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Evaluating the integrals J», one obtains tan8~, and
then adjusts the various parameters to reproduce the
phase shifts computed from the 6—12 and Yntema-
Schneider potentials. The parameters which give the
best fit to the phase-shift data are tabulated in Table II.
The phase shift for the 6—I2 potentia17 was available for
20 equally spaced momentum values between 0.086 and
1.564 A ' and for the Yntema-Schneider potentiaP' ' for
25 momentum values between 0.086 and 1.954 A '. The
separable potentials were 6tted to these values, and the

deviation quoted in Table II was computed by using

1 N

(Dev) 1= —Z [(2l+1)
g n-1

1/2

)((g deB or Y—s(&) g sep(N))js (A6)

where X=20 or 25. The coupling constants for the
repulsive core are taken as large, but Qnite, positive
numbers of the order of 104 to IO' times the magnitude
of the attractive coupling constants.
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A method of counting bound states is modi6ed and applied to singular helium intermolecular potentials
to determine the conditions under which such potentials support a single bound state. Results are presented
for the "6-9"and "6-12"potentials and compared with the results of earlier variational calculations.

I. INTRODUCTION

HERE has been some discussion in the literature' —'
as to the existence of bound states in the various

intermolecular potentials proposed for helium. 4 This
matter is important since the bound states enter into
the calculation of virial coeScients and transport
properties of helium. ' The earlier calculations of Refs.
1 and 2 were based on variational methods for determin-
ing the values of the potential parameters just sufhcient
to bind a single s state; the results are of uncertain
accuracy and bound the correct values from one side
only. This situation is further aggravated by the fact
that, with the intermolecular potentials generally used
for helium, a bound state, if it exists, is bound very
weakly.

In the present work we give some results for the
critical potential parameters using a modification of a
method for counting the bound states in central
potentials, ' the modification being required because of
the highly singular potentials with which we must deal.
This method characterizes the potential by a single
parameter co, such that increasing co results in an
everywhere-more-attractive potential. By direct in-
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'H. M. Schey and J. L. Schwartz, Phys. Rev. 139, B1428
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tegration of the zero-energy Schrodinger equation, one
determines the inverse scattering length a—' of the
potential as a function of ar. The potential that will just
bind a single state is then characterized by the critical
value of or, i.e., the smallest cv for which a—'=0. This
method, with its modi6cation as given below, is
straightforward, applicable to a wide class of singular
potentials, and not beset by the uncertainties associated
with variational methods.

II. METHOD OF CALCULATION

The zero-energy reduced radial Schrodinger s-wave
equation for a two-body system of reduced mass m
interacting through a potential V(r) is

k2 d2e
+V(r)N(r) =0

2m d1'

Standard intermolecular potentials have the I.ennard-
Jones fGall

V(r) = (5'/2maes)fn(as/r)" —P(ae/r)'j

with ae ——A'/me', and n and P are dimensionless con-
stants. The dominant features of this potential are (1)
the attractive induced dipole-dipole interaction varying
as 1/r', and (2) the hard core which goes as 1/r". The
exponent e is generally chosen between 8 and 14. We
shall deal here with the two cases m=9 and m=12
(commonly called the 6—9 and 6-12 potentials). To
associate the parameter co with the attractive term in
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V(r), we set

and obtain

with

r =n'I t:"—'&cod

d'I/dx' —W(x)I=0

W (x)=1/x"—a)/x'

p/~4f (n 2)—

6-9
6-10
6-12

Present
calculation

4.1700~0.0005
~ ~ ~

6.4565+0.0005

Kihara
et al. '

4.15
5.00
6.41

Kilpatricl» and
Kilpatrickb

~ ~ ~

6.452

TABS,z l. The critical value or, for the 6-9,
6-10, and 6-12 potentials.

and the auxiliary potentials

WJr(8,x)=W(xg),
=W(x),

and

x&xg,
x&xg,

Wv(8, x) = oo, x(xg,
=W(x), x&xg.

For a decreasing sequence of values of 8 starting with
8=1, we apply the method of Ref. 5 to 6nd the critical
values co~(8) and cov (8) for which Wrr(8, x) and Wv (8,x)
will each just support a single bound state. Since the
potential W&(8,x) is everywhere at least as attractive
as W(x) which in turn is everywhere at least as attrac-
tive as Wv (8,x) it is clear that if co, is the critical value
associated with the actual potential W(x), then

coIr(8) (ro, (cov (8).

Further as 8 —& 0, choir(8) and &ov (8) approach a cotnmon
limit, which is the value of or,.'
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FIG. 1. (a) The critical values ~~ and ~y as functions of 0 for
the 6-9 potential. (b) The critical values carr and au„as functions of
8 for the 6-12 potential.

' The application of limiting procedures to singular potentials,
i.e., the general peritization technique, is dubious when used in an
exotic manner Lsee, e.g., F. Calogero, Phys. Rev. 139, 8602
(1965)g. However, such reservations do not apply to the above
procedure.

Unfortunately, it is not possible to apply immediately
the method of Ref. 5, because of the extremely rapid
variation of W(x) at small x. Therefore we have adopted
the following procedure. Noting that W(x) intersects
the x axis at xs = (1/ro)'I &"—'& we define

xg ——8(1/Co)'~ &"-'&=8x

a See Ref. 1.
b See Ref. 2.

III. RESULTS AND DISCUSSIOÃ

We have applied the procedure outlined above to the
potential W(x) for gg=9 and I=12. The results are
shown in Fig. 1. The fact that the two curves for each
potential are already close to one another for quite
large values of 0 is a direct consequence of the rapid
climb of the potential in the region of small x. The
zero-energy wave function is so strongly excluded
from the vicinity of the origin that details of the
potential there do not inhuence the wave function.
Our calculated critical values as well as variational
results reported by Kihara et al. ' and Kilpatrick and
Kilpatrick' are shown in Table I. The results of the
present calculation agree well with the variational
calculations reported in the past, although their
accuracy is established here for the first time. The
extraordinary success of the variational calculations is
probably due to the existence of an almost everywhere
analytic solution to the 6—10 potential. ' This solution
provided a good functional form for a trial wave
function in the closely related 6—9 and 6—12 potentials
since, as already observed, with such a strongly repul-
sive core the wave function is almost zero near the
origin, and consequently all calculations tend to be
insensitive to the detailed structure of the core. In fact
the analytical form of the repulsive portion of the
intermolecular potential is not well known and is

generally chosen only as a matter of convenience. '
The currently accepted parameters of the helium-

helium 6-12 interaction, ' determined from the second
and third virial coeflicients, give a value of or=7.4
and hence there is a single weakly bound s state.
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