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This is the 6rst of two papers in which the low-temperature properties of liquid He' are to be calculated
in the thermodynamically consistent "T-matrix" approximation. The set of coupled integral equations
which are to be solved is exhibited in Sec. I of this paper. Section II is devoted to a preliminary, zero-tempera-
ture calculation which employs the additional approximations of using separable potentials and a non-
interacting spectral function to define the interaction of two particles in the medium: the (T)e approxima-
tion. In this approximation we obtain a spectral function for the quasiparticles which we expect to display
general features in common with those of the actual spectral function. Using this spectral function, we cal-
culate the thermodynamic properties of the system and 6nd that they compare favorably with those obtained
in other calculations.

INTRODUCTION

'HE application of field-theoretic techniques to
many-body problems has resulted in formalisms

which, in principle, allow the calculation of the equi-
librium thermodynamic properties of a system of par-
ticles in terms of the interaction between two free
particles. One variant of these formalisms is that of
Martin and Schwinger, ' whose many-body Green's-
function approach we use in this work. The Green's-
function formalism yields an in6nite set of coupled
integral equations which must be solved self-consist-
ently to obtain the properties of the system. However,
it is impossible in practice to solve this set of equations
exactly, and approximations must be made to obtain a
solution. Our choice of approximations is governed by
the nature of the interaction between the particles in the
system, and by the requirement that we obtain thermo-
dynamically consistent results.

This paper is devoted to calculating the properties of
a "normal" system of interacting fermions, namely,
liquid helium of isotopic mass three at zero tempera-
tures; we are aware of a number of calculations of the
properties of this system which start from the two-body
system. '—' The earliest and only published calculation
was by Brueckner and Gammel, ' who employed a two-
body interaction potential of the Yntema-Schneider'
form. The Lennard-Jones 6-12 potentiaP has also been

* Supported in part by the U. S. Atomic Energy Commission.
t Based in part on a Ph.D. thesis (Ref. 2).' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959);

this paper is referred to as MS.
2 D. K. Beck, Lawrence Radiation Laboratory Report UCRL-

11679, 1964 (unpublished).
3K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040

(1958).
C. C. Sung, Ph.D. thesis, University of California, Berkeley,

1964 (unpublished).
R. E. Mills, Ph.D. thesis, Ohio State University, 1963 (un-

published).
6 J. L. Yntema and W. G, Schneider, J. Chem. Phys. 18, 641

(1950).
7 J. de Boer, J. van Kranendonk, and K. Compaan, Physica 16,

545 (1950).

used extensively to describe the interaction of helium
atoms; we have tak.en this potential to describe the
two-body interaction. The nature of these potentials is
a relatively short-range attraction combined with strong
repulsion at closer distances. The most successful ap-
proximation for treating this type of system has been
the "T-matrix" approximation, ' ' ' which —in general
terms —is an approximation that includes only effects
arising from the explicit correlation of two particles. '
Baym" has derived a criterion which any approximation
must satisfy if it is to give self-consistent thermo-
dynamics; he has shown that the "T-matrix" approxi-
mation satisfies the criterion.

This is the first of two papers concerning the solution
of the coupled integral equations of the thermody-
namically consistent T-matrix (TCTM) approximation.
In the second paper of this series our program of

'K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).

e R. D. Puff, Ann. Phys. (N. Y.) 13, 317 (1961).I Bethe $H. A. Bethe, Phys. Rev. 138, B804 (1965)j has found
that in nuclear matter three-body clusters produce important
effects, and, since the range of the potential is of the same size as
the interparticle spacing in nuclear matter and about twice the
interparticle spacing in liquid He', we would expect these terms to
be even more important in He'. A crude estimate of the contribu-
tion can be obtained by leaving out all three-body effects (which
has been found to be the best way to proceed with a two-particle
correlation calculation in nuclear matter); that is, by using Gp in
Eq. (47). We obtain an average energy per particle of ~—2'K at
an interparticle separation of re(2.25 Jt (compare Table I).
Certainly, quantitative agreement with experiment will require
that some attention be devoted to three-body cluster. Pitaevskii
(L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 37, 1794 (1959)
LEnglish transl. : Soviet Phys. —JETP 10, 1267 (1960)); see also
L. P. Gorkov and L. P. Pitaevskii, Zh. Eksperim. i Teor. Fiz. 42,
600 (1962) LEnglish transl. :Soviet Phys —JETP 15, 417 (1962)g}
has found a large shielding effect in liquid He' for high angular
momentum states. The binding energy is primarily determined,
however, by the low angular momentum states and we would
consequently expect that the shielding will not be an important
quantitative correction. For a "normal" system we may expect
that these corrections will have only a small effect on the general
features of the spectral function —which is the primary object of
study in this paper."G. Baym, Phys. Rev. 127, 1391 (1962).See also G. Baym and
L. P. Kadanoff, ibid 124, 287 (1961.).
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TABLE l. Primary quantities, present calculation, other calcula-
tions, experiment (T=O). The calculated values ot the chemical
potential are the solution of Eq. (53). The common temperature
units with a=1 for energy are used; the conversion factor for the
units used in the figures is 1 A '=16.36 deg.

Source

Average
energy per Chemical

particle, potential,
(E/&)('K) u ('I)

lnter-
particle
separa-

tion,
rp (X)

EGec-
tive

mass,
I*/eI

Experimental
Mills~
Sung'
Pu6-Martin

approximation'
Brueckner and

Gammelg
(T)s Calculation

—2.538
0.0—2.8—0.043

—0.96

—2.16

—2.536
0.0
~ ~ ~

—0.811

—3.61"

—1.39

2.43b
5.60

~ ~ ~

3.25

2.60

2.15o

=2.7
1.0

1.84

a Reference 26.
b Reference 12.

e Reference 13.
~ Reference 5.

e Reference 4.
& Reference 2.

g Reference 3.
h Reference 28.

obtaining the low-temperature properties of liquid
He' within the framework of this approximation is
accomplished.

Section I of this paper is devoted to exhibiting the
coupled integral equations of the TCTM approximation;
here a brief discussion of the temperature-dependent
Green's-function formalism is also given. In Sec. II of
this paper we make further approximations requisite for
the preliminary calculation, which forms the main body
of the paper. The coupled integral equations, defined in
Sec. I, are simplified and decoupled by replacing the
spectral functions in the T matrix by noninteracting
spectral functions. The resulting To matrix retains the
essential interaction features exhibited by a zero-tem-
perature system of interacting fermions; however, be-
cause of this decoupling our approximation is not
thermodynamically consistent. This undesirable feature
is a property shared by most other calculations to date
(see Sec. IIC1); however, this approximation has the
interesting property (not shared by the other ap-
proximations) of yielding a spectral function with a
width.

An additional approximation we make to obtain a
manageable set of equations is that we use a finite sum
of separable potentials to represent the interaction be-
tween two He' atoms. This approximation does not
aGect the thermodynamic consistency, but it may be a
poor representation of the actual two-body interaction.

Section IIA is devoted to developing the two-body
interaction for particles in the medium; the To matrix.
In Sec. IIB we calculate the spectral function using this
interaction and, since the modification of the two-body
interaction due to statistics of the medium is well
represented, we expect that our spectral function dis-
plays general features in common with that of the actual
spectral function.

Because of the approximations for the interaction we
would not expect the properties of liquid He' to be
predicted with great accuracy. Nevertheless, in Sec. IIC

we calculate the ground-state properties and compare
them both with experiment and with other calculations.
The results of this comparison are summarized in Table
I"";the quantitative agreement with experiment is not
impressive, "but as good as that of other approxima-
tions, and we may expect improvement in this com-
parison from the complete calculation.

1. Defirtitiort of the Problem; Thermodyrtomics

One assumes that the interaction in this system can be
described by an instantaneous two-body Hamiltonian, '

a(t) =
2m

vent(r, t)VP(r, t) dr

1
+— P (r,t)P (r', t)v(r r')—

2
Xf(r', t)P(r, t) dr dr', (1)

where Pt(r, t) and P(r, t) are the particle creation
and annihilation operators in the second-quantization
Heisenberg representation; in this and subsequent ex-
pressions the coordinate r contains the internal spin
variables. In the same representation, the number
operator is

E(t) = lt t(r, t)p(r, t) dr.

The creation and annihilation operators satisfy the
anticommutation relations

(l((r, t),lt (r', t)) =0,
g (r,t),Pt(r', t)) =b(r—r').

PuP employs a modified Heisenberg representation
where the time development of an operator X(t) is given
by

with

X(t) =eex'X(0) e r—(4)

ac(t) =II(t)-t Ã(t),

and where p, is the chemical potential.

~ E. C. Kerr, Phys. Rev. 96, 551 (1954).
"V.J. Emery, Ann. Phys. (¹V.) 28, 1 (1964).
'4 We use units throughout this paper in which m =A=1; how-

ever, we generally include m explicitly.

I. T-MATRIX (TWO-BODY CORRELATION)
APPROXIMATlON

A. Green's-Function Formalism

In this section it is shown that the thermodynamic
properties of a system of interacting fermions may be
evaluated in terms of the average energy E and number
Ã. The formalism of Martin and Schwinger' ' is sum-
marized so as to clearly define the notation, and the
formulas for 8 and E are presented in terms of calculable
microscopic quantities.
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Z. MicroscoPic Theory
(X)"»=Z ' trLe

—escXj, (6)
Equations (8) and (9) may be evaluated from a

microscopic theory by using Green's functions. The one-

particle Green's function is"
where tr denotes the trace of the matrix is to be taken,
and Z is the grand-canonical partition function,

Z = tr(e—esc). G(11')=-i(T(4(1)0'(I') ))" ',
and the two-particle function is given by

(14)

The thermodynamic state of the system is defined by
ti and P, the inverse temperature measured in energy
units; i.e., P= 1/sT, where s is Boltzman's constant. It
is well known" that all the equilibrium thermodynamic
properties can be obtained from the grand partition
function.

For a given ti and P one can compute this function"
if he knows

Gs(12; 1'2') = (—i)'(T (f (1)f(2)ft(2')lt t(1') ))"e;

in these functions T is the Wick time-ordering operator.
Using (4) to define G for complex values of its time

arguments, in the interval

0&it &P,
E= (H)s, e

$=(E)'e,
and defining the time ordering in this interval byand

T(p(1)lt t(1'))=It (1)lt t(1') for iti) iti',
= —Pt(1'g (1) for iti(iti',as can be seen by the following argument: At zero

temperature the pressure P is, according to its definition,
one can use the cyclic property of the trace to obtain the
boundary condition

(10)
(BE 1V')s B fE )
&B~ ~) BP/~)EX& G(11')

i i, o= —G(11')
i ~,=;e.

In order to describe the macroscopic behavior of the integrated to give I'I' t', and hence one can compute all

system, one evaluates the expectation value of operators the properties of the system, 'if he'has E and N [Eqs. (8)
over the grand-canonical ensemble. "Thus for an opera- and (9)].
tor X, MS defines

where '0 is the volume of the system. For a normal
system of fermions at zero temperature the Hugenholtz-
Van Hove theorem" states

(BE/B1V)g p, ——

which has the consequence, for a large system, that

The Hamiltonian, Eq. (1), is translationally invariant
in space and time (we assume an infinite system so there
are no boundary effects), and consequently

G(11')=G(r, t),
where

I=—+I —
I

1V kg) Byr/~) 1It)
(12)

The grand-canonical partition function is related to the
pressure by"

Zj" l'=e (13)

Differentiating the logarithm of Z with respect to p, at
fixed P and 'U, one obtains a relation between BP/Btz and
(&/'U)&», 'r and, similarly, differentiating the logarithm
with respect to P at fixed p and 'U, one obtains a relation
between BP/Bp and (H/'U)»e. These relations can be

"Actually we should use the microcanonical average,

Z ((NE$ [ X ( NE$)
Zt(NE) ( NEg)

where (NEg) is an N particle state with total energy E and the
other constants of motion needed to specify the state are denoted
by P. However, Martin and Schwinger (Ref. 1) have shown that
this average is approximately equal to the canonical average
LEq (6)3.

'6 L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press Ltd. , London, 1958).

'7 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc. , New York, 1962).

"N. M. Hugenholtz and L. Van Hove, Physica 24, 363 (1958).

dio A (p,(o)
G(p, s) =

2Ã Z—M

(16)

for all nonreal z, by analytically continuing from the
points z„. The unique continuation has been shown by
Baym and Mermin" to be that which has no essential
singularity at

~
s

~

= ~. Thus G(p, s) is a function which
is analytic in the whole complex z plane with the excep-
tion of the real axis, while A(p, io)—a real positive

» We make use of the standard abbreviation

(1)= (ri,ti), (1') = (ri', ti'), etc.
"G.Baym and N. D. Mermin, J. Math. Phys. 2, 232 (1961).

Introducing a "spectral function" A (p,oi) for G, and
performing Fourier integral transforms with respect to
the space components of 6, and a Fourier-series analysis
with respect to the time component, MS obtain

do) A (p,o&)

G(p, s.) =
27K zp M

where s„=s.v/( —iP). Define the analytic function
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function —is given by the discontinuity of G across the
real axis,

The equation of motion for G is

2 (p,(o) = it G(p, re+is) G—(p, ro —ie)).
(

(17) ~
i +—+ir ~G(11')
iai, 2m

Using the anticommutation relation (3) one can
easily obtain the sum rule

+ dc'
~(p)ro)=1 ~

2'

For a given approximation the anticommutation rela-
tion may not exist or may not be in a convenient form to
obtain this sum rule for 2 (p,ro). In this case we need to
know the properties that must be satisfied by G to
ensure the sum rule. Using the fact that G*(s)=G(s*),
Eq. (17) gives us A (ro) = —2 ImG(&o+ie) and the
Herglotz theorem" (of the theory of analytic functions)
gives the necessary and sufficient conditions on G(p,s):
If G (p,s) is analytic in the upper half-plane, Ims) 0, and
if in this half-plane ImG&0 and lim~,

~
zG(s) =1, then

the sum rule (18) holds.
In Sec. IA1 it was shown that one needs the two

quantities E and X, t Eqs. (8) and (9)), in order to
obtain the equilibrium thermodynamic properties of the
system. These quantities can be expressed in terms of
the spectral function A(p, M). The number density
operator for the system is (2),

tr(r, t) =P(r, t)P(r, t),

so that, from (15) and (16),

dc' dp
(e(r, i))= — A (p,ro) f(ro),

2s (2rr)s

where

f(co) = Pe'"+1]-'

is the usual fermion statistical factor. Since the system
is isotropic, (n(r, t)) is independent of r and t and it
follows that

dp
~(p,~)f(~);

(2s)s

for our system iV and 'U go to infinity in a manner such
that the ratio (1V/'U) remains finite. Similarly, the
energy density is given by

d]p M+ p /2m —ir
~(p,~)f(~) (2o)

7r3 2

"J.A. Shohat and J. D. Tamarkin, The Problem of Moments
(American Mathematical Society, New York, 1943}.This theorem
is Lemma 2.2 on p. 24. (The authors wish to thank Dr. R. L.
Omnes for a discussion concerning this theorem and for bringing
this proof to their attention. )

+i drs s(rr —rs)Gs(12; 1'2+)
~ r, ~,=5(1—1'), (21)

where (2+) = (rs, is+0+). One sees that this equation
involves G2, and the equation of motion for G„would
involve G„» and G~~. Therefore, one has to solve an
infinite set of coupled differential-integral equations in
order to obtain G.

It is useful to introduce —following MS—the "self-
energy" operator Z which is dered so that

d1 Z (11)G(11')= 5(1—1') . (22)

One can show'r that Z satisfies the same boundary con-
ditions as G. One defines a "spectral function" for Z,

I'(p, ro) =i'(p, to+is) —Z(p, ro r'e))—, (23)

and consequently
+ dCo I (p&ro)

+& (p),
2Ã 8—GO

where Zs(p) is a real-valued function of p only. Here
allowance is made for the possibility" that lim~,

~

„——Zo.
Z(p, s) has such a ftnite limit if the two-body interaction
is not too singular; we shall always choose our inter-
action so that Z has a finite limit.

When a Fourier integral transform is performed on
the coordinate variables and a Fourier-series analysis of
the time variable, (22) becomes

[s—p'/2m+p, —Z(p, s))G(p, s) =1, (24)

which, combined with (17) and (23), yields

2 (p,s) = I'(p, ro) L (ro —P'/2m+ir —ReZ (p,r0) )'
+sl"(p,~)') ' (25)

B. The Thermodynamically Consistent
T-Matrix Approximation

1. iVotisatton arrd Specifrcaiiorr of the A pproximatiorr

In Sec. IA we discussed the in6nite set of coupled
integro-differential equations )the erst of which is given
by (21)), which need to be solved to obtain G. One
cannot hope to solve this set of coupled equations
exactly; some approximations must be made.

For short-range forces with strong repulsion a useful
approximation which has been widely employed is the

"I.M. Luttinger, Phys. Rev. 121, 942 (1961).
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T-matrix approximation. '»' This is an approximation
for G3 which neglects the correlation of a single particle
with a highly correlated pair. Formally, one takes'

Gs (123; 1'2'3') =G (13')Gs (23; 1'2')

+G (11')Gs(23; 2'3') —G (12')G2 (23; 1'3'),

which gives

Gs(12 1'2') = LG(11')G(22') —G(12')G(21')j

Fn. 1. Diagrams for p
and Z. The solid lines
represent G and the dotted
lines V. (a) C in the
Hartree-Fock approxima-
tion; (b) Z in the Hartree-
Fock approximation; (c) a
term in C for the TCTM
approximation; (d) the
term in Z corresponding to
the term illustrated in (c).

z
—P

+-
2 0

d 1d2I G'(11)G (22)+G (11)G'(22)j
X V(1—2)Gs(12; 1'2'), (26)

(c) (a)

V(1—2) =e(rr —rs)8(4 —ts). +i di d2 G(11)G(22)V(1—2)Gs(12; 12) (28)

where G' is the solution of (21) without the interaction G, (12 ~ 112&)
I G(11 )G(22 ) G(12 )G(21 )j

term, and —ip

An important further consideration in making ap-
proximations is thermodynamic consistency. If the
approximations do not satisfy certain consistency re-
quirements, one has no guarantee that the thermo-
dynamic quantities obtained are consistent. At zero
temperature if the results are such that the Hugenholtz-
Van Hove theorem (11)is not satisfied then one does not
know how to determine the pressure uniquely. The
situation is just as serious at a temperature because the
pressure I'I't' obtained by two diferent integration
paths —using the relations between 8P/Bti and (E/'U)»,
and BP/BP and (H/'U)1' ~, as discussed at the end of Sec.
IA1—may not be unique. Still a third result for the
pressure might be found by integrating the expectation
value of the potential energy with respect to the
coupling constant. '~

As might be expected, the demand that an approxi-
mation lead to a single-particle Green's function such
that the thermodynamic results are consistent places
strong restrictions on the possible class of approxima-
tions. Baym" has used functional derivative techniques
to derive a criterion for approximating the single-
particle Green's function and has proven that approxi-
mations which satisfy this criterion produce a consistent
picture. His criterion is that there must exist a "closed"
functional C of G and the potential V such that

+i d1 d2 (12 I TI 12)G(11')G(22')V(1'—2'), (29)

the approximation (28) becomes

V(1—2)Gs(12; 1'2') = d1 d2 (12 I
T

I 12)

XI G(11')G(22') —G(21')G(12')J, (30)

and from (21) and (22) we have

Z(11')=—i d2d2 I (12ITI1'2)
—(12 I

T
I
21')JG(22+) . (31)

does satisfy his criterion.

Z. Formal Deoelopment of the TCTM Approximation

We take Eq. (28) as the basic equation of our
thermodynamically consistent T-matrix (TCTM) ap-
proximation. If we define the T matrix by the integral
equation

(12I TI1'2')= V(1—2)b(1—1')8(2—2')

Z(11')=SC/SG(11'), (27)

where the self-energy Z is to be considered as a func-
tional of G and V. Here a "closed" functional means one
in which all internal variables are integrated, or, in
terms of diagrams, no particle lines enter or leave the
diagram. In terms of diagrams, the differentiation of
Eq. (27), means plucking out one of the particle lines, as
is detailed in Fig. 1.

The approximation (26) does not satisfy Baym's
criterion; however, Baym" has shown that the ap-

Examining the structure of (I TI), one sees that it
satisfies the same boundary condition as G(ti —ti)
XG(4—4 ):

T(ti —ti) I i,=o= T(ti—ti) I i, ;p.

One can express T(ti —tt) as a Fourier series with
coeflicients T(s„), where s„=xi/( iP) a.nd r—runs over
all even integers. Analytically continuing to all z, and
performing Fourier integral transformations with re-
spect to the center-of-mass and relative coordinates (see
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Chap. 13 of Kadanoff .and Baym"), one obtains

(p I T(p,«) I
y') = o(p —p')

dpo
+ (yl T(P,«) lpo»(p, po, z)s(po —y'), (32)

(2or)'

where
d(o dto' 2 (sP+p, co)A (-,'P —p, to')

A(P, p, z) =
2' 2' g—Gl —GD

xL1—f(~)—f(~')1 (33)

averaging rather than actually performing the angular
integrations in (32). This means we set

I-,'P~yl~ p+= (ps+if o~pf /W3)its (35)

in A(P,y,«), which decouples the partial waves. This
approximation can cause our solution to violate Baym's
criterion, but we hope this violation is minor enough so
that it does not affect the thermodynamic results. (A
point to be confirmed at the completion of the
calculation. )

A partial-wave expansion of T and v is made, and the
partial-wave components T& of T are given by

and P is the center-of-mass momentum.
T(z) is analytic in the upper and lower h~l~~~ of the

( IT (f ) I,& ( I
I,&+

complex s plane, and (2s-)' 2n. 2or

~(p,z) =
dco—~ (p,~)f(M)

(2m.)' 2or

dp

p p, p p
X I

T(p+p', ~+z)
I

—tG(p', ~—z)fo(~)
2 2

T*(«)=T(z*),.
Watson" has shown that if o(r) is finite everywhere,
T(z) is bounded by a constant as z~oo. After per-
forming the time integrations in (31)—by means of the 5

functions —and transforming with respect to the coordi-
nate variables, one can use the analytic properties of
G(z) and T(z) to determine the Fourier coefFicients of
the self-energy Z(«„). Analytically continuing these
coeKcients, one has' '

~ (po+,~)~ (po,~')
I

1—f(~)—f(&')3
x(p I

Ti(f', z)
I po&

X(po I
s i I

p'&. (36)

For liquid He' we need to consider a system of
particles with spin —„interacting via a spin-independent
interaction. The only complication introduced by spin
is that the momentum and coordinate integrations con-
tain an implicit sum over spin states. The direct part of
Z is multiplied by 2 as a result of this summation, and,
since we have no spin-flip mechanism in our interaction,
the exchange part is unaffected. Making the partial-
wave expansion and using the summation relation for
the spherical harmonics, we have, for the direct and
exchange contributions to 2,

where

p p p p
I T(p+y', ~+so) —T(y+y', ~—so) I

2 2

—
I exchange terms j, (34)

2(p I T(P,«) I y&
—(y I T(P,«) I

—y)

~ 21+1
L2—(—1)'j(p

I
Ti(f' «) I p&

4g

fo(~) =9'" 13 '—
is the boson statistical factor. For a homogeneous,
isotropic, unbounded system A(p, &o) depends only on
the magnitude of the momentum, p=

I p I, and further-
more Z(y, «) does not depend on the orientation of y.

Equations (25), (32), and (34) are, explicitly, the set
of coupled integral equations which must be solved in
the TCTM approximation.

The theory could have been developed for a non-
local potential by using a potential' of the form
(ri —rsl» rs r4) , corr—espo'nding to the local potential
6(l ri —rs —

I ro —
r4I )s(l ri —rs I ). If one had carried out

the development for this potential, the tt(p —p') in T
would be replaced by (plulp'&; we assume that the
potential in (32) has this form.

Because of the complexity of this set of equations we
must make a further approximation to facilitate their
solution, We wish to make a partial-wave expansion of
T; hence we perform a Brueckner-GammeP ~ type of

"K.M. Watson, Phys. Rev. 103, 489 (1956).

The spin sum contributes a factor of 2 to the expres-
sion for (X/'U& and (K/'U& I Eqs. (19) and (20)j.One can
perform the angular integrations in the expressions for
these quantities to obtain, finally,

and

" doo "p'dp
--, ~ (p ~)f(~)

U —oo 2X 0 7l

(37)

~+ —~ l~ (p,~)f(~) (3g).
2m

IL THE (T&o APPROXIMATION WITH A
SEPARABLE POTENTIAL (ZERO

TEMPERATURE)

The remainder of this paper is devoted to a zero-
temperature calculation of the properties of liquid He'
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in an approximation to the TCTM approximation of
Sec. I. This approximation, which we call the &T)p ap-
proximation, retains the essential features of the TCTM
approximation and should be considered as a 6rst step
toward the complete calculation. The approximation
involves the use of noninteracting spectral functions in
the T matrix and a separable potential to describe the
interaction of two free helium atoms; statistics, however,
are treated correctly. A closed expression is obtained for
the interaction of two atoms in the medium, with
consequent simplification of the calculation.

In the (T)p approximation the interaction between
quasiparticles depends on momentum, density, and
energy; and, furthermore, includes finite lifetime effects.
All of these features will be present in the TCTM ap-
proximation, as well as in an even more complete
theory. We are encouraged, therefore, to confront the
results of the (T)p approximation with the experimen-
tally determined properties of liquid He', which com-
parison may be found in Sec. IIC.

The calculation was performed on the Lawrence
Radiation Laboratory's IBM '7094 computer and the
University of California at San Diego's CDC 3600
computer.

A. Two-Body Interaction in the Medium

We obtain the &T)p approximation by replacing the
spectral function in the equation for &T), (33), by

A p(P,co) = 2trbLco —(P' —Pre)/2m j.

Sec. IIC); Sung' makes a correction for the statistics,
but his correction is a very poor approximation to the
result obtained by solving with the statistical factors
included.

It is well known" that e& can always be expressed in a
separable form

00

Ke assume that we can represent e& by only a few terms
of the series. For /=0, 1, 2, 3 we retain two terms of the
series, for /=4, 5, 6 only the first term; Tt(p, s) is
negligible for larger l. This particular approximation
does not affect Baym's criterion for thermodynamic
consistency, but the &Tt) we obtain may not represent
the liquid He' system accurately. We have of course lost
self-consistency by our Grst approximation —as in-
corporated in (39).

We choose a form for the e~&'&'s and solve the scat-
tering matrix for two free He' atoms. The coupling
constants and parameters in our potentials are adjusted
to match the phase shift calculated from potentials in
coordinate space for He'. The coordinate-space po-
tentials are local potentials whose parameters are ad-
justed by means of the virial expansion to 6t the
experimental data for gaseous He'."The forms we
choose for our separable potential and the determination
of the parameters are discussed in Appendix A.

The separable potential allows us to write &Tt)p in
closed form:

Our approximation now is no longer thermodynamically
consistent. The co integrations in the equation for &T) are
trivial, and we have the equation for (T) in the (T)p
approximation

(2~)s
&PI Tt(p s) IP')o= Let"'(P),pt"'(P) j~t(p, s)

-rt t(0 (p')-
Ldet3f, (P,s)j-', (41)

-pt"'(p')-

gP IP(P s)

I its (P,s)

It'P(p, s)

gtl I ill (P s)
where

gi' ——(2z.)'/ziti'&

2m ) k 2m )

&pl T(p, s) lp') p=&plz
I
I')

dito &Iil T(P,s) I Fp)pS(pp', Pp-)&Iipl &
I
It') where

+ ' ', (39)
(2z)' s—pp'/m+ pts/m —P'/4m Mi(P, s) =

In the zero-temperature limit,

S (p+,p
—

)= —1 for p+, p (ps (hole-hole),
=0 for p-(ps(p+ (particle-hole),
=1 for p+, p

—)pl (particle-particle). (40)

This approximation for (T) retains the essential
features of the fermion system (it involves no ap-
proximations with regard to statistics) in contrast with
the approximations which have been used to date. The
Brueckner-Gammep calculation neglects the hole-hole
term; the calculations of Mills' and Puff-Martin' are
formulated so that they have none of the features
present in (40) (this is discussed in more detail in

"'(P) "'(P)S(P',P )
It'&(P, s) = p'dp — —. (42)

m p s—p'/m+ pcs/m —P'/4m

We need &Tt(s))p only for s=oo+ie and define the
integrals (42) by introducing a physical cut from
co p P'/4m psp/——m to + e—p.

If pp is de6ned by

Ppz/m=~ —P'/4mgPIP/m (43)

and the It(oo+se)'s examined for pps(0, we see that the
It's are real, and consequently (T)p is real. We have in

'4 F. Riesz and B. Sz-Nagy, Fttnctt'otsal Attalysls (Frederick
Ungar, New York, 1955); see Sec. 69.
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this case

'j(P I+se) =
v (l)(p)v (t)(p)

PdP
I
pol'+p'

v, (o (p) v, (s) (p)p'dp, (44)
2 2

where

ps =u s(—p +p ) sp—p cos9y +pf .

M~= —2 ds s' tan s—
2

Changing variables —and ignoring constants —we obtain
terms like

where pt and ps are solutions of

P'(P,pt) =Pi

P (Pps)=pr

where s=per, . For i odd we integrate from sssr —sr/2 to
sssr+sr/2, and for 1 even from rssr to (rs+1)sr. Conse-
quently

3E)=4rssrsl 0 693.5 for i odd,

M~=4(ss+-', )sr'L0.693j for / even,

~& (sssr) =4Nsr'L0. 693j.
hence we make the replacement

45
(2~)' vt")(P)v)")(P')

(plTt(P, s) I
p')=

r)s fg g' IP(P 8))— r.Po tan(Por, ——,'lr(l+1)j—& 1.3g6,

If we had a potential which consisted of a single or
repulsive term, then (41) would become

where g)t is positive; for I& given by (44) it would be
possible for the denominator of (45) to be zero, and
hence we would get a pole in (T)s. For the potentials we
employ and when /=0, we get this type of pole in (T)()
when P&pf and when ps' is negative and very small
(e.g., Figs. 2 and 3, where the small imaginary part at
the pole in Fig. 3 is due to the angular integration which
has been performed). We know that F(p,o)) should not
be zero in this region, and if it is nonzero the imaginary
part of (T) will not be zero in this region, and hence we
would not have a pole. The integration of the real part of
(T)s through the pole will behave like a principal-value
integral, and consequently we have simply removed the
singularity by smoothing the real part of (T)p as
depicted by the dotted lines for negative co in Fig. 2.

For Pcs))0 the form of our potentials is such that if we
neglect g~' we obtain

(P I
T((P ~+is) I P)

——
L '"(P)3'PoLt (Po —-' (i+1))+ j,

when ps is large. The effect of this smoothing is dis-
cussed, along with the numerical results, in Sec. IIB.

The separable potentials, 6tted to the de Boer' phase-
shift data (see Appendix A), are numerically integrated
by using a Gaussian quadrature formula" to obtain the
Ig" integrals. The angular integration in (34) is inde-
pendent of both G and 2, so we find it useful to evaluate

R(p, p', (d+ie)

6 (2l+1)
d(cosf)„) P (2—(—1))&

1 P 1 P
T((l p+p'I, ~+is), (46)

2 2 ,

'~
p

which is symmetric in p and p'. R is the complex two-
body interaction dered so that

R(p, p', o)+is) =ReR(p, p', ) o)i ImR(p—,p', M),

which clearly has the property that the real part of (T)()
is highly singular for large ps. Our numerical procedures
do not adequately handle these singularities and we
have had to smooth (T)() for large values of p(). The
procedure we employ is motivated by the following
reasoning: The angular integrations

p —p (p+p . p p
d(cose„) T)I,o)+i e

2 & 2
'

2

20—

IO

os
I

0a

ca

-IO—
«ss

P 728

must be performed, or, considering only the real part,

d cos8~ r, p tan pr, ——/ 1

, (Ix —1'I
X v)")I

2

-20—

"4.0
I

-2,0 0

of {II )

P(=.8001

2.0 4.0

FIG. 2. The real part of R LEq. (46)7 for representative values
of momentum ((T)e approximation). Dashed lines are at poles in
(T)e and dotted lines are smooth values of R used in calculation.

2s Z. Kopal, Numerjeof Analysis Qohn Wiley 8z Sons, inc. , New
York, 1961).
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CV

8
ca
C1

10—

P=l
P=.8

0 —- ~(p) =I— AD—A (p,cp) . (5l)
(y)+ g]g 2m'

in this intervaL A(p, &o) is well behaved outside the
interval d, and the integrations outside this interval are
performed by Gaussian quadrature. The sum rule (l8)
can be employed to determine tt/(p):

P)=

2,0

P,09
-5.0

-1.0 0 1,0

a) (A

Fro. 3. The imaginary part of R LEq. (46)$ for representative
values of momentum ((T)p approximation).

3.0

which is used to compute Z(P,M). In Figs. 2 and 3 we
have plotted the real and imaginary parts of R, re-
spectively, for a typical value of py and several values
of

we obtain

ReZ(p, pp) =

I'(p, pp) = 2

ao p/sdp/ p —
I

A (p', co') ReR(p, p', (o'+pp)
p (2zr)'

+B(p', I'—tp) ImR(p, p', pp')g (47a)

P dP

p (2zr)'

p

A (p'p&') ImR(p, p', pp'+o)), (47b)
2'

where the zero-temperature forms of f(p/') and fs(o&')
have been used to define the limits for the co' integra-
tions. These equations, and (24)

G(p, ~+ze) = L~—e(p,~)+-',zr (p,~)j-', (48)
where

B. The Spectral Function (Self-Energy)

Inserting this complex two-body interaction (46),
into (34) and writing

G(p, +ze) = -', LB(p,o/) —zA (p,o/) j,
and

Z(p, pp+ze) =ReZ(p, o/) —-,'zr(p, o/),

dp/' B(p',rp') ImR(p, p', tp+o/')

8 ImR (p,p', o/')
=4.(p')

BGO ~+~(n')
(s2)

0.07sI.(p') I-
y 0.07S

I
e(p')

I

—~(p') tan-'
7(p')

The Fermi momentum p~ is defined as the solution of

pp/2zzz —zz+ReZ(pr, 0)= e(py/0) =0. (53)

However, the behavior of the statistical factors and the
form of the interaction make. it easier to carry out the
calculation for a fixed pg and use (53) to determine zz.

The calculation thus proceeds as follows: For a given
pI we calculate R(p, p', a&+ie), (46); we then choose a
trial solution G&(p, ~+ze) for,"i(48)j',and use this trial
solution in (47) to generate a new, trial solution. This
process is repeated until the trial solution reproduces
itself; when the solution has converged we use the
resulting spectral function (25), in (37) and (38) to
calculate {X/'0) and (K/'U}.

The convergence of this procedure is rapid, as may be
seen in Fig. 4, where e(p) is plotted for a number of
iterations in which the initial choice of a spectral func-

The integration of B(p,&p) over the interval d is
obtained by letting

p(p) I:~—e(p)1
B(p,o/) =2

L~—e(p) 7+I:v(p)3'

and expanding the imaginary part of R in a Taylor's
series about o/= e(p). Retaining only the first two terms
in this expansion, we have

e(p tp) =p'/2zzz —zz+ReZ(p, pp), (49)

form the set of equations which we need to solve self-
consistently.

The spectral function A(p, o/), Eq. (25), is sharply
peaked at the single-particle energy, which we de6ne as
the solution of

e(p) —e (p, e(p) )=0; (50)

the cp integrations involving A (p,ce) in the interval

d= L.(p) —I0.075e(P) I, .(P)+ I0.07s.(p) I j
are performed by replacing A (p,tp) by a 8 function,

A (p,pp) =u/(p) b(pp —e(p) ),

I'IG. 4. Iterations
of the single-particle
energy PEq. (50)g
for (T)p approxima-
tion. The zeroth ap-
proximation is the
kinetic energy minus
prm/2m, and the
dotted line is the
ninth iteration.

+LO

-1.0
0 1.0

P/P)

2.0
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OCC

p
ca

Fro. 5. e(p, (u) LEq.
(49)g for a repre-
sentative value of py
and p near py. The
dotted line is &=co,
whose intersection
with e(p, cy) gives e(p)
EEq (50)3

any prediction that this behavior is a characteristic of
the real physical system, and possibly it will not be
present in the TCTM approximation discussed in
Sec. I of this paper. Indeed, we see in Fig. 7, where we
have plotted e(p, &u) for a larger range of ~ and p values-
and not amplified the region near co=0—that e(p,re) is a
reasonably well-behaved function of co and p.

If one examines the behavior of (2')s near the pole
(see Fig. 2), it has the form

0
e(i( I

P) =.800 (T("+s )) =
G&
—res+ ze

2.5

2.0

I
OCg—I.O

'0

tion was

Fro. 6. The single-
particle energy, e(p).
The solid line is the
(T)p approximation
and the dotted line is
e(p) = (p' —pr')/2m.

P/P~

A, (p,~) = 2n-8La) —(p' —pts)/2III].

where ~s and s are negative and t(~) is a smooth func-
tion. Consequently, inclusion of the pole would give an
additional negative contribution to ImR(co) for ro(0.
However, most of the contribution to e(p, o&) from ImR
is proportional to 8 ImR/Bar, (52), and this analysis
gives no information concerning the resulting eGect
on e(p, M).

For pr less than 0.80 A ' the intersection of the line
e=cv with e(p,~) occurs in a region where e(p,ce) has a
positive slope (e.g. , Fig. 4) for momentum points near
pr. When this happens, the iteration procedure becomes
unstable and we are not able to obtain a solution to the
equations.

In Fig. 8 we plot I'(p, &o) for the same value of pr as

employed in the above-mentioned graphs. Luttinger"
has proven that to arbitrary order in perturbation
theory, at zero temperature,

For p))pr the convergence is even more rapid, since the
single-particle energy is dominated by the kinetic term.

In Fig 5we h. ave plotted e(p,~), (49), for a typical
value of py and some values of p near pt. We have also

drawn the line e= co whose intersection with e(p,~) gives

e(p), (50). In Fig. 6 we have plotted the values of e(p)
versus p for the same value of p~. One sees that because
of the behavior of e(p,cu), when ro is near zero and p is

in the neighborhood of pr, there is a sharp break in e(p)
near pt. Since there is only a single intersection of the
line e= co with e(p,cv), there is no gap in e(p) and we have

a "normal" fermion system.
The peculiar behavior of e(p, a&) near the Fermi surface

comes about owing to the presence of the second

integral on the right-hand side of Eq. (47a). This
integral involves ImR(ra) for &e(0, which is precisely the

region where we have the least confidence in our

interaction because of the presence of the pol- which

is treated only approximately. Also, there is essentially

a principal-value integral which has to be evaluated

when p is near pt, with consequent difficulty in ob-

taining reliable results from the numerical evaluations.

This integral was evaluated in a number of ways to
determine if this behavior was due to the numerical

methods used; we found that the behavior was real and

not a result of the numerical integration. The approxi-
mations involved in obtaining the interaction preclude

I (K) —+ CMs

co~0

30 I I I I I I I i i I

P= 7.28

20

—IO

-IO I I I I I

l25 IOO 80 60 40 20 0 20 40 60 80 IOO I25

SI(k PI =.800

Fro. 7. e(p, +) fEq. (49)g for representative values of momentum.

where c is a positive constant. It can be seen that the
solution satisfies this criterion. The behavior of I'(p, ~)
for a&) 0 is determined by the behavior of Im(T(&o))s for
a» 0.For small relative momentum, and co &0, Im(T(~)) s

is dominated by the hard shell. Consequently, for p(p~
and co)0, this aspect of the two-body potential domi-
nates the behavior of I'(p,+).
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rt (p) = —A (p,a&),
2'

(54)

which is plotted in Fig. 9. For an ideal Fermi gas the
momentum density is unity for p&pr and zero for

p&p, ; for this calculation N(p)&1 for p&pr, since

F(p,(o))0 for (v) 0.
In Sec. IIA it was asserted that a pole in (T) would

not be present if a more reasonable A(p, ce) were em-

ployed than the one used to obtain (T)s. In Iiig. 8 (a) one
can see that F(p,&v) has a value comparable to c(p) for

This effect of the hard shell is clearly seen in the
momentum-density distribution function

Fxo. 9. Momentum den-
sity distribution function
fEq. (54)j; (a) p(pr, (b)
p &pr. (Note change in
scales. )

.02
(b)

—01

1.0
( I

P)=.800

P) =.875

I' 0,5
P/P1

1.0

1.5 2

P/Pf

2,5

C. Thermodynamic Quantities and Comparison
with other Theories

Fro. 8. I'(P,~) LEq.
(47b) j, the imagi-
nary part of the self-
energy for representa-
tive values of mo-
mentum. (a) co near
zero Lp(p, o&) ~ 0 as
(u -+ —~g, (b) (u)0. M

I
~SCAN

8
Cl.

1,0
Cu

ocf,

3 5

I

—1.0 —.5 0 .5 1.0
to(II )

The spectral functions calculated in the (T)s ap-
proximation and the two™body interaction cannot be
expected to give accurate quantitative agreement with
the experimentally determined thermodynamic proper-
ties of liquid He'. However, the spectral functions have a
reasonable form, and so we are stimulated to go ahead
and evaluate the thermodynamic properties, which we
then compare both with experiment and with other
calculations.

The experimental curves in the 6gures are obtained.
by extrapolating the P-V-T data of Sherman and
Edeskuty" to zero degrees and integrating to obtain
(E/Ã). We determine tr by substituting (10) into (12).

The ground-state properties, for various calculations
now to be discussed, are compared with the experimental
values in Table I.

1. Mills Approximatiors

small values of p and co &0, and from the analysis above
and Eq. (47b) one sees that the inclusion of the pole in
the interaction would make F(p,cv) larger for to&0. A
step toward obtaining the TCTM approximation would
be to use the output spectral function in (T) to obtain a
new interaction, and in that approximation (T) would
be a smooth function for o&&0. A larger F(p,s&) would
tend to further smooth (T); hence the approximation of
eliminating the pole is reasonable.

The error that results from the smoothing of Re(T)s
for large values of ps, (48), reflects in the behavior of
e(p, re) for values of co))e(p). Since A(p, ~) is sharply
peaked near e(p), an error in this region should not
affect its shape, but such an error can clearly alter the
value of w(p), (51). Because A(p, co) is such a peaked
function it is not very instructive to plot it; we have
thus plotted ttt(p), which is a measure of the amount of
A (p,cv) contained in the peak in Fig. 10.

dps (p I S(n) I po)(p, I
s

I
p')

0—ps'
(pl ~(f)) ip') =(p(sip')+P

(2s.)'

where 0= (P'/4)+p' —2tr, and, he has used'the station-

l.p

FIG. 10. The width
function I Eq. (51)j
(the curve approaches
unity for large mo-
mentum).

Pt a.800II
I

5.0 6.0
I I I

I.O 2.0 3.0 tl.p
P/P)

ss R. H. Sherman and F.J. Edeskuty, Ann. Phys. (N. Y.) 9, 522
(1960).

Mills' has used separable potentials very similar to
I I I I I those in Appendix A, 6tted to the de Boer data, and a

0 20 40 60
~

80 100 120 simple extensipn pf the Hartree-Fpck approximation.(A )
which consists of replacing the potential by the two-
body scattering matrix
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.Ol

0-

calculations only for Pre/3s' equal to the experimental
density, and made no attempt to And the minimum in
the energy-versus-density curve.

—.OI—
I

g —.02—
UJ

LJJ

—.05—

—.04—

Fxo. II. Average en-
ergy per particle and
chemical potential versus
density for the Pu6-
Martin approximation
(Ref. 2).

3. Pug Mar-tin A pproximation

Figure 11 shows &E/1V& and p, versus density, for
liquid He, calculated using the Puff-Martin approxima-
tion. ' This calculation was performed' with the po-
tentials in Appendix A. It involves using

Ge(p, s) = Ls—p'/2m+@ j ',
with p(0 in the T matrix (32). The resulting

—.05
.06 .08

DENslTY(A j

'.IO

p —p
' '

P—
II P —P

ary boundary condition to obtain a real S. For the self-

energy, he has

&1 l2'(P, s) Ix'&~~=&plelp'&

dpe &pl2'(P, s) Ixo&~~&polelu'&

(2s.)' s P'/4m —pcs/m+—2p

is real for s~ co+ic, where &u(0. From Eqs. (47) one
sees that Z(p, a&) is real for cv(0, and, examining (50)
and (53), one sees that for p(pr and cu(0 the spectral
function (25) is

A (p,co) =2s.p(p) 8(au —e(p) ),
where

A (p,cu) = 2s-8((a —e(p) ),
~e(P,~)

p(P)= 1—
o =~(u)-

,(p) =p /2m —pyZ(p, —,'p —p).

Baym" has shown that the Hartree-Pock approximation
is a thermodynamically consistent approximation (see
Fig. 1) and Mills's results satisfy the Hugenholtz —Van
Hove theorem (11). However, Mills has described a,

physically unrealizable system with negative pressure.

Using this spectral function in (37) and (38), one sees
clearly that only e(p) is needed for p(pr, hence one
need only solve

e(p) =p'/2m —p+ReZ(p, e(p))
and

Z. Sag's A pproximatioe

Another calculation of ground-state properties, start-
ing from a~two-body interaction, was performed by
Sung. 4 He calculated the phase shift from Schrodinger's
equation for the Yntema-Schneider and 6—12 potentials
with an effective mass me and replaced &T& in Z by the
real part of the free-particle scattering matrix

(4s)'
sinb g (p) e"«»,

less a term to partially account for the statistical
factors; also A is taken to be

A (p,a)) = 2s.8I (v —(p' —p, ')/2m*j.

The effective mass is adjusted until the output value

»(P)= lim
m' ~&~ B(p')

is the same as the input value, and this value of m* is
used to calculate the ground-state energy. He performed

I f

X ' 1 Go e zg

and the expression for p(p) self-consistently for e(p) (().
In the nuclear-matter calculation, PuR' determined the
ground-state Fermi momentum pr by the criterion that
the Hugenholtz —Van Hove theorem (11) was satisfied.
Falk and Wilet" pointed out that Puff's ground-state
solution did not have zero pressure as determined by
Eq. (10); they used this last criterion to determine the
ground-state solution.

The curve for this approximation in Fig. 11 was
obtained by using the potential fitted to the de Boer
data. The potentials with these parameters just managed
to produce a solution which satisfies

8 E)
a(ill/~) Xi

but was not able to produce a solution that satisfies (11)
"D.S. Falk and L. Wilets, Phys. Rev. .124, tS87 (t96t).
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with the constraint @~&0. The calculation was also
performed with the potential parameters adjusted to
reproduce the phase shift from the 'Yntema-Schneider
potential; no solution was found in this case.

4. Bruec/trier Gamm-el A pproximatiorl,

,025

.02I—

I

/

p
3 I

I
2 I3x /

AT

The Brueckner-GammeP calculation was not formu-
lated by use of thermodynamic Green's functions; it is
dificult to describe in these terms. The essential fea-
tures are included if we take

and
A (p,o))= 2irb(o) —e(p)) for p(pr,

A(p, o))=2irb(o) —e(p II)) for p&pt,
in (T), (32), and g, (34). Here 0 is to be determined
from a supplementary condition. Brueckner and Gammel
argue that the "hole-hole" term can be neglected and
hence the integration in (T) for the momentum is re-
stricted to p+ and p )pr. Also the interaction matrix
is real for all e(p, Q), since they calculate (T) off the
"energy shell" for these values. Their results" do note

F&G. 13. Density
versus Fermi mo-
mentum; solid line is
the (T)0 approxima-
tion and dotted line
the ideal Fermi gas
density.

.017— /
/

/
I
I
I

I

.OI5
.75 .85

Pg (K)

I

.95

satisfy the Hugenholtz —Van Hove theorem, as was
pointed out in the original paper. '8

0—

—.04—

5. (T)e Approximatioe

The spectral functions, which are calculated for
different pr's, when used in Eqs. (37) and (38) allow us
to calculate (1V/'U)" ". Substituting (54) into (37)
yields, for the density,

"P'dp

C4

CQ

UJ

Lal

—.08—

-.I20—

.OI6

I I

.OI8 .020

DENSITY (A l

.022

Fro. 12. Average energy per particle LEq. (57)7 and chemical
potential LEq. (53)j versus density LEq. (56)j.Here ere and iir,
are obtained from the (T)0 approximation, and e@ and iie from the
experimental values obtained by extrapolating the data of Ref. 26
to zero degrees.

"Brueckner and Goldman LK. A. Brueckner and D. T.
Goldman, Phys. Rev. 117, 207 (1960)g discuss the modification of
the single-particle energy necessary to maintain the Hugenholtz-
Van Hove theorem in this calculation. Brueckner, Gammel, and
Kubis LK. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys.
Rev. 118, 1438 (1960)g have redone the nuclear-matter calculation
of Brueckner and Gammel, using a modified single-particle energy,
and they find that the Hugenholtz —Van Hove theorem is almost
satisfied in this calculation. Masterson and Sawada PK. S.
Masterson, Jr. , and K. Sawada, Phys. Rev. 133, A1234 (1964)g
state that the Hugenholtz-Van Hove theorem is not applicable to
reaction matrix calculations.

using (5) and (38) yields, for the average energy per
particle,

E e" 1 "p'dp

S e p

o do)1( ps
&&

—-l + +~)&(u, ) (»)
2w 2k 2m

In Fig. 12 we display e and p versus m. The results
for p, are not as accurate as those for e, since p, is obtained
using Eq. (53), which, as we see in Fig. 4, involves the
intersection of two curves with comparable slope, while
e is obtained by integration of Eq. (57). In Fig. 13 we
plot u versus pr, and for comparison we also plot
p~s/3irs, which is the density of an ideal Fermi gas
corresponding to the momentum pr. From Figs. 12 and
13 we see that the density at which (55) is satisfied
corresponds to a Fermi momentum less than 0.80 A '.
As was explained in Sec. IIB, the iteration procedure
becomes unstable for values of pr below this value.
However, the minimum appears to be close to pr
=0.80 A i, and we have extrapolated the calculated
values to determine the minimum.
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Fro. 14.Pressure versus density ((T)0 approximation). Curve 1 is
obtained by using Eq. (10), and curve 2 by using Eq. (12). The
experimental curve (dotted) is an extrapolation of the data of
Ref. 26.

One can see, in Fig. 12, that the Hugenholtz —Van
Hove theorem, Eq. (11), is not satisfied for this ap-
proximation (as we would expect, since this is not a
thermodynamically consistent approximation), but the
discrepancy is smaller in this calculation than in the
other theoretical studies' (except that of Mills). In
I ig. 14, P is plotted versus e from the experimental data
and also from Eqs. (10) and (12).These two expressions
give different values for the pressure because our ap-
proximation is not thermodynamically consistent.

In view of the behavior of the single-particle energy,
for p near pr, we cannot obtain a meaningful value of
m* from the (T&s calculation.

The use of the single-particle energy in (T) is an
important feature of the Brueckner-Gammel calculation
and presumably would be a desirable improvement in
the calculation reported here. We have not performed
this improved calculation (which would involve ex-
tensive computational time), but have moved directly
to the more extensive computation reported in Paper II
of this series (where only the approximations described
in Sec. I are made).
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APPENDIX A' A SEPARABLE
POTENTIAL FOR He'

In Sec. IIA we introduced separable potentials which
were employed to evaluate the To matrix; this appendix
is devoted to explaining our choice of potentials, and the

(es/x) =40.88'K, o =2.56 $;
r is in angstroms, and It, is Boltzman's constant. This
potential was 6tted by de Boer et al. ' to the low-
temperature virial coeS.cients. The Yntema-Schneider
potentia16 is

1.24 1.89
s (r) = es 1200e

r6

with (es/x) =7250'K; it was Gtted by these authors to
the virial coefBcients up to 1000'K. The phase shifts
were computed by de Boer et at.r for the Lennard-Jones
potential and by Sung"' for the Yntema-Schneider
potential.

Puff has developed the expression for the phase shift
in terms of the two-body scattering matrix for a
separable potential; we quote the relevant formulas
here. The scattering matrix is given by

(p I s(Q) I
p'& = (p I.I

p'&

ups (pls(n)lp, &(polelp')
A1

(2s.)s 0—pp'/m

and is related to the scattering amplitude by

m tr pss +' lip&.
Em

Using the well-known relation' connecting the scat-
tering amplitude and the phase shift yields

pm (pls, (p/m+s, ) I p&
tan~) ———

, (A2)
87r'

I
2—(spm/8x')(p I S~(p'/m+ie)

I p&)

where (S)has been expanded in partial waves. Choosing
the potential (e) in (A1) to be a sum of separable

"C. C. Sung, Lawrence Radiation Laboratory (private com-
munication)."L.I. SchiG, Quantum 3Eechanics (McGraw-Hi11 Book Com-
pany, Inc. , New York, 1955}.

method employed to determine the potential parameters
so that these potentials can be considered to approxi-
mate the He' two-body interaction.

The choice of functional form for the potentials is
rather arbitrary. The primary criterion is convenience;
namely, a form which allows a maximum amount of
analytic computation. The parameters are adjusted so
that the phase shift resulting from the potentials ap-
proximates the phase shifts computed using the
Lennard-Jones 6—12 and the Yntema-Schneider po-
tentials.

The Lennard-Jones potential is

(~&"
'v r =gp

kr) Er)
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potentials,
2

(Pl IP'&= —2) "' "'(P) "'(P'),

TanLE II. Parameters and deviations, Eq. (A6), for separable
potentials Gtted to the Lennard-Jones and Yntema-Schneider
potentials.

ji'/(n) =
"(p) "'(p)

PdP (A3)

one obtains a closed form for (5&) identical to Eq. (41)
with I' =0, and the integrals I&'~ replaced by

Potential

0 1.872 1.505
1 1.908 1.635
2 1.857 1.421
3 1.73 0.0
4 1.0 0.8285
5 1.0 0.9573
6 1.0 0.897

—0,00805
—0.00818
—0.0713
—0.475
—1.347
—1.038
—1.686

(Dev)1

0.019
0.030
0.042
0.103
0.057
0.058
0.034

One needs to evaluate (A2) for 0= (P2/m)+ie; this
value of 0 allows one to write (A3), when the symbolic
identity

1=I' Wi7rb —(o))

is employed, in the form

Yntema-Schneider 0
1
2
3

5
6

2.048 1.023
2.050 0.977
2.085 0.855
1.997 0.0
1.0 0.621
1.0 0.781
1.0 1.014

—0.000947
—0.00218
—0.0161
—0.0518
—4.76
—2.25
—1.29

0.014
0.031
0.039
0.221
0.790
0.185
0.033

(p' . ) " ""(p')e")(p')
j'&I —+is

I

=P p"dp'
km i p p' —p"

—2-P""(P)e")(P)
2

~P2~=j"I —I-2-P""(P)s(/) (P)

hami

Substituting for (5) in (A2), we have the explicit
formula

P2r //p )
tansy((p) =——le("'(p),ei"'(p)]~)I —

I

2
'

&mi

~i")(p')
X [detÃ1j ', (A5)

-~i")(p')-
where

-gi2 j122(p2/m) j112(p2/m)
3E il

—I=
E mi j112 (p2/m) g 11 j111(p2/m)

a g&(1) = —gP-4g&(~).

which yields, after a spherical Hankel transform has
been performed, "

~i")(P) =Ji(p)

where p= pr, and the Ji's are spherical Bessel functions. "
For 1=0, j., 2 we use

2/1(I (r) = —[8(r—r,)/4rrrggi'hi(') (2(rr),

where 8(r) is the Heaviside unit function (defined as
zero for negative argument and unity for positive argu-

ment), and hi") is a spherical Hankel function of the
first kind. '0 Transforming this potential, one obtains

"'(p)=["/("+~')jl'e (.)h '"(~)-phi") (2&)Ji-i(p) 7,

where P=nr, and r. are two parameters yet to be
determined. For /=3 we use

gi' ——(22r) 2/X 1(') .

The Lennard-Jones 6—12 and the Yntema-Schneider
potentials are both strongly repulsive for small inter-
particle separations. To replicate this we choose a two-
term potential for 3=0, 1, 2, 3, with one term giving the
short-range repulsion and the other term giving the
long-range attraction. For /=4, 5, 6 we use only an
attractive term, since the "angular momentum barrier"
shields the short-range repulsion.

The repulsive part of the potential is taken to be a
"hard shell, "

8(r—r,) 8(r' —r,)
(rlvilr)=e")() 1"'(')=-

4~y

8(r r,) (r, ~
'+'—

ei"'(r) =
4~r.2 kri

whose transform is

&1")(P) =J1-1(P)/P.

The attractive potentials employed for l= 4, 5, 6 have no

simple coordinate space representation; in momentum

space they are

(2) (p) p 1/[ 2+pp ](12+1)/2

"The spherical Hankel transform of g (r) is given by

g(P) =4 r'dr j pr)g r).
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Evaluating the integrals J», one obtains tan8~, and
then adjusts the various parameters to reproduce the
phase shifts computed from the 6—12 and Yntema-
Schneider potentials. The parameters which give the
best fit to the phase-shift data are tabulated in Table II.
The phase shift for the 6—I2 potentia17 was available for
20 equally spaced momentum values between 0.086 and
1.564 A ' and for the Yntema-Schneider potentiaP' ' for
25 momentum values between 0.086 and 1.954 A '. The
separable potentials were 6tted to these values, and the

deviation quoted in Table II was computed by using

1 N

(Dev) 1= —Z [(2l+1)
g n-1

1/2

)((g deB or Y—s(&) g sep(N))js (A6)

where X=20 or 25. The coupling constants for the
repulsive core are taken as large, but Qnite, positive
numbers of the order of 104 to IO' times the magnitude
of the attractive coupling constants.
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Binding in Helium Intermolecular Potentials
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A method of counting bound states is modi6ed and applied to singular helium intermolecular potentials
to determine the conditions under which such potentials support a single bound state. Results are presented
for the "6-9"and "6-12"potentials and compared with the results of earlier variational calculations.

I. INTRODUCTION

HERE has been some discussion in the literature' —'
as to the existence of bound states in the various

intermolecular potentials proposed for helium. 4 This
matter is important since the bound states enter into
the calculation of virial coeScients and transport
properties of helium. ' The earlier calculations of Refs.
1 and 2 were based on variational methods for determin-
ing the values of the potential parameters just sufhcient
to bind a single s state; the results are of uncertain
accuracy and bound the correct values from one side
only. This situation is further aggravated by the fact
that, with the intermolecular potentials generally used
for helium, a bound state, if it exists, is bound very
weakly.

In the present work we give some results for the
critical potential parameters using a modification of a
method for counting the bound states in central
potentials, ' the modification being required because of
the highly singular potentials with which we must deal.
This method characterizes the potential by a single
parameter co, such that increasing co results in an
everywhere-more-attractive potential. By direct in-

' T. Kihara, Y. Midzuno, and T. Shizume, J. Phys. Soc. Japan
10, 249 (1955).' J. E. Kilpatrick and M. F. Kilpatrick, J. Chem. Phys, 19,
9SO (&95&).

e A. Pais and G. E. Uhlenheck, Phys. Rev. 116, 250 (1959).
4 J. 0. Hirschfelder, C. I'". Curtis, and R. B. Bird, 3Eolecular

Theory of Gases (John Vfiley R Sons, Inc. , New York. , 1954).
'H. M. Schey and J. L. Schwartz, Phys. Rev. 139, B1428

(1965). The reader should consult this reference for details of the
calculational method.

tegration of the zero-energy Schrodinger equation, one
determines the inverse scattering length a—' of the
potential as a function of ar. The potential that will just
bind a single state is then characterized by the critical
value of or, i.e., the smallest cv for which a—'=0. This
method, with its modi6cation as given below, is
straightforward, applicable to a wide class of singular
potentials, and not beset by the uncertainties associated
with variational methods.

II. METHOD OF CALCULATION

The zero-energy reduced radial Schrodinger s-wave
equation for a two-body system of reduced mass m
interacting through a potential V(r) is

k2 d2e
+V(r)N(r) =0

2m d1'

Standard intermolecular potentials have the I.ennard-
Jones fGall

V(r) = (5'/2maes)fn(as/r)" —P(ae/r)'j

with ae ——A'/me', and n and P are dimensionless con-
stants. The dominant features of this potential are (1)
the attractive induced dipole-dipole interaction varying
as 1/r', and (2) the hard core which goes as 1/r". The
exponent e is generally chosen between 8 and 14. We
shall deal here with the two cases m=9 and m=12
(commonly called the 6—9 and 6-12 potentials). To
associate the parameter co with the attractive term in


