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to relate q to its constituents we cannot even attempt
to explain this observed change of sign with volume.

Finally, it is possible that if measurements could be
made on the fcc phase at pressures below 23 kbar it
would be observed that T, first decreases with ap-
plied pressure and then increases. We think that very
pure fcc samples would be required in order to make
useful observations of this kind. However, as the
"pure" fcc phase of lanthanum readily converts to a
mixture of the dhcp and fcc phases at room temperature

upon even slight straining" there seems to be little
hope of conducting such measurements. Instead we
would prefer to see a repeat of the thermal-expansion
measurements of Andres on fcc lanthanum in order to
confirm the present interesting situation.
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A relationship between the energy gap of superconductors at zero temperature and the slope of the critical
magnetic field at the critical temperature is presented. Thermodynamical argument gives the dependence
of this relationship on the electronic specific heat near the critical temperature and an approximate formula
for the latter is proposed. The conclusions are compared with experimental data.

I. INTRODUCTION

ECENTLV, Toxen' proposed a relationship be-
tween the energy gap of superconductors at

zero temperature LA(0)j and the slope of the critical
magnetic field at the critics, l temperature (T,). Toxen
showed, for example, that BCSs theory (in the weak-
coupling limit) satisfies his relation. It was pointed out'
that the Toxen relationship is, probably, a numerical
coincidence. In this paper we amplify the argumentation
which is given in Ref. 3. Thus the thermodynamics of
Lewis's' model is given (without recourse to the two-
fluid model) in Sec. II.

We discuss the experimental aspects of the problem in
Sec. III and mention explicitly the experimental results
which are useful in discriminating between the Toxen
relation and the curve of Ref. 3.

II. THERMODYNAMIC DERIVATION OF
LEWIS' FORMULA

Lewis4 derived a relationship between a parameter
(cr) appearing in an approximate formula for the
specific heat of supercondutors (C,), and the slope of
the critical Geld at the critical temperature. Lewis'
derivation (as are those of Refs. 5 and 6) is associated

' A. M. Toxen, Phys. Rev. Letters 15, 462 (1965}.
~ J. Bardeen, N. L. Cooper, and J.R. SchrieBer, Phys. Rev. 108,

1175 {1957).
3 J. Grunzweig-Genossar and M. Revzen, Phys. Rev. Letters 16,

131 (1966).i H. W. Lewis, Phys. Rev. 102, 1508 (1956).
~ N. Bernardes, Phys. Rev. 107, 354 (1957).' M. R. Schafroth in Solid State Physics, edited by F. Seitz and

D. Turnbuli (Academic Press Inc. , ¹wYork, 1960), Vol 10.

with the two-Quid model for superconductors. We shall
outline a thermodynamic derivation of the results
without recourse to the two-Quid model. A more
general formula —for arbitrary specific-heat curve —is
also given. It is valid for superconductors which show
the Meissner effect.

In what follows we make the usual assumptions with
regard to the separability of the electronic and lattice
contributions, and also assume that the latter is un-
affected by the transition to the superconducting state.
These assumptions are listed and discussed, for example,
in Ref. 7.

The electronic specific heat for the superconductor is
approximated4 in the vicinity of T,:

C,/yT. =He & t &, T&T, . —

Here T is the temperature and p is given by the elec-
tronic specific heat of the normal metal (C„) at low
temperatures, i.e.

C„=yT.

Our problem here is to eliminate A and y in terms of
other quantities. At T, the entropies of the two phases,
superconducting and normal, are equal, 4 viz.

dT
C, =yT„

T
or

AE(n) =1, (2)
' D. K. I'innemore and D. E. Mapother, Phys. Rev. 140, A507

(1965).
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where

E(n) =
1 —n/ee

dx ~

x

This determines A. (Remark: The degree of agreement
with the experiment involved here will be discussed in
the next section, e.g. Fig. 2.)

In order to eliminate y we utilize the following general
thermodynamic relation' (which is valid for super-
conductors exhibiting the Meissner effect)

l.O

O.I

C (T) C,(T)—= —(T/Srr)d(H, ')/dT. (3)

Here H.(T) is the critical field. Since H, (T.)=0, one
obtains the Rutgers' relation,

C (T,) C,(T,) =—(T,/47r)—(dH /dT)'. (4)

On the other hand, by integrating Eq. (3) we get

C.(T)dT C,(T)dT=—
Hp'

(5)

(Remark: The extension of this equation to hard super-
conductors is complicated by their unknown magnetiza-
tion curve. )

Substituting Eq. (1) into Eq. (5) and integrating
gives,

(vT./E( ))I
—.—E( )7-!~T.=H. /g .

Dividing Eq. (4) by Eq. (6) gives the Lewis result

oaool
7 Tc

.T

Fro. 2. The specific heat from 8CS (Ref. 10) theory as a function
of T,/T. The straight line shows the approximation used for the
region close to T,. The area under the curves,

(C*(T)IC (T.) )dT/To
0

equals 0.74 for BCS (Ref. 10) and 0.75 for approximating curve
Pq. (1)3.

e —E(n)T. dH. )
Ho dT / r, 2e —(1+2n)E(n)

obtains the more general formula=Prr, 7

where F(n) is defined by the above equation. Equation
(7) is the basic equation of Ref. 3.

If one does not assume the temperature dependence
of C,(T) as given by Eq. (1), instead of Eq. (7), one (1 C.(T.)/T T.j—C,(T)dT/ ,'yT,'-1/2
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Fro. 1. F(n) as function of n Lcf. Eq. (7)g. Experimental points
are taken from: abscissas from Ref. 8, ordinates from Ref. 1. The
dotted line represents Toxen's relation.

This general formula shows directly that the left-hand
side is determined by C, at T, and in the immediate
neighborhood thereof. This is due to the fact that C,
decreases very rapidly with decreasing temperature.

III. EXPERIMENTAL ASPECTS OF THE
PROBLEM

There are various difficulties in comparing the
thermodynamic results given above with the experi-
mental results. The major difficulty lies in the fact that
the published experimental values differ considerably
among themselves. For the purposes of this paper we
choose the energy-gap values as obtained by the photon-
absorption and tunneling methods whenever these re-
sults are available. The experimental values are taken
from Tables 5.1 and 5.5, respectively, in the rcvicw
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article by Douglass and Falicov' where the relevant
references are given.

A comparison of the theory with experimental re-
sults is given in Fig. 1. (Note that the theoretical curve,
F(zs), is approximated to better than 1%%uq by

F(oz)~1 1+(.5/14)oz, 1.4(n( 2.8

for the range of zs, which is of interest here. $ Here the
experimental values of oz are identified with D(0)/kT, .'
The agreement with the experimental points is seen
to be fair.

It follows from the approximation scheme adopted
here [Eqs. (1) and (2)j that for a given A(0)/kT„
C, (T,) is determined with no adjustable parameters.
The agreement with the actual values of C,(T,) is
surprisingly good for T near T, (which is the range of
interest). Figure 2 shows this for the case of BCS.'

In closing this section we would like to remark once
again that the scale of our Fig. 1 is large compared with
the accuracy of the experimental results available. For
example, the values of 2n=2A(0)/kT, for aluminium
obtained by photon absorption is 3.16,' while the value

' D. H. Douglass, Jr., and J. M. Falicov, in I'rogress in l,om-
Tenzperzztzzre Physics, edited by C. J. Gorter (North-Holland
Publishing Company, Amsterdam, 1964), Vol. IV.

' B. Miihlschlegel, Z. Physiic 155, 313 (1959).

of 2n obtained from tunneling experiment is 3.37a0.01.'
This is illustrated in Fig. 1. The difhculties in deter-
mining C, (T,)/yT, precisely are well known; here one
has to determine the lattice contribution, which in some
cases (e.g. indium) are appreciable, and to determine y."

IV. REMARKS AND CONCLUSIONS

No attempt was made to Gt the experimental points
to theory which would rehne the results of Ref. 3. The
theoretical curve is in good agreement with the ex-
perimental result. In particular, in view of the fact
that the empirical rule proposed in this paper, namely
that C. near T, is given by Eq. (2) with ct identifmd with
h(0)/kT„does not contain any adjustable parameters.
Should further investigations prove our formula to be
correct, a more general theory than the BCS weak-
coupling-limit theory will be required to account for it.
Furthermore, analysis of measurements on hard super-
conductors along the lines outlined in this paper could
shed light on the magnetization of such materials.

To discriminate between the results offered here and
Toxen's, better measurements are needed for elements
wherein 0,& 1.85 and m&1.55. A good candidate for this
is zinc (zs= 1.5), where no recent value for Hzz is available.

"H.R. O'Neal and N. E. Phillips, Phys. Rev. 137, A750 (1965).

PHYSICAL REVIEW VOLUME 146, NUMBER 1 3 JUN E 1966

Energy Loss of Fission Fragments in Light Materials*

PABLO M. MULAst AND ROBERT C. AXTMANN

School of Pngineering and Applied Sczence, Princeton University, Princeton, New Jersey
(Received 3 January 1966)

A calibrated silicon detector provided range-energy data for Cf252 fission fragments in H2, D&, N2 and
Mylar. Bohr's classical stopping-power theory and Lindhard's more recent Thomas-Fermi model both
underestimate the measured energy losses. For both theories, the discrepancy with experiment is a mono-
tonic function of the atomic number of the stopping material, at least for the limited range of materials
studied.

INTRODUCTION

A T the beginning of its range, a fission fragment
loses energy chiefiy by ionization and excitation

of the stopping material. Bohr's classical treatment of
electronic energy loss by a charged particle' gives

dE 4mz'g' 1.123m,e'A

EZ2 In
dx m,P ze'I
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' N. Bohr, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd,
18, No. 8 (1949).

where z and tz are the ionic charge and velocity of the
particle; m, and t, are the electronic rest mass and
charge, S and Z& are the atomic density and number of
the stopping material; and I is a mean excitation and
ionization potential for the stopping material. The
derivation of (1) requires that 2zes/lttz»1 and that
Zses/t'te((1.

Other early treatments resulted in different argu-
ments for the logarithmic term in Eq. (1). Bethe'
employed the Born approximation which requires that
2ze'/l'ttz«1, a condition that cannot apply to fission
fragments because of their high ionic charges and rela-
tively low velocities. Bloch' included the perturbation
of the electronic wave function by the incident particle

2 H. A. Bethe, Ann. Physik 5, 325 (1930).
s F. Bloch, Ann. Physilc 16, 285 (1933).


