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The transverse and longitudinal relaxation times are studied theoretically in a system of nuclear spins
where the modulation of the dipolar Hamiltonian by an exchange interaction is the dominant relaxation
mechanism. If the sample is a powder, it is shown that the nuclear-magnetic-resonance properties are
entirely governed by the knowledge of one single spectral density function J&(co), which is determined
experimentally for solid He', for both bcc and hcp phases. The shape of J&(ca) depends strongly on the lattice
structure and, in the case of a bcc lattice, does not have the Gaussian shape proposed in the existing litera-
ture. Attempts were made to measure the second order frequency shift associated with the nonadiabatic
broadening (10/3 effect); however, the experimental error was too large for the predicted shift to be measured.

I. INTRODUCTION
'

N a recent paper, ' henceforth referred to as RHM,
-. nuclear-magnetic-relaxation measurements in the

bcc phase of solid He' were reported for the temperature
range 0.35—O'K. Special emphasis was given to the study
of the frequency dependence of the values of T& and T2
in the region where they were temperature independent.
In this region, called the plateau, the primary relaxation
mechanism is the exchange modulation of the dipolar
Geld. In solid He', the exchange interaction is unusually
large because such a light atomic mass permits a large
zero-point motion.

The 10/3 ratio between the values of Ts in a high
field and in a low Geld was experimentally checked by
RHM. ' It was also found that the plateau values of T1
and T2 for all densities in the bcc phase could be plotted
on a common reduced curve as a function of co/J,
where co/27r is the Larmor frequency and J is the ex-

change parameter. These curves deviated systematically
from the relations derived for T2 and for T& by Kubo
and Tomita3 and by Hartmann4 who all assume the
spectral density to be Gaussian.

On the other hand, it was found (see Ref. 1, )Vote

added in proof) that for the hcp phase the frequency de-

pendence of T2 was in good agreement with the pre-
dictions of Kubo and Tomita. The conclusion that can
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by the National Science I'"oundation and the U. S. Army Research
OfFice (Durham).

t Alfred P. Sloan Fellow.
' R. C. Richardson, E. Hunt, and H. Meyer, Phys. Rev. 138,

A1326 (1965), henceforth referred to as RHM.
~ Unpublished data by H. Reich and R. L. Garwin in the hcp

phase (V=19.3 cm'} also showed this effect.
'R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
4 S. R. Hartmann& Phys. Rev. 133, A17 (1964}.

be drawn from these observations is that the Gaussian
approximation used by these authors~' in evaluating
the spectral densities in expressions for T1 and T2 is
more valid in the hcp phase than in the bcc phase.

In that which follows, recent and more accurate data
for T2 in both phases at about the same molar volume,
from 19.5 to 20.4 cm', and for T~ in the hcp phase will
be presented. A derivation for the plateau values of TI
(called TEE) and Ts will be given in terms of the sPectral
density function J&(co) without at 6rst introducing the
Gaussian approximation. The frequency dependence of
T& and T2 for both phases will then be analyzed to
produce explicit experimental determinations of the
function Jr(co) for both phases. To our knowledge, this
is the first time that such information has been obtained
from %MR relaxation studies.

Finally, there is a description of an attempt to measure
the second-order frequency shift' ' associated with the
noriadiabatic linewidth in the presence of exchange
coupling.

G. THEORETICAL

There have been several papers'~ ' with theoretical
treatment of the longitudinal and transverse relaxation
processes in solid He, assuming a Gaussian approxi-
mation for the exchange correlation function. The fre-

~ P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 169
(1953);P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).

'A. Abragam, The I'rinciples of tV@clear Magnetism (Oxford
University Press, New York, 1961),p. 446.

7R. L. Garwin and A. Landesman, Phys. Rev. 133, A1503
(1964).

8 M. G. Richards, J. Hatton, and R. P. Gizzard, Phys. Rev.
139, A91 (1965}.
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quency dependence of T2 has been studied for solids
with exchange by Kubo and Tomita. '

It appears useful at the present time to give a deri-
vation for the two relaxation times using the same
formalism, and where no assumptions are made on the
form of the correlation functions. The purpose is then
to obtain the relaxation times expressed in terms of the
same functions, namely, the spectral densities.

After this derivation, the results obtained in the
Gaussian approximation are discussed.

We will be interested in the case where the relaxation
occurs by modulation of the dipolar field as a result of
the exchange interaction only. For the calculation which
follows, we will assume that the exchange bath is
strongly coupled to the lattice so that Tzl&&TzJ. and
the longitudinal relaxation time is given by Tzl, . After
a derivation of Tzz analogous to that given by Hart-
mann, 4 the necessary relations for a parallel derivation
of an expression for T2 will be established.

We assume the nuclear spins, located at lattice sites
i and j and joined by a vector a;;, to be coupled by

(1) a scalar exchange interaction, which will be
eventually assumed to be nonvanishing only between
spins i and j if they are first neighbors, and is given by

hX.„*'=—itJI; I;;

(2) a tensor interaction

hXo"= hb;;{I;.I;—3(I;.ag)(I; a;;)
~

o,;;~ }.
If this interaction is purely dipolar magnetic, then

~ ~ ~ itg+ 2g 0 ~

p being the gyromagnetic ratio.
In an external Geld H, the time-independent Hamil-

tonian is then written as

X*(t)= U(t)X&U( —t). (7)

The equation of motion for 0.*, developed in the text
by Abragam' is

o*(t)= —i[X*(t),o (0)j

d~{X(t), [X*(t—~), o*(t)$}, (8)

valid if the time t is not too short (t)J ').

A. Longitudinal Relaxation

The density matrix of our spin system is assumed to
be given by

o=exp( —PzXz) exp( —P, X )/
Tr{exp(—Pzxz) exp( —P, X,)}, (9)

where pz=h/k&z and p, =h/kT, „.
When using Eq. (8), the expectation value of the rate

of change of the Zeeman energy is given by

=Tr 3Czo-

dr Tr{Xz[X~(t),[X*(t—&), &+(t)j j}.

density matrix o.~ is related to the density matrix o in
the Schrodinger representation by

o*(t)= U(t) o U (—t) .

The interaction representation of the perturbation
Hamiltonian is

where

X—Xp+Xg ~

Xp=Xz+X. , Xz———yP;I; H,

If we use the high-temperature approximation for the
density matrix, we have

Xz, K, , and X~ being the Zeeman, exchange and dipolar
Hamiltonians.

The most important terms in the Hamiltonian are the
Zeeman and exchange energies. These terms commute
with each other but not with the dipolar interaction.
The dipolar Hamiltonian, however, is much smaller
than the exchange energy so the problem of describing
the nuclear magnetic relaxation of the system is formu-
lated in terms of a model in which the Zeeman and the
exchange interactions are treated as independent energy
reservoirs, characterized by the temperatures Tz and
T, which are weakly coupled by the dipolar interaction.

We use the unitary transformation

U(t) = exp(ixpt)

to de6ne an interaction representation, where the

o = (1—Pzxz —P, X,„)(Tr1)-'
= {1 (P, P—,)X,—P.„(X,—+X,)}(Tr1)-~ (11).

Equation (10) then becomes

(dxs)

=(P,—P..) d~ Tr{Xz[X*(t),[X*(t—&), X,jj}
Jp

yP, d~ Tr{X,[X*(t)[X*(t—), X +X..jj}.
(12)

9 See RH. 6, Chap. V+I.
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(Xz)=Tr{Xz(1—PzXz —P, X, )(Tr1)—'}
=—Pg Tr{Xz'}(Tr1)—'.

DiGerentiation of both sides produces

(dXs/dt) = Pz—Tr{Xz'}(Tr1)-~. (15)dXZ
=(Pg—P, )(Tr1) ' dr

dt 0 If the Zeeman-exchange relaxation time Tzg is
de6ned by the relation

P.=-(1/T»)(Pz P,)-, (16)
&&Tr{X,LX*(0), PC*(—.), Xzjj}. (13)

We can also obtain the average energy of the Zeeman
system directly from the high-temperature approxi- we obtain, using Eqs. (4) and (12)

Hartmann4 has shown that the second term on the mation of o-.

right-hand side vanishes. As a consequence of the in-
variance properties of the trace, the integral in Eq. (12)
must be independent of t. Therefore, Eq. (12) now
becomes

~ZS 0

dr Tr{PI„Xq7LX~(—r), I,j} TrI, ', (17)

TZS
dr Tr{(I,,X~j exp( —iXpr)LXd I,j exp(iXpr)} TrI, ', (18)

I, being the component of the total spin I=p; I; parallel to H. As usual, let us decompose the dipolar Hamiltonian:

Gp=(G p)+=2'&~-Fp"A.",

where the 3,'& are the spin operators given by

Ap"=-,'I, 'I,'——',I' I',
and the F,'&' are the lattice variables given by

Apy"= Ig'I, &'+I,'Ip', Ag2'&= I~'I~& (20)

Fp"——b;;(1—3 cos 0;;), F+q'& = ,'b;, sin8;'—;c—os';;exp(Wig;, ), F~p" fb;, sin 0;; e—xp——(%2ig;,), (21)

where e;; and g;; specify the direction of the vector a;; with respect to a coordinate system in which the axis Og

is along the external 6eld H. Gp is the adiabatic part of the dipolar Hamiltonian, producing no longitudinal re-
laxation. We note that

where or= —yB and

Then Eq. (18) yields

where

LG„Xz&=q~G„

exp(iXzt)G exp( —iXzt) = exp(igcot)G .

1/Tzz= J~(co)+Jp(2a&),

(22)

(23)

(24)

I.(~)= g, (r) exp( —iu)r)dr

~F,"~ p Tr{A,'&'exp(iX, r)A, '& exp( iX. r)}-
gp(r) = q' g~&;

Tr{I,'}
(26)

The J,(a&) are the spectral densities which are Fourier transforms of the correlation functions g,(r) Further.
discussio n of the evaluation of gp(r) will be postponed until after a similar expression has been developed for T,.

B. Transverse Relaxation and Exchange Narrowing

(27)
and has the expectation value

The calculation of T2 can proceed by essentially the same method. The precessing magnetization in the plane
perpendicular to the s axis is given by

I,=I, cos~t jI„sinart= II '(t)I U(t)

(I,)=Tr{I,p}=Tr{I,gP}. (28)
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To study the dynamical behavior of (I,), let us prepare the system so that it has a nonvanishing precessing
magnetization at some given time

n= (1—PzXz —P..X,—n~I*)(»1) ' (29)

We need not specify n, Pz, and P. any further. To give an example, once the system has come in equilibrium
with the lattice at a temperature T, a 90' pulse will make Pz=0, P, =n= A(kT) '.

The expectation value of the transverse magnetization in the high-teInperature approximation becomes

(I,)——neo Tr{I,s) (Tri)

and if we dehne the transverse relaxation rate by the relation

dn/dt = n/Ts-,

we obtain for Ts an expression analogous to Eq. (17), I, being replaced by I,:

(30)

(31)

T2
dr Tr{[I„X@j[X*(—r), I j)(TrI,s) ', (32)

~2 0

dr Tr{[I„Xslexp( —iX,xr)[exp( —iXzr)Xs exp(iXzr), I,) exp(iX, r)) TrI (33)

In this case, since [I,Gpj&0, there will be a contribution to the transverse relaxation rate from the secular
part of the dipolar Hamiltonian; when yX))I JI the adiabatic contribution is predominant. Using standard
commutation rules, one can obtain

[I.,Gpf=-,s g Ilp'i(A tr~' A+i'&'), [I„G—~t]=p Pgt'&'(+2A(j& —Age'&), [I.,Gps]=WQ Pgs"I.'Ig' (34)

(i) We now compute the adiabatic contribution Ts of the transverse relaxation time, obtained when Xs is
replaced by Gp in Eq. (33):

T2 0

dr Tr{[I„Gp]exp( —iX,„r)[Gp, I,j exp(iX, r)) TrI,'. (35)

The trace in the numerator on the right-hand side of this equation is obviously real, and the adiabatic linewidth
can be written as

+"
G„(r)dr,

T2' 2

the correlation function G„(r)"being defined as

G„(r)=
Ti'{[I Gpg exp( —iX,„r)[Gp,I,]exp(iX, r) )

T1Ig
(37)

Making use of the commutation rules previously given, G„(r) can take the following form:

Tr{A i"exp(iX, r)A i"exp( —iX. r) )
G-( ) =(9/g)E

I
pp" I' (38)

It is worth pointing out that this correlation function is not identical to either of the functions g, (r) defined
by Eq. (26). The Taylor expansion of G (r) for small times r is easily written in terms of the moments of the
resonance line:

G„(r)=Ms zrM4rs+(1/—24)Msr4+ (39)

(ii) We now concentrate on the real part 1/Ts" of the nonadiabatic linewidth. Replacing Xz by Q«p G, in

'p The notation G„(r) is that of Ref. 6. A normalized correlation function G (r)/M& is defined as fp(r), yq (r), or g„(r) in
Refs. 3, 5, or 6.
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Eq. (33), one obtains using commutation rules I Eq. (34)j:

g na
{exp(—icos)ko(r)+-,' exp( —ia)r)k2(r)+exp( —2iMr) ki(r) )dr, (40)

where we define three new correlation functions:

4Z'(gI Pi"I'»{Ao"(expzX )rAp'&( exp i—se,.r))
ko(r) =

TrI.2

»{A,"exp(iX, r)A j&'exp( —iR, r))
k, (r) =q'P;(;IF, 3"I'

TrI.2

(=1) 2.

(42)

(46a)

For g2(r) we can also replace in Eq. (26) the operator

A2"= (I '+zI„')(I,'+i' ),
'

Altogether we have thus introduced six correlation which leads to
functions (g,(r) and h, (r) for q=1 or 2, G„(r) and
ko(r)) to calculate both relaxation times in the most
general case. To proceed in spite of this complication
we must take more restrictive assumptions.

C. Powder Assumption

Ke assume that we are dealing with a powder and
observe angular averages of the relaxation rates pre-
viously calculated. In the case of He', this assumption
is in convict with the deductions from studies by x-ray
diffraction, "where it was possible only to grow single
crystals. From the point of view of magnetic resonance,
our assumption is feasible if the relaxation times of
various crystallites are not too diferent, i.e., if they do
not vary very much with the orientation of the mag-
netic field, which seems reasonable. Besides, as we will
see, this assumption seems to be justified by the results.

For a powder, the averages over the lattice coordi-
nates become:

I
P ij

I

2 —(4) (f ij)2
(43)

I
I"i"

I
'=

I
~2"

I

'= (3/10)(f ")'
The number of useful correlation functions is reduced,

since one now has

(44)

so that the adiabatic linewidth becomes

1/T2' ——2 Ji(0) .
In fact, the simplification is even greater because the

correlation functions b, (7) and ko(~) are isotropic for
a powder.

In Eq. (41) we can perfectly well replace the operator
Ao'& by the operator

+v—3I iI i LP Ij.
,'Ao"+S3(A—2'—&+A p"),

'

"A. F. Schuch, E. R. Grilly, and R. L. Mills, Phys. Rev. 110,
775 (1958}.

by the operator

W"= (I,'+zI,') (I,'+ZI, ')
=AD'& ~(A2"+A g")+, i,(Ai"+A i")-,

which leads to

or
—,'g2(r) =kp(r)+28i(r),

-'B~(r) =28i(r) .
(46b)

We are thus left with only one independent correlation
function, which we shall choose to be gi(r). Making use
of both Eqs. (46a) and (46b), Eq. (24) becomes

1/Tzz= Ji(~)+4Ii(2~), (47a)

and Eq. (40) becomes

1
+ =-,'Ji(0)+-,' Ji(a))+Ji(2a)) . (47b)

TQ T2 T2

One notes that at low magnetic fields (extreme
narrowing case') both transverse and longitudinal re-
laxation rates are now equal to (10/3)(1/T ).sWe have
thus demonstrated once more the celebrated 10/3 ratio
between the linewidths in the adiabatic and in the
extreme narrowing case,

As long as the mathematical form of the spectral
density J&(o&) is unspecified, the Eqs. (47a) and (47b)
are valid in the case of motion modulation of the dipolar
field (see BPP equations'), provided the lattice Hamil-
tonian is isotropic, as well as in the case of exchange
modulation of the dipolar Geld.

The consequence of the powder assumption which
have obviously been observed in RHM are that (1) there
is only one observed transverse relaxation time; (2) at
low fields Tzz T2 and (3) the asymptotic —v—alue of the
T, ratio in high and low fields is 10/3. It is worth
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pointing out that nothing has yet been assumed about
the range of the exchange interaction.

D. Gaussian Assumption

So far we have shown that all the magnetic resonance
properties are governed, in the powder assumption, by
the knowledge of a single correlation function gt(r). To
compute gt(r) for all values of r is a very diKcult
problem, even when using a modern computer. "

Following the model Anderson and Weiss' used for
the adiabatic linewidth, one usually assumes gt(r) to
be a Gaussian with a curvature at origin given by
Eqs. (39) and (44):

J0/2s. in Mc/sec. For intermediate frequencies, we have

1.89)&10" / es' )
Ts~ '= exp~—

to.V' 4 2te, '/

( 2co )+4 exp~ —
~

sec ', (54a)
~,s)

1.89X10't
—;+-',exp/—

ot.V' k 2co.'I
2' )

+exp~ —
~

sec '. (54b)

where
gt(r) = (Ms/3) exp( —-', to.'r'),

ro.s= M4/Ms.

These equations are a special case of Eqs. (47) under
the Gaussian assumption. Within less than 1%, the
numerical factor in front of the parentheses is the same
for both hcp and bcc phases.

The exchange modulation frequency ~, can be calcu-
lated for both phases of solid He', assuming now that
the exchange interaction is nonvanishing only for first
neighbors and knowing Ms and M4 as a function of J":

ce.=2.387 J (bcc phase),

=3.24 J' (hcp phase) .
The Gaussian assumption being made, "it is easy to

calculate the adiabatic linewidth by means of Eq. (45):

J&(co)= (Ms/3or )(2s.)"'exp( —aF/2o& ') (51)

(52)

and then relate it to the exchange interaction. To
emphasize that the value so obtained for the exchange
J is based on the Gaussian assumption and, strictly
speaking, should not be taken for granted before that
assumption is checked, we will call it Jt.-.
(J0/2s. )=18.98&(10'(Ts'/V') for the bcc phase, (53a)

(Jg/2s) = 13.926&& 10'(Ts'/Vs) for the hcp phase, (53b)

where the molar volume t/' is in cm', T2' in sec and

"R.Bersohn and T. P. Ds.s, Phys. Rev. 130, 98 (1963).
"The value of M& for both the bcc and hcp phases is given by

Kq. (3) oi Rel. 7; for given nuclear species and given molar
volumes, the second moments in the two phases happen to diRer
by less than 1%. As for 3E4, Eqs. (4) of Ref. 7 are, in the case
of a spin -'„correct for the hcp phase but erroneous for the bcc
phase for which we calculated the correct value to be

3f4 =31.456 (y'A'J'/o'),
smaller by 17/0 than the value of Ref. 7. Consequently, exchange
interactions obtained in Refs. 1 and 7 from relaxation measure-
ments in the bcc phase should be increased by 9%.

'4 One way to justify Kq. (48) would be to compare the fourth
derivative of its right-hand side at 7 =0 with the Taylor expansion
of Kq. (39), i.e., to evaluate the ratio

p = 3co,'(3Es/cVs) =3&4'/(Ms3I2),
which should be equal to unity were 81 a Gaussian. A very crude
estimate is to see what it is when the resonance line is taken to
be a truncated Lorentzian (see Ref. 6, p. 107); p is then equal
to 5/3, thus is not much larger than unity.

(M y
Irs"= gm exp( —inter) gt(r)dr.E3l p

(56)

This shift vanishes at zero and at high magnetic fields.
It has a maximum for a I armor frequency which is,
a priori, of the order of &o, (or J) and is then equal to
1/Ts within a factor of the order of unity.

It is found that in the Gaussian approximation

0.76)& 10" (—bee= exp(—
cd8V E 2M 6 3 (tee/

( 2',s) (2co)
+2exp/ — Ill —I, (57)

~.'& Em, &

where
(g2)

@(u)= exp
E2&

This formula is again valid for both hcp and bcc phases.

III. EXPERIMENTAL APPARATUS
AND PROCEDURE

The method used for the relaxation time measure-
ments was the same as that described in RHM. The
temperature during the measurements was kept between

E. The Line Shift

The calculations we made so far treated the traceless
dipolar Hamiltonian 3'~ as a perturbing operator. It is
a standard result of quantum Inechanics that some
average displacement of the energy levels will appear
only in the second order with respect to the perturbing
term and will be due only to the nonsecular part of X&.
This means that the nonadiabatic linewidth I/Ts"'
must be associated with an imaginary part iso, a mathe-
matical representation of a shift Ro easily related' to the
correlation function gt(r) and given, in the powder
assumption, by

—Bto = (-', )Msrt" + (-', )Msrs",
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TABr.z I. Values of T1 and T& obtained with the double cavity. All values are &5% unless otherwise noted.
Jg are the values obtained for the exchange interactions by Eqs (.53).

V =19.50 cm'/mole
a/2s. T2

Mc/sec msec

hcp phase

(o/2s.
Mc/sec

V = 19.55 cm'/mole

Tl
msec

T2
msec

bcc phase
7=20.40 cm'/mole

au/2s 2's
Mc/sec msec

4.64
4.22
3.54
2.92
2.44
2.19
1.92
1.41
1.12
0.925
0.713
0.574
0.500
0.360

71
7.3
7.3
7.1
7.1
7.1
6.9
5.9
4.8
4.4
3.7
3.4+0.3
2.9+0.3
2.6+0.3

2.10
2.04
1.80
1.45
1.20
0.890
0.670
0.540
0.470
0.400

107
96
57
34.4
19.6
10.0
6.8&0.7
4.9&0.5
4.6+0.5
3.5~0.4

6.1
5.7
5.2
3.7&0.3
3.0m 0.3

7.40
6.80
6.30
5.50
5.00
4.10
3.30
2.65
2.00
1.36
1.10
0.580
0.375

20.6
20.2
20.2
19.4
17.7
15.9
15.3
13.0
11.1
10.6
8.7
7.8&0.7
6.6+0.7

Jg/2s =0.267 Mc/sec Jg/2s. =0.32 Mc/sec Jg/2s =0.94 Mc/sec

about 1.3 and 0.7'K, where the plateau in Tt and Ts
occurred. The data for a given density were taken at up
to 12 different frequencies and both phases were in-
vestigated during the same series of experiments, in
order to avoid any systematic differences in procedure.

For the measurements of the frequency shift between
samples having different densities, the method of differ-
ential frequency measurement was chosen. Two identi-
cal high-pressure cavities were constructed in the same
block of brass. Care was taken to avoid any magnetic
metal or superconducting solder. One cavity was filled
with solid He' with a molar volume of about 24 cm'.
This sample was then used as the reference. For this
sample cg,/2s. was greater than 50 Mc/sec so that the
shift of the resonance predicted by Eq. (57) was

negligible at the frequency used, about 1 Mc/sec. The
other cavity was Glled with solid He' of various densities.
During an experiment, the magnetic field was first
stabilized and then the cryostat temperature was
lowered from O'K to about 0.7'K, the solid He' in the
two cavities having different densities. The center of the
resonance for one rf cavity was determined by observing
the tail in the NMR signal following a 90' pulse and
adjusting the frequency until no beats could be ob-
served. Then the pulse system was immediately switched
to the other sample cavity and the period of the beats
following the 90' pulse was measured. The beat fre-
quency observed for the second sample was then the
difference in the resonant frequencies of the two samples.

In order to obtain the amount the line shifted as the
density was changed, the frequency difference between
the two samples cavities was erst measured with a low-
density solid in both cavities and then with a high-
density solid ( 20 crn'/mole) in the second cavity. "

"It was thought impractical to go to appreciably higher
densities because, then, the frequency for observing the maximum
in the shift is lowered to about 100 kc/sec. There the signal-to-
noise ratio would not permit any precise measurements. Also, as

The magnitude of the shift due to the change in density
was then the difference between the two values of the
relative frequency difference of the cavities.

The chief error in this procedure was in setting the
reference sample on resonance. The precision in setting
the Grst cavity on resonance and in measuring the beat
frequency of the second cavity depends on the length
of time that the tail following a 90' pulse can be ob-
served. By trying to reproduce the measurements of the
frequency difference between the cavities many times
with different Geld gradients between the cavities, it
was found experimentally that the minimum possible
error hbtg/2s in the frequency difference measurement
was approximately 20)& 10 '/Ts* cps, where Ts* is the
characteristic decay time after the 90' pulse. If the
external field were ideally homogeneous, T2* would be
the same as T2. Using the value of the shift given by
Eq. (57) and with Ts*=Ts, it is found that the most
favorable ratio of the shift bar to the error in the shift
measurement Abc' will be of the order of 3. In practice,
we were unable to approach such a favorable ratio in
the measurements because of the inhomogeneity in our
magnetic Geld. It is possible that there were parts of the
cryostat containing magnetic or superconducting im-
purities. At the highest frequencies the absolute fre-
quency shift measured was the most accurate, but then
the magnitude of the frequency shift as calculated from
Eq. (57) was no longer favorable.

IV. RESULTS AND DISCUSSION

A. Nuclear Relaxation Times and the
Syectral-Density Function

(1) From the consideration of Sec. II, it appears
advantageous to present the results for Tg~ and T2
is developed in Sec. III, the most favorable ratio of the frequency
shift to the error in the shift measurement is independent of
frequency.
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FIG. I. The reduced transverse re-
laxation time (Ts/Tm') versus the
square reduced frequency (or/co. )' for
two molar volumes, one in the hcp
phase and one in the bcc phase. The
figure makes use of data given by
Table I. The solid line is calculated
by using Eq. (54b).
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together. The raw data are tabulated in Table I and
reduced plots similar to those described in RHM are
presented in Figs. 1 and 2 for the two phases. The value
of J& has been determined from the T& data )by using
Eq. (53)j for each density at higher frequencies where
T2' was measured. As can be seen in Fig. 2, the results
for the hcp phase agree with the theoretical prediction
based upon the Gaussian approximation for the correla-
tion function.

Another way of reducing the data is to use Eqs. (&7a)
and (47b). If, for a given Larmor frequency, we measure
Tzz and T2, those two linear equations are a system
with two unknowns Jt(o&) and Jt(2') which we may
determine simultaneously. This procedure was used to
analyze the reduced plots in Figs. 5 and 6 of RHM
together with the new data presented in Table I for an
ensemble of molar volumes in the bcc phase. We thus
obtained the ratio Jt(cu)/Jt(0) plotted in Fig. 3 of this

V= 19.55 crrl/mole:
hcp phOse o.s-
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Fro. 2. The reduced relaxation times, transverse (T2/Ts') and
longitudinal (10/3) (T&/T2'), versus the square reduced frequency
{co/cy,)', in the hcp phase. The figure makes use of data given by
Table I. The solid lines are calculated by using Eqs. (54a) and
(54b).

Fro. 3. The reduced spectral density J&(ra)/Jz(0) versus the
reduced frequency (&o/au, ), in the bcc phase for several molar
volumes. The figure makes use of data given in RHM and by
Table I. The exchange modulation frequency is obtained by
Eq. (52). The ratio J&(co)/A (0) is obtained by solving the system
of Eqs. (47a) and (47b). The dashed line is the reduced spectral
density in the Gaussian assumption. The solid line has been ob-
tained by a least-squares 6tting of the experimental points to the
empirical expression given by Eq. (58).



252 RICHARDSON, LAN DES MAN, HUNT, AND M EYER

I

t.0-
-II

e
f

~ ) ~ ) I ) I

V l9.55 cm'/mole hcp phosi

~ Jl(&) ay

J {o) vs(Qf )

TABIE II. The measured frequency shift (Sco, v/2v) for several
samples. The molar volume of the reference sample is 24cm'/mole.
The exchange modulation frequency td. is obtained by Eq. (52).
Ro&h is the frequency shift calculated in the Gaussian approxima-
tion by means of Kq. (57).
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Phase

hcp
bcc
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cm'/mole msec

19.3 6.2
19.83 11
20.2 16.5
20 6 26
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1.10
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Fro. 4. The reduced spectral density Ji(~)/Ji(0) versus the
reduced frequency (co/",), in the hcp phase (V= 19.55 cm'). The
figure makes use of data given by Table I. The exchange modula-
tion frequency is obtained by Eq. (52). The ratio J&(co)/J'&(0) is
obtained by solving the system of Eqs. (47a) and (47b). The
solid line is calculated by using Eq. (51).

deviations from the curve calculated from Kubo and
Tomita's theory, an improvement of the differential-
frequency measurement by a factor of 10 must be made.
The difficulty in obtaining such an accuracy has already
been mentioned. By eliminating the inhomogeneities
present in the magnetic Geld in the cryostat, and by
improving the signal-to-noise ratio at the low fre-
quencies that are used our accuracy would perhaps
improve by a factor of 5.

V. CONCLUSION

article versus x=co/cu„where co, is a value for the ex-
change modulation frequency obtained by Eq. (52).

To And an analytical expression for this spectral
density, a least-squares fit to the expression

Jr(co)/J(0) =expL —ax'/(x+6) j (58)

was made. This empirical expression can Gt a Gaussian
(b very large) as well as a plain exponential (6=0).Such
a fitting gave values for a and b for the bcc phase with a
reasonably small mean deviation, as shown in Fig. 3.
The fitting corresponds to a curve which is almost an
exponential in the range of the frequencies used in the
experiments. The spectral density appears to decrease
less rapidly in the wings than a Gaussian.

The same procedure was used for the hcp phase
(V= 19.55 cm') as is shown in Fig. 4. For this phase
it is evident that a spectral density based upon a
Gaussian correlation function fits the calculated points
well.

B. The Prequency-Shift Experiment

Our data for the frequency shift at several densities
are presented in Table II, which gives also the frequency
shift bao&s calculated by means of Kq. (57). For the bcc
phase, that theoretical shift is calculated in the Gaussian
approximation, only for the sake of comparison. Since
this approximation has just been shown not to be veri-
fied in that phase. As can be seen, the scatter of the
results is too large to allow any quantitative comparison
with the theory. The only conclusion that can be drawn
from our measurements is that the frequency shift, if it
exists, is not larger than about two or three times the
shift Kubo and Tomita have predicted. In order to
obtain a more precise result, in particular, to detect any

It has been possible to determine the spectral-density
ratio Jr(co)/Jt(0) for solid He'in the bcc and hcp phases
from relaxation time measurements. The spectral den-
sities reQect what the reduced plot of the relaxation
times has already shown: that there is a surprising
difference in the shape of the correlation function for
the two phases, which have very different structures.

For the bcc lattice, a given atom has its first neighbors
at a distance a and its second neighbors at a distance
2a/V3, thus not very much larger than a. Conse-
quently, in view of the existing theories for the exchange
interactions in solid He', the exchange for second
neighbors in the bcc lattice may still be larger than the
dipolar interaction. This is indeed a complication for
the problem of the spectral density.

In principle, the shape of br(r) has a direct bearing
on the experimental determination of an exchange inter-
action by measurements of the relaxation time. The
real interaction J is equal to Jo multiplied by a factor
which divers from unity if g&(r) differs from a Gaussian.
In practice the precision on that factor would be very
poor if we had to use an experimental spectral density,
given, for instance, by our Fig. 3. That means that any
determination of J based on relaxation-time measure-
ment and on assumptions made on the correlation
function is not absolute but relative.

On the other hand, measurements of J from spin-
lattice relaxation in the bcc phase at 20.15 cm' were
carried out by RIM. These measurements depend on
the ratio" Cz/Cz, where Cz and Cz are the specific
heats of the Zeeman and exchange reservoirs, and there-
fore do not depend on any assumption regarding the
correlation function. The J derived from this measure-

"See Ref. 1, Eqs. (17) and (18).
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ment ( 800 kc/sec) is in good agreement with that
obtained from T'2 and Tz~ data in the plateau region
(780 kcjsec). Therefore, the deviation of J0 from J is
shown to be small, certainly within the experimental
error of the determination of the exchange integral.

The frequency shift experiment has given an upper
limit one might expect for the shift predicted by Kubo
and Tomita, ' and our results are consistent with their
calculations. In view of the errors inherent to shift

measurements, it is improbable that much quantitative
information will be obtained even under the best
conditions.
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The F" superhyper6ne structure of the EPR spectra of Co++ in MgF2 is interpreted with simple molecu-
lar-orbital theory. A necessary preliminary analysis is made of the g tensor and of the spacing of the six
Kramers doublets derived from the 4TI ground manifold. The ligand-6eld parameters of the rhombic 6eld,
6—510 cm ' and I'=—390 cm ~, and the spin-orbit coupling, )——157 cm ', are signi6cantly different
from values derived from less complete data. The reported superhyper6ne interactions provide suftjLcient
data to determine, without recourse to much less certain orbital-reduction factors, the s-, sigma-, and
pi-bonding fractions: f.= (0.61+0.02)%, f,= (3.9&0.3)%, and f = (0.9+0.3)% for the two equivalent
fluorine ions along L110).For the other four Quorine iona similar estimates are obtained. These results are
at variance with the suggestion, made for octahedral Co++, that sigma and pi bonding are of comparable
magnitude.

INTRODUCTION

A PREVIOUS paper' describes the EPR spectra of
cobalt as a dilute substitutional impurity in mag-

nesium Quoride, and presents a complete analysis of the
complex F" superhyperfine structure (shfs). It is the
purpose of the present paper to interpret the measured
superhyperfine tensors at the simplest possible level
of phenomenological molecular-orbital (MO) theory.

MgF2..Co++ and closely related materials provide an
unusually complete set of data to be correlated and
interpreted.

(1) The EPR spectra are fit by a spin-Hamiltonian
with completely anisotropic spectroscopic splitting and
cobalt hyperfine tensors. The superhyperfine tensors of
two nonequivalent F"ligand-nuclei are also anisotropic.
The principal-axis directions of one of these tensors are
not symmetry-determined, and do not coincide with
the bond direction. The nearly identical spectra of
ZnF2.'Co++ have not been completely analyzed. ' '

(2) The infrared (IR) absorption spectrum of CoFs
at low temperature4 has several peaks near 1000 cm '.

' H. M. Gladney, Phys. Rev. 143, 198 (1966).' D. Shaltiel (unpublished) (re orted by H. Kamimura and Y.
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549 (1956).

~ R. Newman and R. M. Chrenko, Phys. Rev. 115, 1147 (1959).

(3) Fluorescence spectra' provide remarkably precise
information of the energies of the lowest set of excited
states.

(4) EPR ' and optical' spectra are known for the
corresponding octahedral complex KMgF3..Co++.

Besides these researches, there have been studies of the
static susceptibility and antiferromagnetic resonance
pf 5 CpF2 and pf the NMR pf Quprjne and cobalt

Simple MO theory of superhyperfine interactions has
been described for similar systems, ~ '~" but not for an
orbitally unquenched octahedral ground state which is
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