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are obtained from experiments. The static crystalline
parameters are usually determined from the optical
spectra, but in CaF2 the optical spectra are complicated
by the presence of satellite lines, and by the existence
of local fields of different symmetries due to charge
compensation. If the ground state is F8, and if F8 occurs

more than once in the decomposition of the ground J
manifold, the wave functions may be determined from
the spin-resonance experiments. Some of the wave
functions and a survey of crystalline-held parameters
for rare-earth ions in CaF2 are given in the first article
of Ref. 24.
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Effective Mass of Positrons in Metals
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The self-energy of a positron in an electron gas due to electron-positron correlations is calculated to the
lowest order in the dynamically screened interaction. It is shown that the dressed positron quasiparticle
can be described by an effective mass, but that the calculated effective mass is much too small to account for
that measured by observing thermal effects in positron-annihilation experiments. Corrections due to more
complicated self-energy processes and to electron-exchange interactions are estimated and found to be
small.

1. INTRODUCTION

' POSITRON annihilation has been studied as a means
of gaining information about the band structure of

metals. In addition, however, such experiments provide
an example of a distinguishable test cha.rge interacting
with a many-electron system, and we shall deal here
with a particular feature of the correlations in this com-
bined system.

The possibility of studying low-energy a.spects of
positron annihilation arises from the fact that the
positron lifetime is long compared to the time it takes
a positron injected into a metal to reach equilibrium
with the electrons. ' Suppose we naively neglect all
interactions and consider an electron gas at O'K con-
ta, ining a positron in its zero-mome~turn state. The two
gamma rays produced when the positron annihila, tes
with one of the electrons will carry away just the
momentum of that electron. Angular-correlation meas-
urements of the s component of the momentum of each
gamma-ray pair should then give a distribution equal
to that of the s components of the electron momenta-
an inverted parabola with a cutoff at k,=kg(5=1).
Now suppose this system is heated. The positron will
have a Maxwellian velocity distribution, and its average
momentum will be (T/T~)'~'k~. The average increase
in. momentum for electrons at the Fermi surface will
be (T/TF)kp, so for a typical T of 10"K and T~ of
10"K, the thermal smearing of the momentum-distri-
bution cutoff will be due almost entirely to the momen-
tum of the positron.

In actual metals, observed positron lifetimes are an
order of magnitude shorter than those predicted by

' R. A. I'errell, Rev. Mod. Phys. 28, 308 (1956).

the noninteracting model. ' This suggests tha, t the inter-
action profoundly disturbs the momentum distribution
of electrons in the vicinity of the positron. It is a paradox
of this problem that the momentum Quctuations of the
electrons and positron cancel in just such a way that
the observed momentum distributions (from simple
s-p conduction bands) reproduce almost exactly the
parabola of the naive model. Kahana and co-workers
have calculated the interaction effects on both the
lifetime and the momentum distribution, and have
obtained reasonable agreement with experimental ob-
servations in several approximations. ' In considering
the thermal smearing of the momentum distribution
cutoB, we can completely avoid the complexities of
these calculations by the following argument: Since
the correlation effects do, in fact, cancel in the momen-
tum distribution, only the average momentum of the
positron as it undergoes various virtual transitions
enters into the thermal smearing. The quasiparticle
formed by the positron and its screening cloud of
electrons will have a Boltzmann distribution in energy.
Therefore, calculating the qua, sipa, rticle E-versus-k
relationship (which hopefully may be expressed by an
effective mass) should permit a complete description of
the thermal smearing. This physical argument is supple-
mented by the recent work of Majumdar, which estab-
lishes with great generality the existence of a sharp
break in the gamma-ray momentum distribution at
O'K. , and the possibility of measuring the positron
effective mass through the thermal smearing of this
break. ' One experiment of this sort has been ca,rried

'S. Kahana, Phys. Rev. 117, 123 (1960); 129, 1622 (1963);
J. P. Carbotte and S. Kahana, ibid. D9, A213 (1965).

~ C. K. Majumdar, Phys. Rev. 140, A227 (1965); 140, A237
(1965).
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corrections to the screening, despite the fact that their
contribution may be important at metallic densities. ~

It will later be seen that the inclusion of such correc-
tions would be premature at this point.

The ana, lytic expression of the self-energy of Fig. 1(a)

Z(k, re) =
(2s-)4
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I'zo. 1. Positron self-energy diagrams. The solid line is the
bare-positron Green's function, and the "bubble" line is the
screened Coulomb interaction.

where v(q) =4xe'/q', and e(q,oi') is the propaga. ting
dielectric function in the self-consistent-field approxi-
mation. ' The co integration is most conveniently carried
out by using a spectral representation for the inter-
a,ction propagator,

out for sodium, and an effective mass of (1.9&0.4)nz
found. 4

The positron interacts with the ions as well as with
the conduction electrons. It thus possesses its own set of
energy bands, which are not simply related to the
electron bands since the ion cores repel the positron, a.nd
since its wavefunction is not orthogonal to those of the
core electrons. Ke wish to calculate only the electron
correlation contribution to the positron m*, and shall
neglect both band-structure eRects and phonon effects.

e(q)—-=v(q)+-
e(q, o&) n o
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dt Im

e(q, f) I
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When (4) is substituted in (3), the s(q) term gives zero
because the ~' contour must be closed in the lower half
plane for reasons of causality, ' excluding the pole of
G'. The order of the ro' and t integrations may be inter-
changed in the remaining term, since the position of
the poles of the integrand relative to the contours is
well dehned, and the co' contour closed in either half
plane. This gives

2. THE POSITRON SELF-ENERGY

Ke shall use a zero-temperature Green's-function
formalism to calculate the positron self-energy. ' This
procedure is justi6ed since the energy scale in the corre-
lation processes is set by the electron-gas Fermi energy.
The bare-positron Green's function is given by

r(q) 1
dt Im

e(q, f) Ce ea a 1+13
z(k, re) = oi'q

Sm'
Ge(k, cv) = (ce ei,+i3)—'

and the complete Green's function by

G(k, o~) = Lcu
—ei,—Z(k, o~)$-',

The quasiparticle energy is given by the real part of
re at the pole of the analytic continuation of G(k,co)

(2) nearest the real axis. To a first approximation this is

where e& k'/2nz, ——and Z is the self-energy. We note
that the imaginary in6nitesirnal in (1) and the imaginary
part of Z in (2) are always positive since the Fermi
energy for the positron is zero. The simplest physically
meaningful self-energy diagram is shown in Fig. 1(a).
The string of bubbles represents the infinite sum of the
bare Coulomb interaction line and the Coulomb inter-
action with arbitrary numbers of electron-hole "bubble"
polarization diagrams inserted. The straight line is G .
This is the same approximation used to calculate the
electron quasiparticle self-energy by Quinn and Ferrell. '
Diagrams such as those shown in Figs. 1(b) and 1(c)
are of higher order in the screened interaction and will
be neglected. In a,ddition, we shall neglect exchange

4 A. J. Stewart and J. B. Shand, Bull. Am. Phys. Soc. 10, 21
(1.965); Phys. Rev. Letters 16, 261 (1966).' See, for example, A. A. Abrikosov, L. P. Gorkov, and I. K.
Dzyaloshinski, Methods of Quantum Field Theory As Statistical
Physics, translated by R. A. Silverman (Prentice-Hall, Inc. , Engle-
wood Clips, New Jersey, 1963).' J. Quinn and R. A. Ferrell, Phys. Rev. 113, 812 (1958).

I'g ea+ ReZ (k,eg)——
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where I' denotes Cauchy principal value. '

3. ANALYTIC PROPERTIES OF QUASIPARTICLE
ENERGY

If we change to the dimensionless variables y=k/lei:,
x=q/k~ and n=f/(kp'/2m), express Ea in units of
k~'/2nz, and use spherical coordinates for the x inte-

' J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1937).
8 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. I'ys.

Medd. 28, No. 8 (1954).
'The same result can be found by using a canonical trans-

forrnation to decouple the positron from the electron gas, and
averaging over the electron-gas ground state. See D. R. Hamann
and A. AV. Overhauser LPhys. Rev. 143, 183 (1966)g, Eq. (23),
dropping the diagonal exchange term.
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gration, we 6nd

oo

&w=y'+ Ch dP
X apkp 0

o(x,xs) - 1+(4/~aokrx') (1 —', s-' —4'7r—is) .
s-+0

(10)

taken. An adequate limiting form which retains these
analytic features is

XI' dl Irn
o o(x,u) 2xy& x—' I—

(7)
The corresponding form of Im e ', correct to 6rst order
in s, is

where $= cose and ao is the first Bohr radius. Now since
we want the effective mass, it is tempting to expand the
integrand in (7) in a power series in y$, carry out the
( integration, and then pick out the coefficient of y'.
This procedure yields

y2j22j+1
~o=y'—

s gokri=o 2j+1
X2j

d44 Im . (8)
4 (X,N) (X'+44)'&'+'

The principal value has been dropped since the inte-
grands are not singular within the range of integration.
However, they are suspiciously singular at x=I=0,
and it is doubtful if any of the coefficients exist above
j=0. It is necessary to study the analytic properties of
E„more carefully to determine what portion, if any,
of the small-y expansion (8) is valid. Returning to (7),
if we Gx $ and consider the remaining integrals to define
a function of y as a complex variable, we see that this
function has a branch point at y=0, and a cut running
along the positive or negative real axis (for $ positive
or negative). Therefore, a power-series expansion such
as (8) about y=0 does not exist.

To determine the nature of the branch point, we
must perform some approximate analytic evaluation
of (7), carrying out the integrations in the indicated
order. Im c '(x,u) contains a smoothly varying con-
tinuum portion, and a delta function at the plasma pole.
Since the plasma 44 is finite, it can be shown from (7)
that only the continuum portion will effect the branch
point. The dielectric function is given by

1 1+r
o(x,44) =1+ (1—r') ln +2r

7I GpkgX— 1—r

Imo —'(x,xs) = (s/aok px') (1+4/n-aok px') —'.

Ic
8

The f integration is easily carried out, and we find

I,=const+ (m.y4/8) dxx'(x'+y') —'
0

d&(2y& —x)

XDnl2y( xl lnl2y& x

It is clear that the second term in brackets in (13) will
not contribute to the y=0 branch point, so we will
drop it. After performing the $ integration, the re-
maining contribution is

I,'= (~y4/32y) Ck x'(x'+y') oL(2y —x)'lnl2y —xl
0

(2y+x)' ln
I 2y+*I j. (14)

This integral is rather complicated, so we will replace
(x2+y') ' by y ', and terminate the x integration at
x=y. (The term from the upper limit does not con-
tribute to the branch point at y=0 anyway. ) Finally,
we Qnd the term we seek to be

The continuum portion of the u integral in (7) runs
from Ni ——Max(0, x'—2x) to u&

——x'+2x, as inay be seen
by examining the imaginary part of (9).For the present
purpose, it is adequate to take Im e

—' to be equal to
(11), ui=0, and No=2x for all x. This replaces Im 4-'

by a "triangular" approximation in u which is correct
for small I/x, is larger than the true function for inter-
mediate I/x, but which "compensates" by going to
zero sooner. Making these approximations, the variable
change I=xf', and introducing the parameter
y'=4/m. aoki, the continuum protion of (7) is

1+s I"=(~/15)y4»1 yl ~ (15)+ (1—s')» +2s+i~(1 r')e(1 r')— —
1—$

—
iver (1—s') 0 (1—s')

r = -', (x—44/x),

s =-,' (x+u/x), (9)

where 0 is the unit step function. One must be extremely
careful approximating o(x,N) in the small x and 44 limit,
since its real part can approach either plus or minus
infinity, depending on the order in which the limits are

This is the only part of the original expression (7) which
does not possess a series expansion about y=0. We note
that (for real y) its second derivative exists and is equal
to zero. Therefore the y' term in the series expansions
of the portions of (7) we dropped or "approximated
away" dominates E„ for y sufficiently small, and we
can define a meaningful effective-mass approximation.
Equation (15) also implies that while the coefFicient of
the yo term in (8) exists, that of the y4 term does not.
This series is thus asymptotic in a restricted sense.
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FIG. 2. Numerical and approximate analytic results for the
coeKcient of the momentum squared in the quasiparticle self-
energy versus r,.

4. EVALUATION OF EFFECTIVE MASS

From (8), we see that the coefhcient of the y' term is

3x'apk p
dx dN Im

(x'+u)' p (x,u)

x'r, (x)
+ , (16)

Lx'+u, (x)]'

where we have explicitly separated the contribution
from the plasma pole at u„(x) with residue r, (x). This
expression was evaluated numerically using the exact
functions throughout. Before discussing these results,
however, we will discuss an approximate analytic
evaluation of (16).

For the continuum portion of (16), we will use the
approximate form for Im e ' discussed in the last sec-
tion. This yields the expression

A = (y4/3) dxx'(x'+y') —' dt' f'/( +ix')' (17)

The first term in the brackets comes from the /=0
limit, and the x integral involving it is simple. The other
term can be put into elementary form by a tedious but
straightforward partial-fraction expansion. The final

We note that the 1/(x+ f )' term weights small x and f
values heavily, and it is for these values that our
approximations are exact. The f integral is elementary,
and we 6nd

x' 1 x+4
A, = (y4/6) dx (18)

p (x'+y')'. x (x+2)'

We note that the leading term in y' comes from the
/=0, x=0 "corner" of the 2-dimensional integration,
and that the complicated term from regions where our
approximations are poorer involves y' and higher
powers. Since y'~ (1/k p) p: r„ this approximation scheme
gives the correct high-density limit for A„a gratify-
ing although unexpected (the author must admit)
bonus.

plasma portion of (16) was approximately
evaluated by taking u„(x)=u„(0)=4(3pupkp) 'I', and
r„(x)=r„(0)=(~/2)u„(0). The value of x for which
cutoff occurs is found in the numerical calculation by
comparing u„(x) to up 2x—+—x', the upper bound of the
continuum. An estimate of this was made by taking
u„(x)=u„(0) and up ——2x, in the hope that neglecting
the x' term in u2 would tend to cancel the neglect of
dispersion in I„.The integral is then elementary and
we find

Np Qp —4
+ tan —'(-,'up'"), (20)

3 4 (up+4)-'8up'"

where up= u„(0). The quantity in brackets goes to zero
as up(~r, 'I') goes to zero, so the continuum term
dominates in the high density limit, where it is exact.

The effective mass is given by

m*/m= 1/(1+A,+A „). (21)

The numerical results and the analytic approximation
for A =A,+A„are shown in Fig. 2 as a function of r, .
The approximation is surprisingly good in the metallic
density range, which we had no right to expect. The
effective mass is shown in Fig. 3, and although we have
plotted only the numerical results, the approximate
results are almost identical. For sodium, r, =3.92,
m*/m=1. 15, so our result is far too small to account
for the experimentally observed m*/m= (1.9&0.4).'

Let us now return to the discussion of the basic
physical approximation involved in our calculation.
Instead of taking only the lowest order term in the
screened interaction in the self-energy, we might have
included a class of higher order diagrams by making
the positron line in Fig. 1(a) a dressed line, which would
replace G' by G in (3), and make it a nonlinear integral
equation for Z. This procedure would then include
Fig. 1(b), and all similar graphs in which no two inter-
action lines crossed. If we solved this integral equation
in the single-pole and effective mass approximation for
G, u, and u„(x) in the cubed denominators in (16)
would be multiplied by m*/m, and the bracketed ex-

pression would be multiplied by a factor of m*/m times
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FIG. 3. Quasiparticle effective mass versus r..

where 3 is the coeScient we have calculated. For
r,=3.92, (22) implies m*/no&1. 18, so the correction
from graphs of the type of Fig. 1(b) is far too small to
account for experiment.

We cannot simply estimate the contribution to Z
from graphs like Fig. 1(c).There is, however, no reason
to expect a larger correction from these graphs than
from those of Fig. 1(b). Finally, we can estimate the
effect of exchange corrections to the electron-gas dielec-
tric function. Hubbard's approximate prescription re-
places p(q, a&) with 1+f(q)Le(q, &p)

—1], where f(q) is a
function which is unity for small q/ki and —,

' for large
q/kp. " Including this in (16) would multiply A by a
factor slightly greater than unity but much less than
2 (when the integrations are considered) and would be,
again, a small correction.

S. THE CLASSICAL LIMIT

If the recoil term in the energy denominator in (6),
q'/2m, is dropped, (7) can be written

the renormalization "constant" (the residue at the
pole of the analytic continuation of G), which is less
than or equal to unity. ' An upper bound to the correc-
tion which could be expected by this procedure may be
obtained by setting the renormalization constant equal
to unity and neglecting the m*/m in the cubed denom-
inators, so

(22)

Ferrell obtained an identical expression by considering
a classical point charge moving in an electron gas. His
evaluation of the y' coefFicient in (24) led to an effective-
mass correction similar in magnitude to that which we
have found. "

We shall argue that it is not valid to use (24) as an
approximate expression in this problem. If one proceeds
to expand the integrand in (24) in a power series in y,
he finds that the coefFicient of y', which involves the
second derivative with respect to u of p(x,u) at u=0,
has a singularity of the form (x—2) '. It is tempting to
impose a principal value and proceed, but the only
principal value one is permitted by the theory is
"used up" in going from (23) to (24). The difFiculty is
more basic, however. If we go to the approximate
expression for the continuum contribution to the y'
coefficient, (17), and remove recoil, we see that the
integrand for the f integration is t ' There. fore the
integral diverges at the lower limit, and the coeKcient
does not exist. Equation (24) can be evaluated, but
cannot be a function of y which allows an effective-mass
approximation. The recoil in the quantum-mechanical
treatment is vital in determining the analytic properties
of E„discussed in Sec. 3.

6. CONCLUSIONS

We have shown that electron-positron correlations
cannot by themselves explain the effective mass ob-
served in the thermal smearing of the gamma-ray
momentum-distribution edge in sodium.

This implies that the positron band structure must be
considered. In particular, the effective mass of the
lowest positron band should be calculated. The electron
correlations will still help to make the positrons heavier.
The effect of phonons on the quasiparticle self-energy
may also be relevant, but the positron band calculation
would have to be carried out first to obtain the deforma-
tion potentials. In addition, a 6nite-temperature cal-
culation would be needed in this case, since the experi-
ment is carried out well above the Debye temperature.

E c ysg(a. sappi )
—' du

I
Im;r (x,u) I
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