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charged Co'7 is present as Fe++ only. This is to be
contrasted with NaC1 where both Fe+ and Fe+~ are
observed. "

(c) There is a noticeable degree of covalency in the
binding of Fe++ in AgCl.

(d) The effect of the variation in fluctuation time of
an EFG have been observed for the first time in the
Mossbauer effect.

(e) The silver-ion-vacancy jump times are much
faster than those of alkali-ion vacancies in the alkali

+ J. G. Mullen, Phys. Rev. 131, 1415 (1963).

halides (about 10' faster at room temperature). These
jurnp times are apparently largely independent of the
identity of impurity.
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A previously developed method for diagrammatic expansion of the Ising-model partition function and
pair distribution function is applied to calculation of the field-free quadruplet spin averages (p&p2pgs4). The
central four-vertex function Q generated by these averages is topologically analyzed in standard fashion in
terms of an irreducible four-vertex quantity e. Several rigorously necessary conditions that must be satisfied
by Q are listed. It is furthermore pointed out that the existence of a logarithmic specific-heat anomaly puts
an additional constraint on quadruplet averages (which is verified in an Appendix by direct calculation on
the Ising-Onsager two-dimensional square lattice). Upon making a simplifying functional assumption for Q,
this latter quantity may be entirely determined above T, by one of the necessary conditions. This leads at
T, to a k & spectrum (2=dimensionality) and above T, to a logarithmic specific heat, both of which were
adduced by Abe's Ising-model version of the He speculative analysis due to Patashinskii and Pokrovskii
(but for different reasons from those in the present analysis). Sinec the Abe-Patashinskii-Pokrovskii spec-
trum almost certainly exhibits an incorrect exponent, an alternative and more powerful functional assump-
tion for Q is suggested which still yields a soluble theory in principle, but construction of the solution is not
attempted here.

I. INTRODUCTION

'N a previous article, ' some of the techniques of
~ - quantum 6eld theory were employed to generate a
diagram expansion for the general Ising-model parti-
tion function Z(p) and low-order spin averages. The
partition function was expressed as a vacuum-state
expectation value of the product of two operators:

Z(P) =(0~exp( —PM) exp(Dt) ~0), P= (kiiT) '& (1)

and the "vacuum" may be regarded as a set of un-
excited one-dimensional harmonic oscillators, one at
each lattice site. Operators M and Dt can be expressed
in terms of the canonical boson Geld operators b(k)
and bt(k):

M= +(P(—k)bt(k)+H(k)b(k)

+V(k) L-,'bt (k)bt (—k)+bt (k)b (k)

+-,'b(k)b( —k))l (2)
' F. H. Stillinger, Jr., Phys. Rev. 135, A1646 (1964).

Dt=p N' "D„Q bt(ki) bt(ks„ i)
%=2 lrl" ~2n-1

Xbt( —ki —. —ks~ i). (3)

Here, H(k) and V(k) are the discrete-lattice Fourier
transforms of the external field h(r) and the pair po-
tential s(r), and the k's are the reciprocal la, ttice
vectors, confined to the first Brillouin zone r. The
numerical coeKcients D„may be expressed as the
following integrals:

( 1)n 122m w ysn —ldy-
D =

s'"(2n)! p sinhy

or alternatively written in terms of Bernoulli numbers.
In Ref. 1 it was convenient to consider the operators

exp(Dt) and exp( —pM) in Eq. (1) to act, respectively,
during "time" intervals of unit length and length p.
Time ordering of operators, followed by operator con-
tractions in accord with Wick's theorem then generated
the requisite diagrams.
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FIG. 1. Diagram of a process contributing to the spin-quad-
ruplet average, Eq. (6). Bursts of an even number of excitations
(&4) due to Dt' occur in the lower strip, and for vanishing ex-
ternal 6eld only pair vertices from M appear in the upper strip.

Spin averages may be obtained from lnZ(P) by dif-
ferentiation with respect to external field intensity at
the sites involved. Diagrammatically, each such dif-
ferentiation provides a root point for the spin-average
diagrams. It was previously found that the set of doubly
rooted graphs contributing to the pair correlation func-
tion in the absence of external fields could formally be
summed to yield' '

1
(I44I43)=—It (ris,p) =— dk%'(k, p) exp( —ik ris),

[1+W(k,P)j
e(k,p) =

1+[1+W(k,P)jPV(k)

The function W(k,P) is analogous to a proper self-
energy, in that its diagrarnlnatic basis involves di-
vergence into several parallel routes from the original
path connecting the roots of the 1| diagram, then con-
vergence to a single path again.

Calculation of W(k, P) then forms the central problem
in the present reformulation. In particular the singular
nature of this function at the critical point P =P, holds
they key to understanding critical phenomena. It is one
of the central aims in this paper to study 8' through the
P differential equation for f. Since this latter equation
involves quadruplet spin averages, we are motivated to
study in detail the set of quadruply rooted diagrams
which will quantitatively be specified in the following
Sec. II, and then subjected to standard topological re-
ductions in Sec. III.

The difhculty of evaluating any but the simplest

k-space sums in the in6nite system limit pass to integrals in
the manner:

(r)
1V 'g ~— dk.

k & r
3 An alternative means of obtaining this result may be found in

J. L. Lebowitz, G. Stell, and S. Baer, J. Math. Phys. 6, 1282
(1965) Lsee Eq. (5.25)j.

class of diagrams in a many-body theory is of course
well known. With a view to eliminating to some extent
these dificult evaluations, we display a set of necessary
conditions (Sec. V) on the primary four-vertex diagram
sum, denoted below by Q. To illustrate the utility of
these restrictions, it is shown in Sec. VI that for P&P,
a simple functional assumption on Q leads to an im-
plicitly soluble "model, " exhibiting similar behavior in
the critical region to that obtained by Abe, 4 with com-
plete elimination of the need to evaluate any diagrams
whatever. To the extent that 8' is the two-vertex
analog of Q, and that a similar functional assumption
on W which suppresses k dependence across r leads to
the spherical model' ' as shown in Ref. 1, we obtain
here a result representing in some ways a natural step
beyond the spherical model.

The quadruplet averages naturally also appear in
the rigorous specific-heat expression, since this thermo-
dynamic quantity is related to Quctuations of the inter-
action energy. Section IV points out the implications
for W and Q for logarithmic specific heat anomalies
known for two-dimensional models, ' and often sus-
pected in three dimensions. '

II. SPI1V QUADRUPLET DIAGRAMS

We briefly sketch the adaptation to quadruplet spin
averages of the argument given in Ref. 1 leading to
diagram expansion. The starting point is a vacuum-
state matrix-element expression corresponding to Eq.
(1)':

(r) 4

(»~,~.)=X-sZ-i(P) E (OIII Lexp( —ik,";)h'(k,)
RI h4 j=l

+exp(ik; r,)b(k;)j
Xexp( —pM) exp(Dt)

l 0). (6)

The set of contributions to (6) may be graphed as
before on a pair of parallel strips, width P and 1 for
"time"-ordered operation of M and Dt, respectively, as
shown in Fig. 1. Vertical direction in the Figure corre-
sponds to reading right-to-left in the operator product
in Eq. (6); consequently the four root points corre-
sponding to the four spins appear at the top.

The contributions to (6) are of various types accord-
ing to how (or indeed whether) they connect the four
root points. Those unconnected to the roots are can-
celled by the Z(8) division. Contributions whose dia-
grams connect the roots in pairs yield the following sum
of products of pair correlation functions:

p(r12)f(r34)+p(r13)ip(r24)+p(r14)p(r23). (7)

R. Abe, Progr. Theoret. Phys. (Kyoto) 33, 600 (1965).
5 T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).' H. W. Lewis and G. H. Wannier, Phys. Rev. SS, 682 (1952).
7 L. Onsager, Phys. Rev. 65, 117 (1944).
8 M. E. Fisher, J. Math. Phys. 4, 278 (1963).

Some transformations of such matrix elements are given in
F. H. Stillinger, Jr., Phys. Rev. 138, A1174 (1965l.
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Diagrams for remaining terms have all four roots
mutually connected through vertices within the strips,
which are also connected among themselves; an ex-
ample is shown in Fig. 2.

At this stage it is convenient to carry out certain
partial diagram summations. It may first be noted from
Figs. 1 and 2 that vertices in the bottom strip, arising
from Dt, may have loops attached to them which have
no other points of attachment to the diagram. A formal
summation over all such loops at a given lower-strip
vertex has the effect of "renormalizing" each constant
D„ in Eq. (4) to a temperature-dependent value
D (P)." Secondly, each diagram of the connected
variety illustrated in Fig. 2 consists of "arms" from
each of the roots entering a four-terminal complex
(merely a point in Fig. 2). Figure 3 indicates in ab-
breviated form the diagram in Fig. 2, with only the
distinguished four-terminal vertex and the roots shown
for convenience.

Indeed, we shall regard Fig. 3 as standing for the
sum of the entire set of graphs of the type shown in
Fig. 2, including renormalization of the central vertex.
In obtaining an explicit representation of the sum for
Fig. 3, we recognize that each arm might directly have
entered the distinguished vertex, or have done so after
passing through any number of V and H/' processes
provided that the last process before entering the dis-
tinguished vertex was a V, not a 8'. Hence each arm
summation generates a "bond" or "propagator, ""

T (k P) = 1/(1+ L1+W(k P)jPV(k)i), (8)

similar to the pair correlation transform +(k,P). As a
result, the k-space form of the contribution of Fig. 3 is

4!T(krP)T(kz)P)T(k, ,P)T(—kr —kz —kz, P)Dz(8), (9)

where the 4! arises from all possible assignments of Dt
operators to the four distinguishable arms, under opera-

FIG. 3. Abbreviated diagram for the sum of terms of the type
shown in Fig. 2. Summation has been carried out over all possible
"arms, " and over loops attached to the distinguished vertex,
which therefore has attached to it the renormalized value D2(P)

tor contractions (which require momentum conserva-
tion) during the original diagram generation.

The single remaining vertex after diagram abbrevia-
tion is but the simplest case of an infinite variety of
four-terminal complexes receiving the root arms. Figure
4 displays a few of the possibilities. These complexes
all possess renormalized vertices of even order con-
nected by internal bonds, along which partial summa-
tions will be presumed already performed. Since in this
case a V necessarily lies next to each explicitly indicated
vertex, the appropriate internal bond stands for the
propagator:

L(k,P) = —PV(k)/(1+L1+W(k, P)/PV(k)) . (10)

Of course momentum conservation still applies at each
renormalized vertex.

The totality of four-terminal complexes defines the
four-terminal function Q, as shown symbolically in
Fig. 4. Therefore, setting

(i r zl ~p4) —4 (rr2)4 (rz4) —4 (r»)4(rz4) —4 (rr4)4 (r»)
—=lf '" (r12 r» r14), (11)

FIG. 2. Spin-quadruplet diagram in which the four root points
are mutually connected through strip vertices. The arrow indi-
cates the distinguished point receiving the four arms.

' Details are given in Ref. 1. The precise values of the renor-
malized constants are irrelevant in the remainder of this paper.

"Expansion of Eq. (8) reproduces the sequence of IV's and
V's that are allowed along an "arm."

the Fourier transform of P&4l is

@&4&(k„k„k,)= T(—k, —k,—k,)
X T(kz) T(k,) T(k4)Q(k, ,k, ,k4). (12)

The conservation of momentum for the propagators
entering the four terminals of Q reinforces the tempta-
tion to regard this function as a scattering amplitude
for boson spin excitations. The major object in the
present development then becomes determination of
this scattering amplitude, and understanding of its role
in the domain of critical phenomena.

III. TOPOLOGICAL REDUCTIONS

After careful attention has been directed to the
combinatorial factors inherent in operator contractions
in Eq. (6), the amplitude Q may explicitly be written
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out as a sum over permissible four-terminal dia-
grams R:

Q(ks, k8, k4,p) =p [o (R)]—'[4!Jli
—'D2(p)]"2iR& ~ ~ ~

~ X

X[(21)@71—lD (P)]ni(R). . .

(r) p(R j
X Q' P L(k ',P). (13)

k],~ ~ ~ ~ Rp(g) ~ 0!=I

In this expression, the momenta along the i4(R) internal
diagram bonds L are k ', and the 784(R) are the numbers
of renormalized vertices at which 21 bonds (internal or
external) converge. The diagram symmetry number is

o(R). The primed mornenturn summation enforces
momentum conservation at each vertex, including the
four terminals with their external T-bond momenta.

The structure of the infinite diagram set {R}may
at least be partially revealed by a topological reduction
to an irreducible four-terminal function, in exactly
the same manner as has been done in the regime of the
quantum-mechanical many-body problem"; we repeat
the argument here for completeness. It is perhaps easiest
to visualize the subsequent relations in their direct
space representation, so let g(rls, r13,r14) be the r-space
four-terminal function whose transform with respect to
the three relative position variables is Q(ks, k8, k4)

+ ~ ~ ~ ~

FIG. 5. Some simple diagrams contributing to the
auxilliary four-terminal function c.

containing, respectively, terminal pairs (13) and (24),
or (14) and (23).

The original function q may easily be reconstructed
from c as shown in I'ig. 6. The point is that those dia-
grams in (R} which permit two-bond cuts leading to
(12), (34) separation, consist of a string of c-type con-
tributions connected by parallel pairs of bonds. The
infinite series of such strings of arbitrary numbers of
c nodes obviously may be summed by the integral
equation

g(f12 f18,f14) C(r12 f18 f14)

+ g c(f12 f15 fls)l (f58)l (r67)

Q(ks, k„k4) = p exp[8(k, rls+k8 113+'k4'114)]
r12 r13 r14

Xg (rls, r13, r14) . (14) L(k,p) =p exp(ik r)t(r, p),
Xg (178 f78 f74) (15)

It is convenient to introduce an auxilliary four-
terminal function c(rls, r18,r14), which stands for a subset
of the entire diagram set (R}.The diagrams of the c
set are those which cannot be separated, by cutting
precisely two internal bonds, into two portions, one of
which contains terminals 1 and 2, the other containing
3 and 4. The simplest members of the c set are shown
in Fig. 5. Note from the figure that some of the diagrams
in the subset could nevertheless be so bisected into parts

which is also exhibited in Fig. 6. Relation (15) con-
stitutes a four-terminal version of the Ornstein-Zernike
integral equation connecting fiuid pair and direct cor-
relation functions. "

The quantity c(r», r», r14) is not a completely sym-
metric function of its argument vectors as is q (r12, r13, r14),
on account of the unsymmetrical manner of treating
the four terminals in its definition. However, c is sym-
metric with respect to interchange of its last two
arguments. Consider the symmetric sum

~(r12 f18 f14) C(f12 f18 f14)+C(f13 f12 f18)

+c(r14,r», rl, ) . (16)

+ ~ ~ ~ ~ ~ Q

Those diagrams in (R} which allow separation by
scission of two bonds will appear twice, those which do
not will appear three times. The diagram subset for the
latter may be termed "irreducible, " and the corre-
sponding four-terminal function denoted by e. Then
subtracting e from s produces each member of (R}
twice, i.e., '4

FIG. 4. Definition of Q as the sum of all four-terminal complexes.
The incoming bonds from the roots to the four terminals have
been included for completeness.

"A. Z. Patashinskii and V. L. Pokrovskii, Zh. Eksperim. i
Teor. Fiz. 46, 994 (1964) LEnglish transl. : Soviet Phys. —JETP
19, 677 (1964)j.

g(r12 f18 f14) 2[c(f12 f13 f14)+C(f13 f12 f14)

+C(114 f12 f18) C(f12 f18 f14)] ~ (17)
"L.S. Ornstein and F. Zernike, Koninkl. Ned. Ak.ad. Weten-

schap. Proc. 17, 793 (1914).
'4 Substantially the same relation appears in both Ref. 4 and

Ref. 12.
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FIG. 6. Generation of the set 1R} of diagrams for g ont of the c set.

Some of the leading contributions to the symmetric
function e are graphed in Fig. 7. The inherent dif}iculty
in the general Ising problem thus has been transferred
to determination of e, for once this function is given,
Eqs. (15) and (17) together would self-consistently
determine c and q, and from the latter the pair correla-
tion function and thermodynamic properties of the
model could subsequently be deduced.

IV. SPECIFIC HEATS

+ + + +

+ + + e a ~

FIG. 7. Some of the low-order irreducible four-terminal diagrams
contributing to the symmetric function e(r», r», r14).

It is now appropriate to record a few heuristic ob-
servations about the temperature dependence of W(k,p)
and Q(ks, ks, k4,P) with particular emphasis on infinite
specific heat anomalies at the critical point (p= p,).

The phase transition at P, is heralded by the occur-
rence of an infinity somewhere in r of the k-dependent
susceptibility %(k,P), Eq. (5). In the case of ferro-
rnagnetic interactions" for which V(k) possesses an
absolute minimum at k=0, this singularity will result
from first occurrence of a zero (at k=0) of 4's de-
nominator, 1+[1+WJPV. Accordingly one has the
following property for 8'.

The mean energy of interaction, on a per-spin basis,
is obtained by summing the product rsriiII over the do-
main of relative positions:

)=l 2 t(r»)4(r»p)
&12

(21)
1 [1+W(k,P)jV(k)

dk.
2r. , 1+[1+W(k,P)]PV(k)

1+W(O,P.)= —1/P. U(o) .
Differentiation with respect to p then leads to an ex-

(18) pression for the specific heat:

The manner in which the zero-wave-vector suscepti-
bility diverges as p approaches p, can furthermore be
inferred from recent numerical analyses of high-tem-
perature series for nearest-neighbor Ising models. It
is found that8

%'(O,p) const/(p, —p)& (P(p,),

C(P) B Z(P)

kriN BP

P' {[I+W(k,p)$'V(k) BW—(k,P)/BP) V(k)
dk.

{1+[1+W(k, p))PV(k))'
(22)

where 1&7(2. In view of the explicit occurrence of P
in 0's denominator, 8' must have precisely the correct
linear temperature variation at P,+0, in order to effect
a cancellation in the denominator to leading order.
Since (19) is probably valid for all (ferromagnetic)
interactions of sufficiently short range to permit exist-
ence of second spatial moments, one evidently has the
result:

A more revealing form is obtained by multiplying Eq.
(5) for r»=0,

1+W(k,p)1=- dkr, 1+[1+W(k,P)jPV(k)
(23)

BW(0, P.+0)/BP = 1/P.s U(0) .
by —',U(0), applying P'(B/BP) to both sides, and adding

(20) the results to Eq. (22):

C(P) P' [V(k)—V(0)J{[1+W(k,P)g'V(k) —BW(k,P)/BP)
dk

fcriN 2r .„{1+[1+W(k,P))PV(k))s

"For simplicity, only this case will be considered in the remainder of the paper.

(24)
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From the defining expression for the pair correla-
tion function,

4(r»,P)=~ '(P) 2 f i s
P 1 ~ ~ AN=El

(a)

I —mp
pc

a temperature diBerential equation may be obtained
by applying a p derivative to both sides:

r)$(rrs, p)

i+W(a ~ o, p)I'

VERTICAL
TANGENT

I'(12lsj)=( r ~O'Pj) (Pl@~)( *f;)
=4'"'(1»j)+4 (h)k(2j)+4'(I j)4'(») .

(27)

Reference to the first form in Eq. (22) therefore gives
an alternative specific heat expression in terms of
r-space functions:

(b)

I

pc

FIG. 8. Temperature dependence of I+W(k, P), (a) at k=0,
(b) for some k&0 in r.

Precisely at p„ the denominator-factor k dependence
near k=0 is known to be":

1+Ll+W(k,p,)jp, V(k) constXA' — (25)

(aside, possibly, from unimportant angular rnodula-

tion), where r)=4 in two dimensions, and is a,pproxi-
mately 0.06 in three dimensions. '~ For short-ranged
potentials, U(k) —V(0) vanishes quadratically at k=O.
When this fact is combined with the vanishing of the
second numerator factor of (24) at k=O, P, according
to Eqs. (18) and (20), and the k" ' (in d dimensions)
from spherical-coordinate k-space volume element dk,
one sees that Eq. (24)'s apparent singular behavior at
k=O, p, due to the denominator zero is completely
quenched. In order to obtain an infinite specific heat

anomaly at P, then it is obvious that the integrand in

(24) must become infinite away from k=0, and this
could only happen by r)W(k&0, P,+0)/c)P diverging to
minus inanity. Figure 8 illustrates the behavior of
W(k, P) so far deduced"

Because V(k) is quadratic in k around the origin,
whereas (25) displays "sharper" behavior (i.e., an ex-

ponent less than 2), it is clear that W(k, P.) must itself
possess the k'—& sharpness. As shown in Fig. 9, the
linear temperature variation of W(O, P) at P„coupled
with divergence of c)W(kWO, P)/c)P just deduced, is
fully consistent with development of this sharpness
from a smooth W(k, P&P,).

' M. E. Fisher, Physica 28, 172 (j.962).
"M. E. Fisher, J. Math. Phys. 5, 944 (1964)."It is easy to show that the leading high-temperature variation

of g (k,p) is a k-independent contribution proportional to P .

c(p)

kglV

P2
s (rr&) v (r;;)F (12

I
ij) .

2 &12 1'i &sj

(28)

The quantity I'(12I ij) represents the extra correla-
tion between a pair of correlated pairs, arising when
these two pairs, (12) and (ij), approach one another.
The important configurations for I' in Eq. (28) of
course have these two pairs each at small separation,
since e is short ranged. I' naturally should exhibit some
dependence on mutual orientation of the two pairs, but
this should be relatively minor at large separations. In
order that the right-hand member of Eq. (28) be able
to diverge at p., then, it is necessary to invoke a long-
range behavior for I" as a function of R, the separation
between the centers of ma, ss of the two pairs (12) and

il I+ W(k, P)

FlG. 9. Diagram showing necessity of infinitely rapid decline
of "wings" of W(k, p} at p, in order to produce sharper-than-
quadratic behavior at %=0 (here highly exaggerated).
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(rj) .Consistent with current notions about the long-
range character pf the pair correlation functj. pn j.tself
one would assume the following large-R asymptote:

I'(12
~
zj) constX exp( —x&)/R', (29)

where ~ is the sam. e exponential damping constant en-
countered in the pair correlation function, which may
be taken proportional to

~
p,—p~ ", 4 &0 in the critical

region.
For the purpose of singularity estimate, we may

suppress pair internal degrees of freedom in Eq. (28),
and replace the sum by an integral:

I 43

FIG. 11. Configuration of spins in a lattice of coordination
number four, for which identity (41) of the text applies. Spina 3,
l, m, and e are the nearest neighbors of spin 4.

explicitly in terms of Q:

c(p)
const)&

kgb 1

"exp( —xR)
R" 'dR

Re

c)W(k,p) 1 V(k')Q(k, k', —k', P)
dk'. (31)

2, , {I+t1+W(k',P)jPV(k'))'

-const X
i P,—P i

"i' @, (0(d)

constXln~P, —P~, (H=d).

The rigorously known two-dimensional logarithmic di-
vergence thus appears to demand 8=2 (since there
v=1s), in distinct contrast to the known pair correla-
tion exponent 4," and this presumption is verified in
the Appendix by direct calculation on the two-dimen-
sional square net. Again in three dimensions, the
specific heat is either logarithmic or characteristic of a
very small negative power of ~P,—P~, so 0=3 (since
v=0.65)'r unlike the pair correlation exponent =1.06."
One is therefore confronted with a paradox to unravel:
the critical pair correlation function of pairs of spins is
entirely different from that for single spins.

Finally, with use of Eqs. (5) and (12), we may
Fourier transform the p variation equation for f, Eq.
(27), and modify it into one for the p dependence of W

Figure 10 displays this equation in graphical form,
showing that p differentiation of the doubly rooted
W-graph set (specified in detail in Ref. 1) provides
another pair of roots, and thus generates the set R for Q.

V. NECESSARY CONDITIONS ON Q

Because there is no general analytic procedure avail-
able for calculation of the complex e diagrams (and
thence g), there is good reason for seeking restrictive
conditions on functions arising in the theory that may
be established independently of specific diagram evalua-
tions. In this section we list some necessary conditions
on the four-terminal function q, which are probably
independent of one another.

(A) As acknowledged earlier, q(r», ris, rr4, P) must be
invariant to permutation of its three independent vector
variables. In addition of course q must exhibit inversion
symmetry

g (r12 rl8 r14 p) g ( r12 rl3 r14 p) ~ (32)

8W
~P zl

Also q will possess the same rotational symmetry (all
three vectors being simultaneously rotated), and re-
flection symmetry as the underlying lattice.

(8) Temperature Eq. (31) permits deduction of
W(k,p) from a given function Q, and t and p follow in
turn. Equations (11) and (12) then provide the quad-
ruplet spin average, now a functional of Q, which must
necessarily satisfy the inequality

Sg+ W Sy + W

—1((lurpsI44444) (1 (33)

FIG. 10. Graphical version of Eq. (31). Since P only occurs in
the members of the 8' diagram set as —Pe bonds, P differentiation
provides a second pair of roots, to permit the four-terminal func-
tion 0(q) to be distinguished. Symmetry factor (2!) ' arises from
indistinguishability of the t bonds. The modified vertex function
R(f) is de6ned in Eq. (42).

"This identiication is suggested by transfer matrix formula-
tions for order-disorder problems, in which ~ is related to the
ratio of the 6rst two eigenvalues of the characteristic matrix; see
J. Ashkin and W. E. Lamb, Jr., Phys. Rev. 64, 159 (1943).

'0 F. H. Stillinger, Jr., and H. L. Frisch, Physica 27, 751 (1961).

for all r», r», ri4, and P. Equality is attained in this
restriction only at absolute zero, or if the four sites are
identical.

(C) The coupled topological relations (15) and (17)
indicate that q is a special functional of e and TV

(through l) which can be obtained by self-consistent
solution of these two relations. In view of the non-

linearity, one can hardly expect that an arbitrary real

q could have come from some real 8', e pair; only a
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restricted class of g's consistent with (15) and (17) is
available in principle.

(D) It is obvious that if any two spins in the average
(plp2p3p4) are coincidentally the same, this quantity
reduces to the pair correlation function for the re-
maining two spins, since always p =I. An exactly
equivalent statement may be posed in terms of /&4&

from Eq. (11):
pt'l (r12,rls, r18) = —2$(rts)p(r28) . (34)

In view of Eq. (12), this may be expressed alternatively
in a way explicitly containing Q,

dk2T(k2) 2'(—k2 —k,—k4)Q (ks, ks) k4)

= —2[1+W(k8))[1+W(k4)j. (35)

(E) For lattices with coordination number four (in-
cluding both two and three-dimensional cases), and
just nearest-neighbor interactions —Jp;p;,+an addi-
tional restraint is available which follows''from the
Fisher identities"" for these lattices. As shown in
Fig. 11, let spins p&, p2, and p3 be located anywhere in
the lattice, but take p4 to be a nearest neighbor to p3.
Symbolically denote the remaining p4 nearest neighbors
by p&, p, and p„. By definition,

(P1P2P8P4&=Z-'(P) g P1P2P3V 4

Pl ~ ~ .@@=hi

Xexp(PJ Q p;p, ) . (36)
(nn)

For any set of values ~1 for the four spins neighboring

p4, we have the following identity:

V4 ezp[8J'p4(p8+V 1+pm+pn) j
p =+1

=~ (PJ) (ps+pl+ p-+p.)

+J3(PJ) (p3plpm+psplpn+pspmpn+plpmpn) j (37)

3 (pJ) =82[tanh(4PJ)+2 tanh(2PJ)$,
B(PJ)=-82[tanh(4PJ) —2 tanh(2PJ)). (38)

If this last relation is substituted into Eq. (36), with
the p4 sum performed 6rst, one obtains

(plp2p3p4) + (8J)[(p1p2)+ (p1p2psp l)

+(pu 2 3p )+(pt~ 2psp &j

+J3(PJ)[(pu 2plpm)+(pu 2pl .)
+(plp2pmpn)+(plp2psplpmpn) j~ (39)

The sextuplet spin average may be eliminated by use
of identity (37) in an expression of type (36) for
(plpsplp4); as a result it is verified that

(p lp2plp4) ~ (~J)[(p1p2v lp8)+ (p1p2)

+( uspl -)+(pu 2pu-)j
+B(PJ)[(p»2psp. &+(pu»». )

+(pu 2vspu -v-)+(vu 2p-p-& j (4o)
"M. K. Fisher, Phys. Rev. 113, 969 ($959).
22 F. H. Stillinger, Jr., Phys. Rev. 131, 2027 (1963l.

Finally subtract Eq. (40) from Eq. (39) to obtain the
desired condition:

(plp2psp4) 2 tanh(2P J)[(plp2p8pm)+ (plpspspn&7
= (plpsplp4& 2 tanh(2')

X [(p1psplpm)+(prpsplpn)$ ~ (4'1)

Again, this limits in principle the available class of four-
terminal functions g from which the quadruplet spin
averages in (41) may be obtained.

VI. SELF-CONSISTENT APPROXIMATION FOR q

We turn now to use of some of the necessary condi-
tions listed in the previous Section for development of a
self-consistent approximation scheme for the four-point
function Q. First, rewrite Eq. (35) in the somewhat
simpler form:

1=- dk, e(k2,P)e(—k2 —ks —k4, P)F(ks, ks, k4,P),

Q(k2, ks, k4,P) (42)

= —2[1+ W (k2,P)][1+ W (ks,P)][1+W(k4, P)]

X[1+W(—k2 —k8—k4, P))F(ks, ks, k4)P).

The r-space equivalent form of (42) is:

8K(r18)5K(r28) = p f(rts, rts, r14)p(r ps' ( 4 r, 88)I, (43)
r3, r4

where 8K(r) is the lattice Kronecker delta function.
Because Eq. (43) is true for each set of vectors

r~5, r25, it is capable, so to say, of entirely determining
a function of two vector variables. Therefore if the
symmetric function f had the following form, for
examp] e23

f(r12 r18 r14) =X(rts, r14)&K(r12)

+x(r12 r14)~K(r18)+7r(r12 rls)~K(r14)

+7t (r21) r24) ~K (r28)+7t (r2ly r23) ~K (r24)

+X(r„,r„)SK(r„), (44)

with X symmetric in its two variables, then (43) would

completely determine X, and a closed Ising model theory
would result. Of course (44) doubtless represents an
approximation to the correct f, but the attractive no-
tion of contracting the function f onto a symmetric
combination of functions of fewer variables, with
consequently a means for evaluating f, comprises the
basic theme in the remainder of this article.

Actually we shall investigate a more severe contrac-
tion than shown in Eq. (44). Let"

f(r12 r13 r14)—=v (r13)&K(r12)8K(r34)

+p (r12)~K (r18)~K(r24)+ 82 (r12)~K (r14)3K (r28) (45)

~ The compression of f onto subspaces for coincidence of two
or more of the four terminals is analogous to the introduction of
pseudopotentials in scattering theory.
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If this approximation for f is adopted, the restraint
condition (43) could not generally be satislied for all

r~5, r25. However we can demand that it be satisfied on
the r~2=0 subspace, and in doing so get a determining
equation for y..

3x(r») =E v (r»)~t'(r»)+2~(0)P(r») (46)
1'3

This linear sum equation may readily be solved by
taking Fourier transforms. If

[4 (k),+t2&(k)]=+ [y(r) P(r)] exp(ik r), (47)

the transformed version of Eq. (46) is

1=C (k)4&2&(k)+2q {0)O&'&(k)
or

4 (k) =[0 ' (k)]—'—2q (0) . (49)

The inverse transform next yields an expression for
p(r):

1 exp( —ik r) —-', 3K(r)
q (rP) =- dk (50)

+"&(k,p)

With y now in the form of an explicit functional of
P in Eq. (50), Q in the basic P equation (31) likewise

this latter equation could be then integrated to give
W(k,p). However it is well to recognize that the result-
ing approximation to 8' would not necessarily satisfy
the sum rule Eq. (23). It is therefore advisable from the
outset to split 5' into two parts:

W(k, p) =Wo(p)+Wi(k, p),

0= dkWi(k, p),

where the k-independent Wo is the average of W over r,
and 8"~ the fluctuation about the average. Then we
need use y in temperature equation (31) only to deter-
mine the fluctuation quantity Wi, since Eq. (23) can
always be used to fix Wo at any P.

The foregoing reason therefore justices addition of
any k-independent function of p to the right member
of Eq. (31) to bring it into accord with sum rule (23).
Primary interest here centers around critical phenom-
ena becomes an explicit functional of 8', and in
principle above the transition temperature (p&p, ),
and in view of conditions (18) and (20), insertion
of Eq. (45) into Eq. (31) yields the following differen-
tial equation:

[BW(k,P)/BP) = [I/P, 2 V (0)]+$BW(P)/BP]+ [1+W (k P)]' — dk' V (k')4'(k') [4 (0)+2C (k—k')]

—[1+W(0,p)]' — dk'V(k')@'(k')[C (0)+24 (—k')] . {52)

The last two terms cancel at k=0, and the first terms
would provide the correct k=O, P=P. derivative by
Eq. (20); in principle, then, W(P) should vanish more
rapidly with p, —p than the first power, in accord with
Eq. (19). Equation (52) is the basic relation of the
present self-consistent approximation.

It is our object to use Eq. (52) to deduce character-
istic critical region exponents for thermodynamic func-
tions as well as for correlation functions themselves.
We shall see that these exponents follow uniquely from
the requirements of self-consistency. The form of the
pair correlation function, for example, with which we
will work, is appropriate to the large-r limit, when p is

only slightly less than p, '6'4:

p(r, p) exp( —Kr)/r" —'+&, (53)

where the small positive quantity q represents devia-
tion from "classical" critical point behavior, and the
exponential decay parameter has already been en-

MBoth multiplicative constants and angular modulations of
order unity will be suppressed in the asymptotes quoted in this
section for the sak.e of brevity. They are irrelevant for the argu-
ment determining exponents.

countered in Eq. (29), with

K(P)-{P,—P)", »O.
The Fourier transform belonging to Eq. (53), and valid
for small k, has the following form":

e(k,p) (k'+K') «'-'. (55)

The general "rule of thumb" applicable here is that the
undamped asymptotic function r' " & transforms" to a
function whose lowest noneven-integer power is k~ ',
and that damping factor exp( —Kr) modifies argument
k to (k'+K2)i12 on account of the eRective upper integral
cuto6 at r=~—'.

Since V(k) possesses a series expansion about k=0
with leading terms quadratic in k components, refer-
ence to Eq. (5) shows that the critical region 4' be-
havior in Eq. (55), assuming iI)0, could only result
from a W(k,p) which itself bore the nonintegral
exponent:

1+W(k,p) 1+W(0,p,)
+[p/p, ' (0V)] (k'+K')' «', —(56)—

"R.J. DuIIiii, Duke Math. J. 20, 233 (1953).
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1
dk'V(k')e'(k', p)c (k—k',p) . (62)

Again it is the small-k' values that a,re of importance
in~the integrand, and for them, V may simply be
reckoned as a negative constant, leaving a convolution
of %2 and C. The Fourier theorem then permits (62)
to be written as a lattice sum involving the product of
functions whose transforms are 0" and C, respectively,
so one estimates for (62):

exp( —~r) exp( —~r)—Q exp(ik r) ——1n(k2+~') . (63)
&d—4+2& &4

—2&l

We wish now to match up exponents of (P,—P), by
comparing coefficient of k' on both sides of temperature
equation (52). For the left member, use expression (56);
the dominant contribution to the right member clearly
is the coefficient of k' in small-k expansion of estimate
(63). Therefore one finds that (8/BP)( —a &k') and
—a 'k' must be comparable quantities, i.e.,

—sq—I —2v

(64)
&I
=2—(I/v) .

By referring to Eq. (58), it is clear that the present
approximation has the Curie-YVeiss susceptibility law

(y=1) as a logical consequence. For that reason, the
approximation is not capable of honoring the condition

the third term having been included on account of
Eq. (20). Hence the small-k behavior of the important
0' denominator is obtained by use of (56) and the bi-
nomial expansion:

1+L1+W(k,P)jPV(k) g' ~+g ~k2+ (57)

with neglect of 0(k4) terms. The leading term in this
last expression is the W(P) contribution, which therefore
varies as (P,—P)"" &&. The zero-wave-vector suscepti-
bility%'(O, P) then varies as (P,—P)"« '&, which identifies
the exponent 7 introduced in Eq. (19),

v= ~(2—n).

By squaring the asymptote shown in Eq. (53), we

may next conclude that the transform 0 &2) occurring in
our p expression (50) has the following small-k behavior:

@(2&(kP)~(k2+~2)d/2 —2+g (59)

presuming that g is small enough that the exponent is
still negative. Therefore,

C(k,P) C(O,P,)+(k'+~')'-@'—, (60)

which would have been the result of transforming:

q (r,p) exp ( ~r)/r— (61)

A key point to establish is the k variation of the
convolution integral occurring in the temperature equa-
tion (52),

dp' ln
-(p. p')—'

k'
=2& [j9,—P—k""j+(P,—P) ln—, (65)

K

assuming that the upper integration limit exceeds the
lower limit. Since Eq. (64) states that I/v=2 —g, it is
clear that the first term on the right in Eq. (65) yields
the P, profile sharper at the origin than parabolic. For
k smaller than (p,—p)", on the other hand, (65) be-
comes modified in the manner qualitatively indicated
in (56) by the use of argument (k'+~')'~' in place of k,
so that W remains "rounded" at k=0 when P(P, .

The last term in (65) is a key result. It states that
for any k away from the origin, a P sufficiently close
to P, is eventually reached such that W(k, P) varies
with temperature in the manner of a constant plus

(p —p,) ln(p, —p). Specific heat expression (24) there-
upon leads inevitably to the conclusion that C(p)
possesses an infinite anomaly of logarithmic character
as P approaches P. from below (the disordered phase).

The remaining relation between exponents required
to fix them uniquely follows from sum rule (23). Note
that as p approaches p, from below, variation of both
numerator and denominator W's in Eq. (23) for large
k tends to reduce the value of the integral by contribu-
tions of the type —(p,—p) ln (p,—p). The only way that
the required constancy of the integral can be insured
is by having an equivalent increasing contribution from
the denominator (which is developing a zero at k=O)
for k's less than or equal to about ~. In view of Eq. (57),
this latter may be estimated by means of the following
integral:

02' 2n
k" 'dk= (P P)"'" '+&&— (66)

This estimate need be taken seriously only so far as the
exponent of (p,—p) is concerned, and could in fact have
been multiplied by any function of P,—P (such as the
logarithm) which is dominated by any negative power
of this variable at the origin. Consequently, we must
demand that

v(d —2+q) = 1. (67)

set down in Eq. (20), and W will vary hnearly with

p, —p at p, .
The next step is to integrate differential equation

(52) with respect to P at a given (small) value of k.
For a chosen k value, the last two terms of (52) cancel
one another to within a difference of order unity until
P exceeds P. k""—; when P exceeds P,—k""on the other
hand they yield essentially —ln(1+k'/x') )on account
of (63)j, which for present purposes is equivalent to
—1n(k'/z'). We therefore calculate W(k, p) to be equal
to a function well behaved in both k and p plus a singular
contribution of the type:
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Because of relation (64), we conclude that the self-
consistent solution implied by functional assumption
(45) requires:

g = 2—(d/2),

3=2/d.

(68)

(69)

Although the estimate of q is probably too high, it is
interesting to note that the v prediction is apparently
exact in two dimensions (at least for nearest-neighbor
interactions), and in good agreement with the nu-
rnerical result (0.644&0.003) obtained by Fisher and
Burford in three dimensions. '7

Of course in one dimension with short-range inter-
actions no phase transition is expected, so the above
analysis does not apply. In four or more dimensions,
the self-consistent solution does not differ (so far as
critical exponents are concerned) from the correspond-
ing spherical model approximation, since W(k,P,) is
no longer "sharper" at k=0 than V(k), and thus g=0
and 3= (d—2)

—'.
For P)P„approximation (45) is entirely inadequate

to deal with the long-range order that the system should
possess, leading in fact to spurious divergences. The
reason is evident from the second form of the graphical
equation shown in Fig. 10. In the presence of long-
range order, the pair correlation function will possess a
long-range constant part equal to the square of the
magnetization m(p), plus a short-range part f, :

4'(r, p) =4'. (r,p)+m'(p) (p)p.) (7o)

Remembering that n(r) is short ranged, it is clear that
summation over the uppermost pair of vertices in the
diagram will give a result proportional to X, rather
than of order unity as was the case when P(P.. The
weakened version (46) of more general condition (43)
induces cancellation of these order X contributions
only when the bottom pair of the four f terminals are
coincident, but leaves them uncompensated when the
terminal pair is distinct. Only by use of the complete
condition (43) can a proper theory be constructed
which extends through p„with prediction of the mag-
netization curve m(P). This of course would require
returning to the less stringent approximation for f in
Eq. (44); the full condition (43) then leads to a linear
integral equation for X, the Fourier transform of I:

1 ——1

X(k,,k4) = — dk2e(k, )e(k2)

1
X 1 dk6 (kl)+(k2)LX(k1 k2)

r

+X(k,k3)+X(ki, k4)+X(k2 k3)

+X(k2,k4)), (71)

x(k„k4) = p exp|i(k3 r43+k4 r44)x(r23, r44),
&33&4

kg ———k2 —k3—k4)

whose solution for X as a functional of 4 then would
serve as starting point for an improved theory.

VII. FINAL COMMENTS

The k dl' wavelength-dependent critical suscepti-
bility, the logarithmic specific heat singularity, and the
Curie-Weiss behavior for the k=0 susceptibility are all
contained within the Patashinskii-Pokrovskii transi-
tion theory for He', as well as within Abe's' transcription
to the Ising model transition. The underlying structure
of the present approximate theory however is somewhat
different, and can be argued to possess a more satis-
factory logical basis. In particular, close attention has
been paid to sum rule (23), with the result that the
specific heat anomaly arises from large-k values of the
boson "excitation spectrum" rather than from small k,
i.e., from pair correlation at small distance, rather than
large distance, as must certainly be the case with
short-ranged e(r). In addition, it is clear in the present
analysis that W(k, p) is singular at k=0 only when
P=P„whereas the analogous quantities in Refs. 4 and
12 retain their singular k=0 behavior throughout the
critical region. Finally, the Curie-Weiss value of unity
for y follows as a logical deduction in the present
context, rather than having been inserted as an addi-
tional hypothesis.

In the high-temperature regime, it is of interest to
note that the approximate form for f given in Eq.
(45) is asymptotically valid when only the simple dia-
grams of the type shown as the 6rst three examples in
Fig. 4 are of any importance. As p increases, though,
diagrams of the fourth type in Fig. 4 will increase in
importance, and would create deviations from the
assumed form (45). Interestingly enough, the less re-
strictive assumption (44) is still consistent with the
fourth diagram (but not the 6fth), and since orders may
be assigned as p raised to a, power equal to the number
of internal bonds, a theory based on (44) and the inte-
gral Eq. (71) would be rigorously correct to a higher
order in P than the one considered at length in the
previous section.

Although even extended assumption (44) for f will
commit error in some order of p, this should not imply
that the description of behavior of the model in the
critical region is poor. On the contrary, the important
part of the spectrum is clearly at small k in the critical
region, and any approximation on the basic scattering
amplitude Q which preserves its behavior for small k's
should give a qualitatively correct account of the
phenomena. The pseudopotential analogy has already
been noted" for the subspace compression on f em-
bodied in Eq. (44). But is is precisely the small-k
scattering amplitude that a pseudopotential is designed
to reproduce correctly. " It should eventually be in-
structive to see how critical exponents predicted on the

' J. M. Blatt and V. I'. Weisskopf, Theoretical Nuclear Physics
(John W'iley @ Sons, Inc. , New York, 1952), p. 74.
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l. -0 1
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1+x

FIG. 12. Polar plot of
r ~ exp (6~), de6ned in
Eq. (A 10). The direc-
tion indicated on the
elliptic arc is for in-
creasing l.

After inserting (A2) into (A1), one has only two
nonvanishing contractions under operation of Wick's
theorem:

(PmPmlgm'Pm'+i)
= (0 o+I iC„"C~&'I@0+)(e&+

I
ic„.&Q .+i*IN,+) (A3)

—(+o+
I
i&-"C.+i I

+0')(+o'
I
ic.'&.,i I

+0+) .

The first term's factors may be identified as precisely
those encountered in calculation of the nearest-neighbor
pair correlation function for the model, and therefore
give (pmpm+i)(pm'pm'+1). Thus

r (m, m+ 1
I
m', m'+ 1)

= (PmP~ipm'IJm'+i) (Ijmljm+r)(gm'Pm'+i)
= —(+o+

I
ic„c„,+i'I +o+)(+o+

I
ic„,&c +i*I~ o+)

= —~m, m ~m, m . (A4)

basis of integral equation (71) compare with those
obtained in the previous section, and those known or
conjectured to be exact. ' A favorable comparison would
lend additional credence to the approach to under-
standing of critical phenomena through diagrammatic
methods, pioneered by Green" in his critique of the
Ornstein-Zernike hypothesis.

APPENDIX

We wish now to ascertain the result obtained for
exponent 0 in Eq. (29), by explicit calculation in the
two-dimensional Ising model with nearest-neighbor
interaction J. Here it proves especially convenient to
follow the formalism and notation introduced by
Schultz, Mattis, and Lieb," to whose lucid expository
account the reader is referred for definition and sup-
porting detail.

In particular, we examine just the case of four spins
along the same row of the lattice, forming two nearest-
neighbor pairs. Let the spins be numbered m, m+ 1, m',
m'+ 1 with m') m+ 1.Then it is required to compute

The matrix elements a, =a are shown in Ref.
28 to ha ve a Fourier-transform structure:

a„„.=3I ' g ~ expI il (m—
'

m) j-
&& expL —i(2yr+ I)j; (A5)

assuming for convenience that 3f is even, the values of
included in the sum are

3x Sm (M—1)n.

1=+—, a—,a—, , a-— . (A6)
3f M M 3f

The set of numbers q ~ are defined at the critical tem-
perature by the transcendental relation:

I exp(il) —x]Lexp(ii) —17
exp( —4iq ~)

= (A7)
I-exp (—il) —x)I-exp (—il) —1J

to which must be appended the condition that the
algebraic sign of the real number y~ be the same as
that of

sgn q ~
——sgn/ .

The parameter x in (A7) is defined:

(Pmgm+igm Pm'+i)

= lim (co+ Io„*o ~i*o„,*o„,+i*I@a+), (A1)

in which 3I is the lattice width (the row contains M Clearly x& 1.
spins), e is a Pauli operator for site j, and

I
@a+) is

the relevant "vacuum" state. Although the separate-
site Pauli operators do not constitute a canonical set
for the problem since they satisfy mixed commutation
relations, Schul tz, Mattis, and Lieb show that the
Jordan-Wigner transformation may be employed to
introduce proper fermion operators C, in terms of
which:

x=cothE, cothE, *;
tanhK, *=exp( —2E',),

E.=P.J.
(A9)

+m*+~r '+m~ '+m ~+Z

= (iC„)(C *)(iC„. ) (C ~ *). (A2)
'7 M. S. Green, J. Chem. Phys. 33, 1403 (1960).

T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod.
Phys. 36, 856 (1964). FIG. 13. Polar plot of —rP exp(2i8&l.
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Let the real numbers r~ and 8i be defined by:

ri exp(i8i) =exp(il/2) —x exp( —il/2)
= (1—x) cos(l/2)+i(1+a) sin(l/2). (A10)

Then Eq. (A7) is just:

{exp L
—i (2 q i+ l))P= —exp (2i8i) . (A11)

In the large-3I limit, one sees from (A6) that the l
values uniformly and densely populate the interval
—ir(i(+s.. 8& may then be read off of a polar plot of
the elliptic arc defined parametrically by the last
member in (A10), as shown in Fig. 12. From the figure
it is clear that as i ranges from —s. to +s, 8~ decreases
from 3'/2 to s-/2, and so 28& may be regarded as going
from +s. down to —s-. Figure 13 illustrates how
—rP exp(2i8&) then must vary, also on an elliptic polar
plot: the polar angle decreases from 2m to 0.

=0—

&+1,) FOR l. &0

&+K) FOR l. &0

—= Re [exp [-i,(2cpi+ 1)])

i)]}

FIG. 15. Real and imaginary parts of exp) f(2—y&+l)g Th.ese
functions are, respectively, even and odd in l.

Ke must next specify which square root to tal~e in

Eq. (A11) to find exp[ i(2—&p&+l)j, to ensure compli-
ance with condition (A8). One readily verifies the
necessity of taking the positive root for l&0, and the
negative root for /)0. Figure 14 shows the corre-
sponding polar plot, whose polar angle for given / is
—(2q&+j) and which displays a sudden jump from
+s./2 to —s./2 as 1 passes through 0.

The final Fig. 15 displays the real and imaginary
parts of expL —i(2y~+i)j. The behavior of a„, ~ for
large nz' —m will be determined solely by the imaginary
part, because it alone has a jump discontinuity at the
origin. Hence

FIG. 14. Polar plot derived by taking the appropriate square
root in Eq. (A11). The polar angle, —(2pq+l), decreases from
+s. to +e /2 as I increases from —~ to 0—,jumps discontinuously
to —s /2 for l =0+, then decreases to —s. as l increases to +s.

aside from a positive proportionality constant. Finally,
then, I'(nz, m+1[m', m'+1) in Eq. (A4) behaves
asymptotically as (m —m) ' with positive proportion-
ality constant, in agreement with the conclusion in
Sec. IV.


