. Shiren, in Magnetic and Electric Resonance and Relaxa-
tion, edited by J. Smidt (Interscience Publishers, Inc., New York,
1963).

6 P. L. Donoho, Phys. Rev. 133, A1080 (1964).
7E. B. Tucker, Proc. IEEE 53, 1547 (1965).



