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We report the results of calculations of several shielding and antishielding effects pertaining to the hyper-
Gne structure of various iona and atomic systems. The following shielding (or antishielding) parameters
have been considered in the present work: (1) the parameter 02 for the rare-earth iona, which measures the
reduction of the A 2r'Pq(cosg) term of the crystal Geld at the location of the 4f electrons due to the shielding
eiiect of the more external Ss and 5P electrons; (2) the quadrupole antishielding factor y„which gives the
total quadrupole moment induced in the closed shells of an ion by the nuclear quadrupole moment Q;
(3) the corresponding atomic shielding factor R which describes the effect of the induced quadrupole moment
on the valence electrons; (4) the hexadecapole antishielding factor v„, which is analogous to v„, except that
it pertains to the induced hexadecapole (16-pole) moment produced by a possible nuclear electric hexa-
decapole moment. The calculated values of o2 for the Pr'+ and Tm'+ ions are in good agreement with the
experimental results. We have obtained improved values of y for the following ions: AP+, Cs+, I, Pr'+,
and Tm'+. The atomic shielding factor R has been calculated for the 4f electrons of Pr'+ and Tm'+, and was
found to be in reasonable agreement with experiment. A discussion is given of the most likely regions of
atomic number for which it might be possible to detect a nuclear hexadecapole moment. In addition, an
evaluation of the second-order terms in the antishielding factor y for the Cl ion has been carried out.
Expressions for y„(ml -+ i&2) for the case of hydrogenic wave functions have been obtained.

R for a number of ions. In addition, .the paper contains
results on the hexadecapole antishielding factor' g,
the second-order antishielding for the Cl ion, and on
the values of p„which one would obtain using hydro-
genic wave functions.

In Sec. II, we give the results of calculations of the
shielding parameter 0-2 for the Pr'+ and Tm'+ ions. The
constant 02 gives a measure of the shielding of the
A sr'Ps(cosg) term of the crystal field, which is produced
by the external 5s and 5P shells at the location of the
4f electrons of the rare-earth ions. In order to obtain os,
we have used the same procedure as was previously
employed in the calculation of the quadrupole anti-
shielding factor' j and the dipole and quadrupole
polarizabilities n& and o,„namely, the direct solution
of the inhomogeneous Schrodinger equation for the
perturbed wave functions. The resulting calculated
values of o.

&, namely, o &(Pr'+) =0.60 and o-s(Tm'+) =0.48
are in good general agreement with the corresponding
experimental values. ' It should be noted that the
present results include the contribution from the ex-
change terms of the electrostatic interaction between
the 4f and 5s (or 5p) electrons. It was found that the
exchange terms are small compared to the dominant
direct terms ((10jo of the total os).

In Sec. III, we obtain improved values of the quadru-
pole antishielding factor y„ for the following ions:
Al'+, Cs+, I, Pr'+, and Tm'+. The results for Cs+ and

I. INTRODUCTION

the calculations of p„and R has been given by A. J. Freeman
and R. E. Watson, in Treatise on Magnetism, edited by G. Rado
and H. Suhl (Academic Press Inc. , New York, 1965), Vol. IIA,
p. 167. See also C. H. Townes, in Ilandblch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1958), Yol. 38/1, p. 377.

m' R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961); Phys.
Rev. 123, 870 (1961).

6R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565
(1957); 115, 1198 (1959); 127, 1220 (1962). Calculations of the
ionic polarizabilities by the variational method have been carried
out by E. G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957);
P. W. Langsho6 and R. P. Hurst, ibid. 139, A1415 (1965).
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'HE purpose of the present paper is to give the
results of calculations of several shielding and

antishielding effects pertaining to the hyperfine struct-
ure for various ions and atomic systems. In par-
ticular, we have obtained values for the shielding
parameter' ' os for the 4f electrons in rare-earth ions
and for the quadrupole antishielding factors' 4 V„and

*Work performed under the auspices of U. S. Atomic Energy
Commission.

'The shielding parameter 0.2 has been experimentally deter-
mined by D. T. Edmonds, Phys. Rev. Letters 10, 129 (1963);
R. G. Barnes, R. L. Mossbauer, E. Kankeleit, and J. M. Poin-
dexter, ibid 11, 253 (19.63); Phys. Rev. 136, A175 (1964); J.
Blok and D. A. Shirley, J. Chem. Phys. 39, 1128 (1963); Phys.
Rev. 143, 278 (1966); H. H. Wickman and I. Nowik, ibid. 142,
115 (1966}. The existence of quadrupole antishielding effects
for the rare-earth ions was 6rst demonstrated by the work of
B. R. Judd, C. A. Lovejoy, and D. A. Shirley, Phys. Rev. 128,
1733 (1962).' Previous calculations of 0.2 have been reported in the following
papers: C. J. Lenander and E. Y. Wong, J. Chem. Phys. 38, 2750
(1963); D. K. Ray, Proc. Phys. Soc. (London) 82, 47 (1963);
R. E. Watson and A. J. Freeman, Phys. Rev. 133, A1571 (1964);
139, A1606 (1965); G. Burns, ibid 128, 2121 (1.962); J. Chem.
Phys. 42, 377 (1965).' R. M. Sternheimer, Phys. Rev. 80, 102 (1950);84, 244 (1951);
86) 316 (1952); 95) 736 (1954); 105, 158 (1957); 130, 1423 (1963);
132, 1637 (1963};H. M. Foley, R. M. Sternheimer, and D.
Tycko, ibid. 93, 734 (1954); R. M. Sternheimer and H. M. Foley,
ibid 92, 1460 (1953).; 102, 731 (1956).

'Calculations of y by the variational method of T. P. Das
and R. Bersohn, Phys. Rev. 102, 733 (1956) have been published
in the following papers: E. G. Wikner and T. P. Das, Phys. Rev.
109, 360 (1958); G. Burns, ibid 115, 357 (1959.); 124, 524 (1961);
J. Chem. Phys. 31, 1253 (1959); G. Burns and E. G. Wikner,
Phys. Rev. 121, 155 (1961);Phys. Letters 2, 225 (1962); R. G.
Khubchandani, R. R. Sharma, and T. P. Das, Phys. Rev. 126,
594 (1962). Extensive calculations of y by means of the un-
restricted Hartree-Fock method have been carried out by R. E.
Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963); 135,
A1209 (1964); A. J. Freeman and R. E. Watson, ibid 131, .
2566 (1963); 132, 706 (1963). A calculation of R for the
ferrous ion (Fe+) has been performed by R. Ingalls, Phys. Rev.
128, 1155 (1962); 133, A787 (1964). The subject of antishielding
factors and polarizabilities has been recently reviewed by A.
Dalgarno, Advan. Phys. 11, 281 (1962). An extensive review of
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I—were obtained by means of the Hartree-Pock wave

functions for these ions which have been calculated

by Freeman and Watson. ~ The values for Pr'+ and
Tm'+ represent an improvement over those previously
reported, on account of the fact that the terms
'r„(2p~ p), r„(3p~ p), r„(3d-+d), and r„(4d-+d)
which had not been previously calculated are included

in the present results. For Cs+, the present result,
p„=—102.5, is appreciably smaller in magnitude than
the previously published value' (—143.5) which was

based on Hartree wave functions (excluding exchange).
In Sec. III, we have also given a table of all of the
values of p which have been calculated by the method
of direct solution of the inhomogeneous wave equation. '
For a given zero-order wave function, this method gives
values which are believed to be accurate to 3%. This
table also includes the calculated values of the quadru-

pole polarizability n, (obtained by the same method'),
wherever they are available. In addition, Sec. III in-

cludes a calculation of the atomic quadrupole shielding
factor' R for the Pr'+ and Tm'+ ions. The results in-

dicate that there is a small shielding ( 10—20%) for
both cases.

Section IV gives a general discussion and an evalua-
tion of the second-order quadrupole antishielding

sects for the Cl ion. The second-order antishielding
arises as a result of including the induced quadrupole
moment in the total quadrupole perturbation which

produces the distortion of the closed shells of the ion.
In Sec. V, we prove the equivalence of two alternative

methods of calculating the second-order antishielding.
In the 6rst method, one considers the perturbation due

to the nuclear quadrupole moment P, and subsequently
the perturbation due to the resulting induced quadru-

pole moment Q;„', and its eGect on the closed shells,

whereas, in the second method, one starts out with the
external charge (at a distance R), and calculates in

6rst order the distortion of the closed shells arising
from the quadrupole part of the potential due to the
external charge, namely, (e'r'/R')Ps(cos8). In this

second method, the antishielding factor y„ is obtained

by dividing the field gradient at the nucleus due to the
quadrupole distortion of the closed shells by the field

gradient 2e/R' which would be produced by the ex-

ternal charge acting alone. The second-order eGect
which is considered here arises from the field gradient
at the nucleus which is due to the closed-shell distor-
tion produced by the quadrupole potential arising
from the erst-order perturbation. In first order, it has
been proved some time ago that the two methods are
equivalent, ' and it is here shown that the equivalence
also holds for the second-order terms of y„.

In Sec. VI, we give some additional results for the

7 A. J. Freeman and R. E. Watson (private communication).
R. M. Sternheimer, Phys. Rev. U2, 1637 (1963).

~ R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731
(1956).' R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1953).

hexadecapole antishielding factor g„. This factor
pertains to the 16-pole moment induced in the closed
shells by a possible electric 16-pole moment of the
nucleus. We also give a discussion concerning the ques-
tion as to the types of nuclei which are likely to have a
relatively large and therefore measurable hexadecapole
moment.

In Sec. VII, we obtain the values of y„(el~i')
for P=l~2 (shielding modes) assuming hydrogenic
wave functions for the unperturbed closed-shell func-
tions. The results are, of course, only of academic
interest as far as the evaluation of an actual antishield-
ing factor is concerned, since in this case one must
always use accurate (preferably Hartree-Fock) wave
functions for the ion considered. Nevertheless, the
results are interesting from a theoretical point of view,
for two reasons: (1) It was found that in all cases con-
sidered, namely, es —& d, np —+ f, Nd —+ s, and mf—+ p,
'r„(el ~ l~2) is simply a linear function of the principal
quantum number: y„(el-+ 1')=ae+b, where a and b

depend only. on / and l' (but not on e), and are in-
versely proportional to the atomic number Z. (2) In
the course of the calculation of y„, an interesting
orthogonality property of the hydrogenic wave func-
tions has been discovered.

Finally, Sec. VIII gives a brief summary of the main
results obtained in the present work.

II. THE SHIELDING PARAMETER e2

In this section, we will obtain the general expression
for mrs for the case of a valence 4f electron, which is
being considered in the present work. " We will also
give some details of the actual calculation of cr2.

The shielding parameter 0-2 represents the electro-
static effect of the shielding" of the internal 4f elec-
trons by the more external Ss and 5p electrons of the
rareearth ions Pr'+ and Tm'+. We note that there
will also be some shielding by the other shells of the
atom, besides Ss and 5p. However, this e8ect due to the
inner shells is expected to be small compared to that
of Ss and Sp, and it has been neglected in the present
work-.

In the shielding parameter o-2, there will be terms due.
to the direct electrostatic interaction between Ss (or 5p)
and 4f, and also the corresponding exchange terms. We
will first discuss the direct terms.

We assume a unit external charge +e placed along
the positive s axis at a distance E. from the nucleus of
the ion which we are considering. The quadrupole
potential energy due to this charge is given by

V,= —(2rs/Rs)P, (cost),

where Vz is in Rydberg units, r and 0 are the polar co-
ordinates of a point within the ion, measured with
respect to the nucleus and the s axis (defined above); r

"A preliminary account of this vrork has been given in Bull.
Am. Phys. Soc. 10, 597 (1965).
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and R are in units of the Bohr radius aII, and I'~ is the
Legendre polynomial.

Now we consider the perturbation due to V~ of a,

closed shell wave function up(nlm) of the ion. Obviously,
we will be interested in the cases where nl=Ss and Sp.
The potential Vg gives rise, in first order, to a perturba-
tion ur(nl —& lr) in the zero-order wave function, which
is determined by the equation

(Hp —Ep)ut(nl —+ lr) = (Er—Hr)up(nl), (2)

cedure previously described by Sternheimer' ':
1 d'up' l(l+ 1)

Vp-&p=-
up dr r

From Eqs. (2), (5), (6), and (8), we obtain for d

Poo+l 0+iI sin0d0 .

(10)

wheie Hp and Ep are the unperturbed Hamiltonian and
energy eigenvalue pertaining to e/; H& and E& are the
corresponding first-order perturbations of Hp and Ep,
respectively. We have H&= V&, and

Thus, d is defined by the condition that Eq. (5), with
ur'(nl ~ lr) obtained from Eq. (8), should represent the
solution to Eq. (2).

The integral of Eq. (11) was previously denoted by
I«, (') in Ref. 12. The overlap density 2upu& for the
state elm can be written as follows:

p p

up'H~dr sinode, (3)
2up(nlm) ur(nl ~ l t)

= (4/R')I&«&'&"up'ur'(nl —+ lr) O~&"O~«~. (12)
where we should note that up and u& actually refer to r
times the corresponding wave functions, and the nor-
malization for the radial part of up, to be denoted by
up' is given by

up dr=| (4)

(e~~)' sinode= 1. (7)

In Eq. (5), d is a constant to be determined below. The
radial function ur'(nl~ lr) is defined by the condition
that it should satisfy the following inhomogeneous
Schrodinger equation:

As discussed in several earlier papers, ' ' "the pertur-
bation V~ will produce the following types of perturba-
tions: Ss —+ d, Sp —+ p, and 5p —+ f. The following
discussion is very similar to that of Ref. 12 (see Sec. II).
We write

ur(nl —+ lt) = (2/R') dur'(nl -+ 4) O~«~, (5)

up(nlm)=u ( pl)n0)", (6)

where the spherical harmonics O~ are normalized to 1:

The quadrupole part of the potential due to the density
(12) is

8
V,(nlm) =—(I~«&'& O'Pp(cos8) — u p'ur'r"dr'

R3 r

+rs up'ut'r' Pdr', (13)

where up' and u~' are to be evaluated at the radius r'
(the variable of integration). In Eq. (13), as compared
to Eq. (12), a factor of 2 arises from the fact that the
quadrupole part of the electrostatic interaction energy
is: 2(r&'/r &')Pp(cosg), when expressed in Rydberg units
e'/2&re, as is done here.

In order to obtain the total V, due to a closed shell,
we must sum over all m values in Eq. (13),and multiply
by 2 to take into account the two spin states for each m.

If we denote the function in square brackets in (13)
by f(r), we can therefore write

16 l

V,(nl) =—f(r)Pp(cosg) P Ll«&»~j' (14)
E.3 m=—l

for the potential due to the filled el shell. We note that

lr(it+1)
yvp —E, lut'(nl~ lr)

+l
16 g Ll&«&'&"j'=2C(&, &s&, (15)

= .'( l)L"—(")-~«,j (8)

and moreover, for l&=l, the orthogonality condition

up'(nl)ur'(nl —+ l)dr=0.

In Eq. (8), the effective potential Vp is obtained directly
from the unperturbed wave function up'(nl) by a pro-

where Cll, (') is the angular factor for the quadrupole
antishielding factor, as previously de6ned in Ref. 12
/see Eq. (28)j. For the excitations which are relevant
to the present work, we have Cpg"&=8/5 for Ss-+ d,
Crt"'=48/25 for Sp —+ p, and Ctp&'& = 72/25 for
Sp~ f.

We now consider a valence 4f electron with magnetic
quantum number m.. The wave function of this electron
times r will be denoted by v. Thus,

"R.M. Sternheimer, Phys. Rev. 127, 812 (1962). t&(4f m, )=t&'(r)Op~ (16)



minates, leadingte
d'

.
of ihe exchange

ins o2(5$
to a net shiel i g

a discussion o
f the

roceeding to a
e connection o

before p .
h to pojnt out " . ~

f ctor3

Thus, the o
d integral of Eqsentia yll by the secon ln

for r=0. We have

146

tionrt of v, witrt, '
h the normalizat'where e is the radial part

Lcf. Eq. (4)j:
dr= 1.

u t '
el)uetoteer c u th potential V,(

acting on the 4f electron i

(2)

FQR IONsrsH~«H)ELDI NG AN 0 ANT

d s,nd~~(SP~f Predo

E,(nl) = P "g '
18)P Oq ')'singdg,o"f(r)dr P2 ~

g

(23)/ /u0ej r r.l ~ li) = Cii„e
0ritten as follows Lcf. Eq.which can be rewritten as o

definition of Iii, ('i j:
polarizability eq'ntotepoe contribution

ted for r= ~ .1 1is obtaine d from the first in(2) (2)m&2cl l1 Il, l,
(19)E,(rd) = o"f(r)dr,

(24)(2)Qq Sl ~ li) —Cii, Q0 I] r dr.

0 0

L

PI (Cosgi2),~z=2 L
L=0 r)

R3 0

Pr'+ and Tm'+ haveThe values of y
e/ has to be compare'

te t'o gyr witht eex
contribution o eto obtain the

th tho vio

be denoted by 02 e
s

bation It turns

he direct interac i

th l t

Te ' ' ci

cacu t e1 lated using t e
t sfactory to

sined0Vgv dr slil

0
hWe will now ob

'
a

00

wl eIl lq

be denote y 4 .
first the Ss~ p tion.. We consider r

ter action o

e integra in
19) and

5 d

The
'

'dd tht th

(25)
fr5p —+p, co p

r, r ispo
rres on ing

we electrons as

lti

is t e ween the two

in th' last case. This

l ); d
ter hee 0

ne consi ers
ne ative

romt eco
es ective y,

th d t
3

dth 1ler an
the nuc leus.

clai
' h' lding factordru ole antis ie

fp are the sma
r2 of the two electrons from

/)i d6 d

distances r~ and r2 o

The contribution og(Nl ~ i i

We also have
—E,(nl -+ lg)/8 g,

o.2(el —& li) =—E,(el ~ li)

so that we obtain
Pr, (cosei2)

(1)Pr, (2)C'ns(1)c'~ (*2), (26)=2~ Q Pr~ 1

2 . (21)"f() (')

e term of 0-2 is then~i.e. nonexchange)The total direct i.e., n e
given by

) ( )+o.2(Sp ~ f), 22)=o2 Ss~ o2), d o2(5p~ o2

elec-p
ro n be neglecte . etrons (m&4 can

—2z '', '
he azimutha a ge

'
l an le and
h 1

nd 2, respectively. In Eq

he case o s —&In th s —&

f E (25) 0
5) 't t'glarly, for Sp~ p, we



R. M. STERNHEI M ER

ur(5p —& p)v4f Each density is the sum of two terms
which behave as Q~s™and 0~4~. Hence, both I.=2 and
L=4 will contribute exchange terms to fs F.inally,
for 5p~ f, up(5p)v4t (~ Os and 0~4~) interacts with
ur(5p~ f)vs (~ Op/, Os, 04", and O~p"), so that we
will again have two terms in fs arising from L=2 and
1.=4.

We will now discuss the general exchange integral
for the nl —+ lr perturbation of up(nl) in order to obtain
the relevant radial integral and the coeKcient C which
replaces Ct»&s& for the direct term of os )see Eq. (21)j.

From Eqs. (5) and (16), the overlap density

2ur(nl -+ lr, m) vs(m. )

where r' is the variable of integration at which l~'
and v4f are to be evaluated.

In Eqs. (27), (30), and (31), we have omitted the de-
pendence on the angle p, since the q dependence is
integrated out by the factor 4, which multiplies
Pr, 'in Eq. (26).In Eq. (31),the factor C&~&(lrm; l.m, )
arises from the integration over O~»~0~4~ in Eq. (27).

Upon using Eq. (30), the exchange energy E, ,h(nl ~
l&,L) becomes

+exch(nl ~ lr) =—(8/R')Ct'& (lm; ltm)
XC' &(irm; l,m, )C' &(lm; l,m, )IC& (33)

where E is dered as the integral

can be written as follows:

p,„,h ——2urv4r ——(4/2')dur'(nl-+ lr)v4f O„Q,, (27)
up( ln)v4r'G(r)dr. (34)

C&i&(lm lrmr) = Pl~ ~~O&~O& ~& singde, (28)

with l,=3.
As has been pointed out after Eq. (11), d=It»t'&,

and this integral is in turn a special case of the coef-
ficient C&~&(lm; lrmr) of Condon and Shortley" which

can be written as follows:

v(1)

» Eq. (33), the last angular factor, C&r&(lm;l, m, )
arises from the integration over et Q~t, in (30).
We have included a minus sign in Eq. (33), because
the exchange energy as calculated from the determinant

(up+ ur) (1) (up+ ur) (2)
O(1,2) —= (35)

v(2)

corresponds to terms in the density 0'*4' of the form
—ut(1) v(2) up*(2) v*(1)= —ur(1) v*(1)up*(2) v(2) which
carry a minus sign, as is well known.

The total exchange energy for a closed shell, for the
perturbation (nl ~ lr, L) is obtained by summing
Eq. (33) over all m values (from —l to +l).

In order to obtain the contribution to ts (exchange
part of o.s), we must divide —E„,h(nl-+ l» L) by the
direct interaction energy with the external charge Eg,
as given by Eq. (20). Note that It, t, t'& '=Ct'&(l.m. ;
l,m.). We thus obtain

—4K(nl —+ lr, L)|s(nl —& l r, I.) = C&'&(lm; lrm)
(r')4rC&'&(l, m„l~,) ~=&

XC&~&(lm; l.m.)C&r &(lrm; l,m, ) (36).

where the arguments (lm) and (i&mr) must be so labeled
that m —mr~0. Thus, from Eq. (11),we have

d=Itt &s&"=C&s&(lm; lrm), (29)

i.e., the special case of (28) with L=2 and mt= nt.

+The density up(nl) v4r(m, ) which interacts with

p,„,h LEq. (27)j is obtained by means of Eqs. (6)
and (16):

up(nl)v4r(m. ) =up'(nl)v4g'O~t"Ot, " . (30)

The I'I, term of the electrostatic potential energy
due to (27) is given by

8
U. ,&,(nl ~ lt, L) =—C t' (lm; lrm)

R3 The result, Eq. (36), is independent of the value of m,
(31) (magnetic quantum number of the valence electron).

This fact can be used as a check on the calculation of
the sum over m (by repeating the calculation for two
values of m,). We can write (36) as follows:

K(nl & lr, L)C(nl ~ lr, L)
(36a)

XC&~&(l m; rl,m,)PI," " (8)G(r),

where G(r) is the following radial integral:

1
G(r) —= ur'(nl ~ lr) v4r'r'~dr'

~L+j fs(nl ~ lr, I.)=—
00 (r')4r

+r~ ur'(nl~ l ) rv'r4r' ~&dr', (32)
where C(nl ~ l~, L) is defined as follows:

4 P C&s&(lm lrm)C&~&(lm;l. m.)C&~&(lrm l.m, .)
C(nl ~ lr, I,)=

C &'&(l.m „l,m.)
"E.U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University Press, London, 1935), p. 175.

(37)
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It may be noted that the coeS.cient C«, ' for the
direct interaction LEq. (15)j can be obtained from (38)
by multiplying by 2 (summation over spin states),
setting L=2, and changing C&sl(lm; l,m,)C&@(lrm; l,m, )
to C&'&(lm; ltm)C&'&(l, m, l,m,). This gives

+l
C((, l'l ——8 g IC&'&(lm;lrm)j', (37a)

f,=f,(Ss~ Z; L=3)+t.,(Sp ~ p; L=2)
+f's(5p ~ p; L=4)+|s(Sp —+ f; L=2)

+ps(5p ~ f; L=4). (38l )

In all of the terms of (38b) the coefficient C(nl~
lr, L) is positive $Eq. (38)j.The integrals E(el ~ lr, L)
are positive for Ss-+d and Sp —+ f, while they are
negative for 5p —+ p. The sum of the Ss-+d and
Sp —+ f terms predominates, and hence the net effect
of f s is equivalent to a small antishielding, on account
of the minus sign in Eq. (36a). However, the magnitude
of f s is considerably smaller than that of the direct
term o s, LKq. (22)j, so that both for Pr'+ and for Tms+,

TABLE I. Contributions of the direct electrostatic terms to the
shielding factor os for the Prs+ ion. The values of y„(nl ~ 4)
and n, (n/ —+ l1) are also given.

Perturba-
tion 02, fjnt 0 2, ext v- ~a (&')

5s~d
5P~P
5P~f
Total

0.0814 0.2081 0.2895—0.0572 —0.1301 —0.1873
0.0609 0.5150 0.5759
0.0851 0.5930 0.6781

0.577 0.300—73.7 0.273
0.515 1.140

~ ~ o 1 713

"R.M. Sternheimer, Phys. Rev. 95, 736 (1954).

which is identical with Eq. (15) Lsee also Ref. 12,
Eq. (28)j.

The relevant values of C(nl —+ l~, L) for the pres-
ent case (l,=3) were obtained using the tables of
C&~&(l&m&', l&ms) of Condon and Shortley. "The results
for the Ss and 5p shells are as follows:

C(estd; L=3)=4/7; C(np —+ p; L= 2)=1 08/1 75;

C(ep~ p; L=4)=4/21; C(np-+ f; L=2)=72/175;
C(np~ f; L=4)=4/7. (38)

In connection with Eq. (3/), we note that this equa-
tion could be used to obtain the values of C(el —& lr, L)
for the case of an external p electron (l,=1). These
values have been previously calculated. "Thus, we And
for l, = 1, and for the s and p electrons of the core

C(Ns~ d; L,=1)=4/3; C(np —+ p; L=O)=4,
C(np-+ p; L=2)=4/25, C(ep-+ f, L=2)=36/25.

(38a)

By means of Eq. (36a), we obtain for the total ex-
change term of a.2 for the rare-earth ion

TABLE II. Contributions of the direct electrostatic terms to
the shielding factor o 2 for the Tm'+ ion. The values of 7„(ml ~ l,)
and a~(nl ~ l1) are also given.

Perturba-
tion

Ss~d
5P~P
Sp~f
Total

02, int 0'2, ext

0.0765 0.1972 0.2737—0.0838 —0.1563 —0.2401
0.0216 0.4785 0.5001
0.0143 0.5194 0.5337

0.468—65.5
0.491

n, (L')

0.1200
0.1284
0.4755
0.7239

TABLE III. Values of the exchange terms pertaining to the
shielding factor 0-2 for the Pr'+ ion.

Perturbation

Ss-+d (L,=3)
Sp-+p (L=2)

p (L=4)
Sp~ f (I.=2)
SP ~ f (L=4)
Total

g2, 1nt

—0.0071
+0.0229
+0.0054—0.0295—0.0239
—0.0322

$2,ext

—0.0290
+0.0109
+0.0035—0.0134—0.0149
—0.0429

—0.0361
+0.0338
+0.0089—0.0429—0.0388
—0.0751

's Tables of the perturbed wave functions Nq'(ll ~ l') which
represent the eGect of the crystal-6eld perturbation are given in
a supplementary paper "Wave Functions for Crystal Field Calcu-
lations. " This paper has been deposited as Document No. 8800
with the ADI Auxiliary Publications Project, Photoduplication
Service, Library of Congress, Washington 25, D. C. A copy may
be secured by citing the Document number and by remitting
$1.25 for photoprints, or $1.25 for 35-mm microfilm. Advance
payment is required. Make checks or money orders payable to:
Chief, Photoduplication Service, Library of Congress."E.C. Ridley, Proc. Cambridge Phil. Soc. 56, 41 (1960).

the complete result is a (positive) shielding of the order
of 50%, in good agreement with the experimental data.

We will now briefly describe the calculation of the
terms os(ml-+ lr) and fs(nl + l&—, L) using the wave
functions ut'(nl-+ l&) determined by Eq. (8). The
functions ur'(ll ~ l&) were obtained by numerical
integration in the same manner as in our earlier work. "
We note that the present ur. '(nl —& lr) are the same
functions as those occurring in the calculation of
the quadrupole polarizability n, (el -+ l&). The term

Ns'(e—l)(r')„&b&&~ on the right-hand side of Eq. (8)
arises from the energy term E&N& in Kq. (2). For the
unperturbed functions, Ns'(Ss) and Ns'(5 p), we used the
Hartree wave functions of Ridley. "The corresponding
values of (rs)» which enter into Eq. (8) are as follows:
3.74alr' for Pr'+ and 2.73a~' for Tm'+. For the case of
5p-+ p, the inward integrations of Eq. (8) were carried
out on the Brookhaven IBM-7094 computer by means
of a program used previously in the calculations of the
antishielding factor y„(el —+ l). For Ss —+ d and Sp —+ f,
the calculations are equivalent to the solution of an
eigenvalue problem, and were done on a desk computer.
Thus, the inward integrations are started at a large
radius rr( 5—6arr), with various starting values
Nt'(rr). Only for the correct value of Nr'(r&) will the
resulting function be well-behaved (i.e. , go to zero as
r~+') at the origin r=0. In practice, of the order of
10—15 trial integrations must be performed until one
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g2, in'

—0.0068
+0.0231
+0.0055—0.0271—0.0199
—0.0252

—0.0335
+0.0359
+0.0094—0.0336—0.0282
—0.0500

Eq. (32),
(39) G()=G'. ()+G. ()w,„dG i,(r) are defined bywhere G;„i(r) an

(39a)

where
T

/ I 12df;„,(r)=—— uo ui r r
r3 0

8 fpr Pr'+t tal direct term 02is0.6

6

,h. ..hange ter~s pe«a'"'"g 'TAPIR gV. V»ues of
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and o
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perturbation

0.0267

'butes app i
5 f Tm3+ ls a good

+p.01285p~ p (I.=2)
+p.p039

0.00655p~ j (L=2)
0.0083f (1.=4)
p.0248

~ p), which are no
I s for p (tota

Total

d II Our best presen
3+. The

l,, L) over the entire
re as follows: —81 for

'
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'
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values
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2 for Tm'+.

erturbatio»i ( p ~
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2 f r pr + and 0' 46~
in Tables p

these values are
The results of the ca

) g,ven in Tables I p,+ and Tm3+, respe«ive y
( l l, L) hsted

I IV. The direct terms ~2(~l ~
l l, L) are presented

For the exchange e
d imiiar separation

ln
terms 0'2(nl~l»&

„ f ~(r) as shown in Eq' ' |.2,. & aiid f2, ex&r

tributions of both parts of r as

we write
Thus we can write for f(r):

jnQ

uo'NX'r' 3dr'. (39b)
G;. ()—=, ui'(nl -+ l,)v4r'r'~dr', (41)

'n E . (39) into Eq. (21), we obtainVpon substituting Eq. i . we obtain

( l )=, (nl-+li)+02, .„i(nl~li,09(«~ X =~2, in~

o.2, & are dered bywhere 02, ;„& and ~2,, ~ a

(40a)

,(nl —+ li):)=C &'&P(r')4r] ' v"f. i(r dr. (40b)

0-
~ and thewe have listed 02, ingy 02, exp'

/. A d tdb
n

erturbation e —+ ~.

tof th tof th d

' which is interna o
density

w
' ' ' t e 4 shell. As would

v e

Q~

l) o d ih h
b i dfomode nl ~ l~. ese

(23) and (24).
J. Freeman and R. E. Watson, P ys.

t t(1962), and priva e corn

G. ,(r) =r~ 'r'-~ 'dr'.ui (nl ~ ll)v4f r

Then we obtain from q.mE. 36a)

„i nl —+li, L),t 2(nl~ lip 2, int (nl —+ li, L)+f2,,„i(w, ,„are defined as follows:where f2,;„t, and |2,.„i are e

K; i(nl~li, L)C(nl-+li, L)

("')v

K, i(nl~li, L)C(nl~li, L
t-...,( l l„I.)=—

f'2, ;„i(nl-+ li, L)—=—

In Eqs. (44) and (45), we have

+in'= u, '(nl)i 4f'G;.„(r)dr, (46)

uo'(nl) n4f Ge~t (r)dr, (47)

so that fcf. Eq. (34)j
(48)K=K;„,+K, t, .

~ . t, and the total i 2 are listed in
h h t f.,(tot 1)Tables III and IV. It is seen t a
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III. CALCULATIONS OF y„AND R

In this section, we will present the results of the
calculation of the quadrupole antishielding factors"

and E. for several ions. ' We have obtained improved
values of the ionic factor y„ for the following ions:
Al'+, Cs+, I, Pr'+, and Tm'+. As concerns the atomic
correction term E, we have obtained values pertaining
to the 4f electron in the Pr'+ and Tm'+ ions.

The calculation of y„proceeds in the same manner as
described in several previous publications. ' For Cs+
and I, the Hartree-Fock wave functions obtained by
Freeman and Watson were used. For Pr'+ and Tm'+,
we have employed the Hartree wave functions of
Ridley. " T'he eBect of the radial modes of excitation
el —& / was obtained by solving the equation

d' l(l+1)
+ +Vo—&o ur'(nl-+ l)

r

1
=up'(nl) ——,(51)

-r r nl-3 3

where the effective values of Vo—Eo are obtained from
the unperturbed wave function up'(nl) by means of
Kq. (10).The integrations of Eq. (51) were carried out
by means of the Brookhaven IBM-7094 computer.
The solution ur'(nl~l) represents the effect of the
distortion of up'(nl) due to the potential produced by
the nuclear quadrupole moment Q, namely,

Vo = —QPso(cos8)/ro (52)

in Rydberg units; here Q and r are expressed in units
c~' and @II, respectively.

' A preliminary account of this work has been given in Bull.
Am. Phys. Soc. 9, 14 (1964).

corresponds to a small antishielding g's(0) for both
Pr'+ and Tm'+. Thus, in view of the previous results
for o.p(direct), the total value of o.s including exchange is
positive, corresponding to shielding. The calculated
values are as follows:

o.s(Pr'+) =0.678—0.075=0.603, (49)

o.p(Tm'+) =0.534—0.050=0.484. (50)

The preceding results are in good general agreement
with the experimental values. Thus, Barnes et ul. '
have obtained the following results: 0-2——0.71 for Tm'+
in thulium ethyl sulfate, and 0&——0.41 for Tm'+ in
thulium oxide. Our result r2 ——0.48 is in good agreement
with an average of these two values. Moreover, Wick-
man and Nowik' have obtained 0-2 ——0.69 for the Dy'+
ion in the ethyl-sulfate lattice. In addition, these
authors have presented good evidence (partly from
data of Blok and Shirley) that a& decreases with in-
creasing number of 4f electrons. We have obtained a
similar result from the present calculations, namely, an
appreciable decrease of o-2 in going from Pr'+ to Tm'+.

Tznzz V. Values of 7„(nf -+ l) for several iona. For AP+, the
various terms of 7„(ang) are given in the text /see discussion
preceding Eq. (54)j.

Ion

v~(2P ~P)
v. (3P P)
v (3d -+d)
v (4P P)
v~(4d ~ d)
v (5P ~P)
v (ang)
v„(total)

Alg+

—2.82

+0.46
—2.36

Cs+

—0.266
—1.662
—0.360
—9.99
—2.89

—90.25
+2.9

—102.5

—0.280
—1.775
—0.391

—10.78
—3.54

—124.85
+32

—138.4

Prg+

—0.243
—1.545
—0.322
-8.81
—2.83

—69.7
+2.5

—80.9

Tmg+

—0.196
—1.175
—0.237
—6.79
—2.18

—67.2
+25

—75.3

The resulting contribution to y„ is given by

7„(nl~ l) = C()&'& up'sr'(nl ~ l)r'dr, (53)

where Cgri'&=48/25 for np-+ p, and 16/7 for nd ~ d.
The term 7„(ang) due to the angular modes of excita-
tion, el~l~2, is obtained by using the Thomas-
Fermi model, as discussed previously.

The resulting values of y„are given in Table V. The
value —102.5 for Cs+ is appreciably smaller in magni-
tude than that previously obtained (—143.5) using
Hartree wave functions. ' The difference is due to the
inclusion of exchange in the Hartree-Fock wave func-
tions, which contracts the outermost parts of the elec-
tron density, in particular for the 5p electrons. A
similar difference has been previously noted for Rb+
(7„=—47.2 as compared to —70.7 without exchange). ' '
For Pr'+ and Tm'+, the present values of y„are es-
sentially the same as those previously published in
Ref. 8. We have now obtained y„——81 for Pr'+ and
7„=—75 for Tm'+, showing that ~7„~ remains es-
sentially constant in going through the rare-earth region,
although there may actually be a small decrease with
increasing Z from Pr to Tm.

For Al'+, we used the Hartree-Fock wave functions
of Froese. " The results are as follows: 7„(1s~d)
=0.0530, 7„(2s—& d) =0.1744, 7„(2p -+ f) =0.2352,
giving a total 7„(ang) =+0.463. The radial term
7 (2p —+ p) has the value —2.821, so that the total
P~ 1S

7-(Al'+) =7-s+7-(2p ~ p)
=0.463—2.821= —2.358. (54)

The term 7„(1s—+ d) was obtained from the expression
for hydrogenic wave functions, p namely, 7„=(p)Z, ',
where Z, is a suitable effective nuclear charge (Z.—12.6)
The angular terms 7„(2s~d) and 7„(2p~ f) were
calculated by integrating the corresponding inhomogen-
eous equation:

d' lr(it+1)
+ +Vp Ep sr'(nl —+lr)—

dr r =u, '(nl)/r', (55)
"C.Froese, Proc. Cambridge Phil. Soc. 55, 206 (1957).
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TAm, E VI. List of the values of y„and n, obtained by direct
solution of Kq. (51) for 7„and Eq. (8) fora~. The notation (H)
indicates that the unperturbed wave functions No'(rd) were
Hartree functions. In all other cases, Hartree-Pock wave func-
tions were used for the No'(al). The superscripts (a-f) give the
reference to the paper in which the calculation of y„or a~ was
carried out.

Ion

H
He
Li+
Q e2+
8+
p-
Na+
AP+
Cl
K+
Mn'+
I"e3+
Cu+
Ga3+
Br
Rb+
Ag+
I
Cs+
Pr3+
Tm'+

+1.131c
+0.424'
+0.263c
+0.189c
+0.768(H)'
22 53e
4 56c d

—2.36'
—56.6a

17 32.,d

—11.37d—9.14d
—15.0'
—9.50—123.0e

—47.2e
—34.9d

—138.4'
—102.5'
—80.9(II)'—75.3(H) '

o, (A')

66.5b
0.0993b
473X10 '"
6.37X10-4b

0.0634c

13.77b
0.733b

1,280b

2.99(H)s

7.80(II)b
1.71(II)'
0.724(II) '

a Reference 9.
R. M. Sternheimer, Phys. Rev. 10'F, 1S65 (1957).

e R. M. Sternheimer, Phys. Rev. 115, 1198 (1959).
d Reference 20.
& Reference 8.
& This paper.

where nl —+ lr ——2s ~ d or 2p ~ f, and uo'(el) is the cor-
responding unperturbed wave function (2s or 2p). The
resulting terms of y„(ang) are given by

TAm, E VII. Values of quantities involved in the calculation of
the atomic shieldin factor R for the Pr'+ and Tm'+ ions. The
values of F and (r ' are in units air '.

Ion

~ang
~rad
~total
(r ')4r
Rang
~rad
R(total)

1.585—0.883
0.702
5.369
0.2952—0.1644

+0.1308

Tm3+

2.890—1.223
1.667

12.86
0.2247—0.0951

+0.1296

electrons for Rb+(4p) and Cs+(Sp), the corresponding
values of o., may be appreciably too large. The same
comment probably does not apply to Pr'+ and Tm'+,
where the binding of the outermost (5p) electrons is
tighter, so that the inclusion of exchange would not
contract the 5p wave function by a large amount. In
Table VI, the notation (H) indicates that Hartree wave
functions were used for uo'(el), and the superscript
(a-f) denotes the reference in which the value of y„
or n, was calculated.

In connection with the perturbed wave functions
&r'(el~ l) for the rare-earth ions Pr'+ and Tms+, we
have also obtained the values of the atomic shielding
fa,ctor R for the case of a valence 4f electron. The
Hartree-Fock wave functions of Freeman and Watson
were used for m4f'. The results indicate a net shielding
of 13%%u~, i.e., 8=+0.13 for both Pr'+4f and Tm'+4f.
The various terms which enter into the calculation of R
are listed in Table VII. The notation is essentially the
same" as in Ref. 21 (see, in particular, Table III). Thus
we define

y„(ul —+ lr) =Cu, &" uo'sr'(el ~ l,)r'dr, (56) P-.==b-./ ')4f angV4f 1 & (5'I)

where Cu, t"=8/5 for 2s —+ d, and !2/25 for 2p~ f.
In connection with the preceding results for Al'+

and the values of y„ for Cs+, I, Pr'+, and Tm'+, as
given. in Table V, it seems useful to collect all of the
values of y„(calculated by the present numerical
method) into a single table. Such a table has been
previously published" in Ref. 20. The present table
includes these earlier results, as well as those obtained
in Ref. 8 and in the present work.

In Table VI, we have listed all of the values of y
obtained up to date (altogether 21 ions). Except for
8+, Pr'+, and Tm'+, the wave functions used in the
calculations were Hartree-Fock functions. Since the
quadrupole polarizabilities e, are closely related to p„,
and since values of n, cannot, in general, be obtained
experimentally, so that one has to rely on calculations,
we have also listed the values of o., when they are
available (for 12 ions). In the calculations of n„ the
zero-order wave functions No' were Hartree-Fock func-
tions in all cases, except for Rb+, Cs+, Pr'+, and Tm'+.
Thus because of the loose binding of the outermost p

"R.M. Sternheimer, Phys. Rev. 130, 1423 (1963).

Prad= (yrsd/r )4f grad&4f ~ d~ ) (58)

where y,„s(r) ~and y„d(r) are the effective potentials
(times r') due to the induced moment (divided by the
nuclear Q) for the angular and the radial modes of ex-
citation of the core, respectively. Thus,

v-:()=-
Q- o

Q;,,„sdr'+r' Q;,,„sr'—'dr', (59)

I
v-d(r) =-

Q- o

Q; „ddr'+r' Q; „dr' 'dr' . (60)
r

In Eqs. (59) and (60), the induced density Q, ,„,is ob-
tained from the Thomas-Fermi model' "":

Q',-.= (3/1o) Q(»)'"(~/r),
where X and x are the Thomas-Fermi function and
variable, respectively; x= (Z'~'/0. 8853)r, with r in
units aI~.

"R.M. Sternheimer, Phys. Rev. 105, 158 (1957).
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It has been shown in Refs. 3 and 14 that the Thomas-
Fermi calculation tends to overestimate the actual
value of R,„, by about 50%. Thus, it was found for
both Cl and Cs+ that when the perturbed wave func-
tions ni'(el —& l&2) are calculated, the resulting values
of R,„,are smaller by a factor of 1.5 than those ob-
tained with the Thomas-Fermi induced moment density
of Eq. (61). For this reason, in obtaining the values of

in Table VII, the Thomas-Fermi result was
divided by 1.5, i.e., eftectively we used a coe%cient
(1/5) in Eq. (61), instead of (3/10).

The radial density Q, „g is obtained from the
expression

where the sums extend over the occupied p and d shells
of the ion core. The perturbed wave functions tit'(rll ~ /)
are obtained by means of Eq. (51).""

Finally, in terms of the integrals I' „, and F„~ of
Eqs. (57) and (58), the shielding factor R is given by

where
R=Rsng+Rras r

Rang= I'sag/(r )4/ r

R,sa—= I'.sa/(r ')4r.

(63)

(64)

The value of (r g)4r)= Jq" tt4f"r gdr j is 5.37ari g for
Pr'+ and 12.86a~ ' for Tm'+.

It is seen from Table VII that in each case I',„,
predominates over I'„~, so that the net effect is a
shielding of the nuclear moment Q. As is usually the
case Lcf. Table I of Ref. 21$, the radial modes produce
some antishielding, but since the 4f electron density is

"Tables of the perturbed wave functions v1'(nt ~ t') obtained
in connection with the present calculations (Sec. III) are given
in a supplementary paper "Wave Functions for Quadrupole
Antishielding Factors. " This paper also contains the wave func-
tions pertaining to Sec. IV {second-order antishielding for the
Cl ion) and Sec. Vl (hexadecapole antighielding factor ri for
the Cs+ ion). The supplementary paper has been deposited as
Document No. 8801 with the ADI Auxiliary Publications
Project, Photoduplication Service, Library of Congress, Wash-
ington 25, D. C. A copy may be secured by citing the Document
number and by remitting $3.75 for photoprints, or $2.00 for
35-mm microfilm. Advance payment is required. Make checks
or money orders payable to: Chief, Photoduplication Service,
Library of Congress.

"A complete list of the perturbed wave functions which have
been obtained in previous calculations of antishielding factors
and polarizabilities (Refs. 3, 5, 6, 8, 9, 12, 20, and 21) is given in
a supplementary paper "List of Perturbed Wave Functions
Pertaining to the Calculation of Quadrupole Antishielding Factors
and Electronic Polarizabilities of Ions. "This supplementary paper
has been deposited as Document No. 8799 with the ADI
Auxiliary Publications Project, Photoduplication Service, Library
of Congress, Washington 25, D. C. A copy may be secured by
citing the Document number and by remitting $1.25 for photo-
prints or $1.25 for 35-mm microfilm. Advance payment is
required. Make checks or money orders payable to: Chief, Photo-
duplication Service, Library of Congress. .

-48
Q j,raa(r) =Qr' —P u&'(up)vi'(up ~ p)

25 n=2

4

+—g ug'(ed)ti'(nd —+ d), (62)

relatively internal (and mostly inside 5p), the magni-
tude of F„~ is smaller than the angular term F,„,
which always leads to shielding.

It should be emphasized that the calculations of
Table VII do not include the exchange terms between
v4f and the core excitations. Nevertheless, we may note
that a value of R of the order of 0 to +0.1 (shielding)
is indicated by the experiment of Barnes et a/. , ' who
have obtained R=+0.11 for Tm'+ in thulium ethyl
sulfate and R= —0.01 for Tm'+ in Tm~03. Moreover,
from the data of Cohen'4 for Fe2Tm, Barnes et al. '
have deduced a value of R=+0.20. Thus, it can be
concluded that our results for R are in reasonable
agreement with experiment, provided that the exchange
terms can be neglected. 2'

It should be noted that some of the experimental
papers give a somewhat larger value of R than the
results quoted above. Thus, Hufner et al.26 obtain
R=+0.3 for erbium metal, and they also give references
to earlier work in which a value R 0.3 rather than

0.1 was deduced. If the value E. 0.3 would be the
more nearly correct one, the difference between our
calculated result and the experimental value couM be
due to small inaccuracies of the zero-order (Hartree)
wave functions or perhaps the neglect of exchange
e6ects. Another possibility is that the reduction factor
1.5 which has been applied to the Thomas-Fermi result
for Q;,, g $Eq. (61)]is too large. In this connection, we

may remark that if we would apply no correction to the
Thomas-Fermi result, we would obtain: (1) for Pr'+:
I', g=2.377aH ', R, ,=0.4427, and R(total) =+0.2/82;
(2) for Tm'+: I',„g=4.335ari ', R,„g=0.33/0, and
R(total) =0.2419 (see Table VII). The present modified
results for R(total)=+0. 25 would be more nearly in
agreement with the value of Hufner et a/. " It appears
that at present, both the experimental and theoretical
situations are somewhat unresolved as to the exact value
of R for the4f electron (in the range of +0.1 to+0.3).
However, the important point is that almost all of the
relevant experiments definitely indicate the presence of
a shielding factor (1—R), and therefore provide evi-
dence for the existence of the shielding effect (1—R) in
the rare-earth ions, in good general agreement with the
author's calculations.

It may be noted that the values of R, for Pr'+
M R. L. Cohen, Phys. Rev. 134, A94 (1964). See also S. Hiifner,

M. Kalvius, P. Kienle, W. Wiedemann, and H. Eicher, Z. Physik.
175, 416 (1963).

~' In two recent papers by M. N. Ghatikar, A. K. Raychaudhuri,
and D. K. Ray, (to be published), calculations of y, R, and 0.~
for Pr'+ and Tm3+ have been carried out, which are very similar
to those of Secs. II and III of the present paper, and use essentially
the same method as that of Ref. 3 (direct solution of the inhomo-
geneous wave equation). The results for y„and R are in close
agreement with those obtained here. For 0-2, the calculation of
Ghatikar et al. differs slightly from ours, in that it contains the
(small) effect of the shielding by the inner shells (n (5), but does
not include the exchange term g2 which has been calculated in
the present work. I wish to thank Dr. D. K. Ray for sending me
an advance copy of his papers."S.Hiifner, P. Kienle, W. Wiedemann, and H. Eicher, Z.
Physik 182, 499 (1965).



150 R. M. STERN HEIM ER

and Tm'+ given above are compatible with the result
for Eu'+ published by the author in 1950 (see the 6rst
paper of Ref. 3). Thus, for Eu'+, we have previously
obtained I',„g=0.3X9.29= 2.787aII 'using the Thomas-
Fermi method fcf. Eq. (61)). The value for I',„,was
deduced using a 4f wave function calculated by means of
the Thomas-Fermi potential, giving (r ')4f 6.88—ayI '.
The result is Rz ——2.787/6. 88=0.405. This may be com-
pared with the value obtained by linear interpolation of
the above results for Pr'+ (Z=59) and Tm'+ (Z=69).
For Eu'+, Z= 63, one obtains E,„,=0.402, in very good
agreement. Since the same method was used in both
cases to obtain the induced moment density Q;,,„„the
only possibility of a difference between the two results
would arise from the use of slightly different radial
wave functions for the 4f electrons. Indeed, the
Thomas-Fermi wave function used in Ref. 3 gives
(r 3)4y= 6.88a& ', as compared to 8.37aII ' deduced by
linear interpolation of the wave functions used in the
present calculations (see Table VII). Thus, although
the present wave function is appreciably more internal,
the results for R,„,are very insensitive to such a change
of the 4f wave function.

Finally, we wish to point out that when second and
higher order effects on the values of I',„,are included, "
the effective value of R is reduced somewhat (by about
30'Po). Thus, as shown in Ref. 27 (see Table II), the
inQuence of the higher order shielding effects reduces
E,„g for Eu from 0.405 to 0.292. This effect acts in the
same direction as the apparent inadequacy of the
Thomas-Fermi method in obtaining the first-order
induced moment density, discussed above, which also
leads one to decrease the Thomas-Fermi values of
R,„~ by an appreciable factor ( 1.5).

In connection with the present calculations of the
atomic shielding (or antishielding) factor R, we wish
to point out that the existence of this 'correction term
has also been strongly supported by two types of recent
e~peri~ents: (1) In a series of papers, Murakawa" has
shown that the factor (1—R) is required in order to
make the values of Q obtained from different spectro-
scopic levels consistent with one another, and also with
values of Q obtained by Coulomb-excitation measure-
ments. Murakawa defines a parameter 6 by the equa-
tion: 1+d, = 1/(1 —R), so that 6=R/(1 —R) and
R=6/(1+ 6). The spectroscopic hfs measurements
were done for the following nuclei: As ', La", Lu' 5,
Ta"' Os"' and Hg"' In particular, for the elements
in the neighborhood of I-u (Z=71), Murakawa Ands
that for the 6p electron, there is a weak antishielding
6= —0.1 (R= —0.11), in good general agreement with
the results of Refs. 14 and 21. For the configurations
Sd, 5d', 5d', and Sd6s, the experimental hfs values
lead to 6=—0.3 (R=—0.43) for the Sd electron,

27 R. M. Sternheimer, Phys. Rev. 84, 244 (1951)."K. Murakawa and T. Kamei, Phys. Rev. 105, 671 (1957);
K. Murakawa, ibid. 110, 393 (1958);J. Phys. Soc. Japan 16, 2533
(1961);17, 891 (1962).

whereas, for the configurations Sd'6s of TaI and Sd'6s
of OsI, the results indicate a strong shielding of the Sd
electrons. At present, our knowledge of the Hartree-
Fock wave functions in this region of the periodic table
seems to be insufficient to enable one to make a reliable
calculation, which could be compared with the results
for A(5d") and A(Sd"6s).

(2) In the papers of Refs. 14 and 21, the author has
predicted the existence of a weak antishielding (of the
order of 20'Po) for the excited (p) states of the alkali
atoms. Measurements of the hyperfine structure of the
excited states of rubidium 5'P»&, 6'Pef&, and 7'P3/2 by
zu Putlitz, Schenck, and Schussler, "using the method
of optical double resonance, have confirmed the exist-
ence of the antishielding correction 1/(1 —R). Upon
using the values of R given in Ref. 21, namely, R(5p)
= —0.271, R(6p) = —0.209, and R(7p) = —0.183 (by
extrapolation), the values of Q(Rb") and Q(Rb") as
obtained from the Sp, 6p, and 7p states are brought
into better agreement with one another than if the cor-
rection 1/(1 —R) were not applied. This result con-
stitutes indirect evidence for the existence of E and for
its calculated variation with the principal quantum
number n More. over, the experimental value of Q is
reduced «om 0.&4X&0 " cm' to 0.&&X&0 " cm' f«
Rb'~ and from 0.29X10—24 cm2 to 0.24X&0 " cm'
for Rb" by making the correction for the antishielding
effect.

It should be noted that besides the quadrupole
shielding and antishielding factors y and 8, there exist
also shielding terms associated with the magnetic
hyperfine structure. These terms arise from the ex-
change interaction of the core with the valence electron,
which leads to differences between the core wave func-
tions pertaining to a given shell (nl), but having di8'er-
ent magnetic quantum numbers" m~ or different spin
orientations" "m, . A comprehensive review of these
magnetic exchange polarization effects has been given
by Freeman and Watson. "

IV. SECOND-ORDER ANTISHIELDING FOR
THE Cl ION

We have obtained an estimate of the second-order
effect for the antishielding factor y„of the CI ion. It
has been found that the effect of taking into account the
direct (nonexchange) terms of the electrostatic inter-

' G. zu Putlitz and A. Schenck, Z. Physik 183, 428 (1965);
H. A. Schussler, ibid. 182, 289 (1965);H. Bucka, H. Kopfermann,
M. Rasiwala, and H. Schussler, ibid. 176, 45 (1963). See also the
review article of G. zu Putlitz, Ergeb. Exakt. Naturw. 37, 105
(1965).' R. M. Sternheimer, Phys. Rev. 86, 316 (1952)."E.Fermi and E. Segre, Rend. reale accad. naz. Lincei 4, 18
(1933);Z. Physik 82, 729 (1933).

'2 G. F. Koster, Phys. Rev. 86, 148 (1952); A. Abragam, J.
Horowitz, and M. H. L. Pryce, Proc. Roy. Soc. (London) A230,
169 (1955).

"A. J. Freeman and R. E. Watson, in Treatise on 3fagnetism,
edited by G. Rado and H. Suhl (Academic Press Inc. , New York,
1965), Vol. IIA, p. 167.
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d' l(l+1)
+ +Vp Ep vi'(n—l ~ l)

dr r2

1=up'(nl) ——,(66)
-r r nl-3 3

where the effective (Vp —Ep) is obtained from Eq. (10).
Moreover, we have the orthogonality condition

up'(nl)ni'(nl~ l)dr=0. (67)

The second-order calculation is carried out by taking
Q+Q;„~ for the perturbation instead of Q, where Q is
the nuclear quadrupole moment and Q;„q is the (first-
order) induced moment. This means that instead of Eq.
(66) we are led to solve the following equation:

action in second order is to reduce the value of ~y„~
from 57.1 to 45.9. The reduction arises from the shield-
ing e6ect of the angular modes of excitation of the Cl
core and the shielding due to the (radial) 2p —+ p and
3p —& p modes in the region near the nucleus. "

We will erst consider only the contributions of the
2p -+ p and 3p —+ p perturbed wave functions. In first
order, p one obtains from the wave functions nt'(2p ~ p)
and tti'(3p~ p) the values y„(2p —& p)= —1.51 and
p„(3p —& p)= —57.0, respectively. Here the functions
mi' (nl ~ f) represent the perturbation due to the nuclear
quadrupole moment. The ei'(nl —&z) are determined
by the equation:

TAni. E VIII. Values of y„(2p ~ p) and i„(3p—& p) which
enter into the calculation of the second-order effects for Cl .
For comparison, the values of y in the first row of the table are
obtained from the usual erst-order calculation. The column
y„(rad) gives the sum of the 2p —+ p and 3p —+ p terms. In the
last column, y„(total) =p„(rad)+p„(ang), with the angular
term p (ang) =+1.4. The quantities f„, y„, and y„(() are
delned in the text.

Term

+00

+00

v-(S)

—1.51
—1.48
—1.404
—3.58

—57.00
—50.57
—45.89
—48.27

y„(rad)
—58.51
—52.05
—47.29
—51.85

~„(total)
—57.11
—50.65
—45.89
—50.45

effect of the 2p —& p and 3p —+ p modes near r =0, which
results in values of y„~&0 in this regicm.

We note that the present calculations of both the
first- and second-order effects were carried out by means
of the same Hartree-rock wave functions (to give a
reliable comparison), namely, the functions originally
calculated by Hartree. '4 The various terms p„(np ~ p),
y„(np ~ p), and y„($, np —+ p) obtained in the present
calculation (see below) are listed in Table VIII.

As the next step in the calculation, we can include the
shielding effect of the angular modes (li ——j&2), as ob-
tained from the function 7, s(r) LEqs. (59) and (61)$.
We are thus led to obtain the solutions of the following
equation:

d' l(l+ 1)
+ +Vp Ep vt'(nl ~ l)—

lr r

d' l(l+1)
+ +Vp Ep Bi'(nl~ 3)—

dr2 r2

=up'(nl)
grad Pang j- grad Pang

(71)
r' r'

= up'(nl)

where y„p is defined by Eqs. (60) and (62); thus
y„pQ/rz gives the potential due to the induced moment

Q;,p, „p arising from the radial modes (2p —+ p and
3p —& p). The modified values of the antishielding
factor y„(nl —+ l) are obtained in the same manner as
the first-order p„(nl —+ l), namely,

The resulting values of ~y„(nl ~ 1)
~

are again decreased,
as compared to ~y„(nl ~ l) ~. We have obtained

f„(2p +p)= ——1.404; f„(3p~p)= —45.89, (71a)

giving a total y„(rad) =—47.29. Upon including an
angular term'' y„(ang)=+1.4, we obtain f„(total)
= —45.9. I'or comparison, the first-order calculation'
gives

y„(total) = —57.0—1.51+1.4= —57.1. (72)

y„(nl ~ l) =Ctii" up'zi'(nl ~ l)r'dr .
Thus, the reduction in second order due to shielding

(69) elfects is

In the present case, Cii&" =48/25.
The inward integration of (68) can be carried out by

means of the IBM-7094 program, in the same manner as
for Eq. (66). We thus obtain

y„(2p —+ p) = —1.48; y„(3p ~ p) = —50.57, (70)

giving a total y„(rad) = —52.05, as compared to
—57.0—1.51=—58.51 for the 6rst-order calculation.
The decrease of ~y„(rad)

~

is due to the shielding

~y„(total)/y„(total) i
=45.9/57. 1=0.80. (73)

As a check on the calculation of y„(rad), we have ob-
tained this quantity by an alternative method, namely,
by considering the perturbation due to an external
charge. The corresponding equation for the perturba-
tion ui'(np -+ p) is given by Eq. (8) in first order. The
appropriate equation pertaining to the second-order

34 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London),
A156, 45 (1936).
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48
5-a=—Z

25 n=2 — ~

us'(rsp)ur'(Np -+ p)r' 'dr'

r

+r—' us'(esp)ur'(rr p ~ p)r"dr' (75)
0

The function $„s is analogous to y„q used above. Thus,
P„a represents the effect of the quadrupole distortion
induced in the 2p and 3p shells (by the external charge)
on the total field gradient acting on either 2p or 3p.

The resulting contribution to p„ is given by

48
y ($, np ~ p) =— us'(rsp)ur'(esp ~ p)r 'dr. (76)

25 0

We thus obtain

y„((, 2p —& p)= —3.58. y„($,3p-+ p)= —48.27. (77)

The total y„($,rad) = —51.85 is in very good agreement
with the value —52.05 (see Eq. (70)j previously ob-
tained from the functions Hr'(np -+ p). This comparison
provides a reliable check on the accuracy of the
calculations.

The present calculations of second-order effects for
Cl were carried out partly in order to provide a com-
parison with a paper of Watson and Freeman, " in
which they have obtained a total y ——85 for Cl—using
the unrestricted Hartree-Pock method. In order to ob-
tain a more accurate comparison with this result, we
have recalculated the first-order y„(3p —& p) using the
same (analytic Hartree-Fock) wave function as was

employed by Watson and Freeman" (WF), instead
of the (numerical) function calculated by Hartree, "
as was done above. This gives y„(3p ~ p) = —68.4 for
the KF function, as compared to —57.0 obtained above.
The difference between these two values is due to the
fact that the WF 3p function is slightly more external
than that of Hartree. If we make the reasonable assump-
tion that the second-order shielding effects due to the
angular and radial modes decrease ~7 (WF, 3p ~ p) ~

by approximately the same factor as for the wave func-
tion of Hartree, namely, 0.80 LEq. (73)j, we obtain:
y„(total, WF function) ——68.4X0.80= —54.7, which
is still considerably smaller in magnitude than the
result of Ref. 35. The disagreement is by a factor of
85/55= 1.55. At present, we have no definite explana-
tion of the discrepancy, especially since for Cu+, the
value of Y„obtained by Watson and Freeman" (—17)

'6 R. K. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963)."R.E. Watson and A. J. Freeman. Phys. Rev. 123, 521 (1961).

perturbation is as follows:

d'ur' l(3+1)
+ +&o—&o ur'

df J
=us 9'(I 5 d) ("'(1 8 &)) &3 (74)

where $„q is given by

is in close agreement with that of Sternheimer and
Foley' (—15) using the conventional first-order pertur-
bation theory. There is, of course, the possibility that
the discrepancy for Cl is due to the presence of ex-
change" and orthogonalization effects which are in-
cluded in the unrestricted Hartree-Fock method of
Ref. 35. In this connection, we wish to call attention
to our previous calculations of Ref. 27 Lsee Eqs. (68)—
(72)j, in which the effect of including the second-order
terms was evaluated in connection with the atomic
shielding factor R for Cl. In this work, it was shown
that besides the direct Coulomb terms (there denoted
by P), which lead to a decrease of

~
E~ (see the calcula-

tion for Cl 2s —+ d), there may exist a noticeable effect
due to the exchange terms acting on the radial excita-
tions 2p-+ p and 3p —& p. This effect goes in the direc-
tion of increasing the values of ~sr'(2p~ p)~ and
~rr'(3p~ p) ~

and, in the present context, it would
probably enhance the values of ~7„(C1 ) ~, although no
specific calculations have been carried out.

In connection with the preceding discussion, it
should be stressed that the difference between the two
calculated values of y„(Cl ) is mainly of academic
interest, since the actual 3p wave function of the Cl
ion in a solid lattice will be appreciably different from
that in the free ion. Thus, in view of the large radial
extent of the Hartree-Fock free-ion 3p wave function,
we can expect that the wave function in the solid will
be appreciably more internal, leading to a decrease of
~y„(CI ) ~. Hence, the preceding calculations for Cl
(and for negative ions in general) give values which are
only of limited accuracy, perhaps leading to an over-
estimate by -50'P~. It should be noted that such a
situation does not arise, in general, for the positive ions,
which are smaller in extent, and more tightly bound.
This point has been previously emphasized by Burns
and Wikner. "

V. EQUIVALENCE OF THE SECOND-ORDER
TERMS OF y„AND y„($)

In connection with the calculations of Sec. IV con-
cerning the second-order terms of y„, we wish to give
the formal proof that the two ways of calculating p
(by considering the internal or the external perturba-
tion) are completely equivalent for the second-order
terms of y . The fact that the calculations are equival-
ent for the first-order terms has been previously shown

by Sternheimer and Foley. "It should be noted that on
physical grounds, one expects that the equivalence is
complete, i.e., that it is correct to all orders of the
nuclear quadrupole and the interelectronic perturbation.

3'7The formal treatment of exchange for the Hartree-Pock
equations with a perturbing Geld has been given by L. C. Allen,
Phys. Rev. 118, 16'? (1960); A. Dalgarno, Proc. Roy. Soc.
(London) A251, 282 (1959); and S. Kaneko, J. Phys. Soc. Japan
14, 1600 (1959)."6.Burns and E. G. Wikner, Phys. Rev. 121, 155 (1961);G.
Burns, ibid. 115, 357 (1959). See also R. Bersohn, J. Chem.
Phys. 29, 326 (1958).
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(108), and (109) gives bi+a» on the left-hand side,
and the value 8.53 on the right-hand side fcf. Eq.
(110)j. In order to make the set (107)—(110) internally
consistent, we change the value of (109) from +2.07 to
+2.27. This change by 0.20 is well within the errors of
the calculations, and corresponds to the small difference
between the calculated values of y„(rad)(= —52.05)
and y„((,rad)(= —51.85) .

With b2+u2~ ———2.27, Eqs. (107)—(110) give

a» ——0.03—bi, a»= 8 73 .bi,—b2= —2.30+b&. (111)

It appears from Eq. (107) that a» and bi are probably
both small. These terms represent the change in
7„ for the 2p shell as calculated from the nuclear
perturbation, due to the effect of the moment induced
in the 2p and 3p shells, respectively. It would be un-
reasonable to assume a large shielding due to 2p, i.e.,
a large positive a», because according to Eq. (107),
this would force us to assume a large negative bj
=Ap„,»,», contrary to the fact that in the region of the
2p charge distribution, the 3p induced moment is
shielding, i.e., b~&0, rather than antishielding.

The simplest assumption is that both b~ and a»
are very close to zero. Upon taking b&

——0, we obtain
from Eq. (111) rr» ——0.03, a»=8.73, b2 —2.30. ——

The rather large positive value of a»=4y„,»,»
corresponds to a shielding of the 3p electrons by the
part of the 3p -+ p perturbation which is internal (close
to the nucleus), and which we know to be shielding' "
(Ne, »vr, » ~)0). If this term would act alone, it
would change y„(3p ~ p) = —57.00 to —57.00+8.73
= —48.27. On the other hand, the 2p shell is sufficiently
inside the 3p distribution that the effect of the 2p
induced moment on 3p is to produce some antishielding
(Ne, »vi, g~ ~(0 in the region outside the 2p wave
function maximum). This effect, here denoted by
b2 Ay„, 3„,2„, is ——therefore negative (i.e., b2 —2.30). ——
Thus, one obtainsy„(3p~p) = —48.27—2.30= —50.57.
Alternatively, b2 represents the extra antishielding of
the 2p electrons by 3p when the calculation is done by
considering an external charge. This effect is numerically
more important than y„(2p —+ p) itself (—2.30 as
compared to —1.51). If one would assume that it acts
alone (which it essentially does, since

~
hp„&„,»($) ~

is
very small, (0.1), one would obtain y„($, 2p —& p)
= —1.51—2.30=—3.81,as compared to the value calcu-
lated directly, namely, —3.58. The effect of Ap„»»($)
has been previously pointed out by Watson and Free-
man. " However, our value of ~Ay„,» 3„($)~

is con-
siderably smaller than that of Ref. 35 (2.30 as compared
to 10).

VI. THE HEXADECAPOLE ANTISHIELDING
FACTOR q„

We have previously obtained values of the anti-
shielding factor' q„ for a possible nuclear hexadecapole
moment, for the Cu+, Ag+, and Hg++ ions. The cal-

with the orthogonality condition

No'(4d)t t, rr'(4d ~ d)dr=0. (114)

The resulting ii„(4d~ d) is obtained from

ri (4d ~ d) = (80/63) No'(4d)vi, Ir'(4d ~ d)r4dr (115).

As in the work on y„ for Cs+, we used the Hartree-Pock
(4d) wave function obtained by Freeman and Watson. r

The result is ri„(4d~d)= —662.3. If one assumes
that ri„(3d~ d) is of the order of —10, one thus ob-
tains for the total 4i„ for the Cs+ ion: ri„(Cs+)=—6'70.

This value is considerably less in magnitude than
the result for Ag+( —8050), the reason being that the
4d wave function is very much contracted as compared
to that for Ag+. This contraction arises from the fact
that the 4d electrons in Cs+ are relatively internal,
being located inside the main part of the charge dis-
tribution of the Ss and Sp electrons.

In connection with the question of the possible detec-
tion of a nuclear hexadecapole moment (HDM), we
wish to point out that it is likely that the nuclear
HDM can be considerably enhanced by collective
effects, in the same manner as the nuclear quadrupole
moments. There are two regions of the periodic table
with large (collectively enhanced) quadrupole mo-
ments. "The first region extends roughly from Pm"'
(Z=61) to Ir"i (Z= 77), while the second region starts
approximately at Ac"" (Z=89) and extends to the
highest Z values which have been investigated, in
particular, Am'4' and Am'4' (Z=95). In addition to
large collective effects, one requires, of course, that the
spin I of the nucleus be & 2 for the hexadecapole inter-
action to be measurable. In addition, if the experiment

"W. G. Proctor (private communication).
~ G. H. Puller and V. W. Cohen, Nuclegr Moments, Appendix 1

to NNclear Duta Sheets (Oak Ridge National Laboratory, 1965),
pp. 1-17.

culated values are as follows:

ri„(Cu+) = —1200; ri„(Ag+) = —8050;
ii„(Hg++) = —63 000. (112)

Since there has been some interest in doing an ex-
periment" using Cs, we have calculated g„ for the
Cs+ ion. The 4d —&d perturbation makes the pre-
dominant contribution. The appropriate equation for
ri&, &'(4d ~ d) is given by

d2 6
+ +I 0 +0 &1,ES (4d~ d)

dr' r'
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is done with an ionic crystal (rather than by an atomic-
beam method), one would like to have as large an
antishielding factor tt1„~ as possible. As shown pre-
viously in Ref. 5, one obtains a large value of ltd„i if the
outermost shell of the ion is a d shell.

In connection with the first region, Z=61 to 77, we
note that the 4d shell is already filled at Ag (Z=47), so
that it will be relatively internal in the region of the
rare earths. However, it should be pointed out that
for rhenium (Z=75), the 5d shell is at least half-filled,
the lowest configurations being 5d'6s' and 5d'6s. For
both Re" and Re"t the quadrupole moment is ~+2.6b
which is quite large (1b=10 " cm'). Moreover, the
spin I= ~ for both cases, which may make it possible
to observe a hexadecapole interaction, since the half-
filled Sd shell is expected to lead to a large

~
ii„~, perhaps

of the same order as that for Hg++, which differs from
Re in two ways which tend to compensate each other:
the number of 5d electrons is greater for Hg, by a
factor of 2, but on the other hand, the 5d electrons are
on the average more tightly bound than for Re.

In the second (actinide) region, the 5f shell is being
filled, and for americium, the ground-state configuration
is Sf"6s'6p'7s' The nuclear quadrupole moment is
+4 9b fo.r both Am"' and Am'4', with I=os in both
cases. Although the f electrons are not as effective in
producing a large

~
t1„~ as are the d electrons' (for the

same amount of binding), nevertheless the half-filled

Sf shell for Am may produce an appreciable anti-
shielding. We also note that for U23' with I=27, the
quadrupole moment is large (4.1b), and although
the ground-state configuration contains only three Sf
electrons plus one 6d electron, the U"' nucleus may still
be a good candidate for detecting a nuclear HDM,
possibly by an atomic-beam method.

Summarizing this discussion, we can state that in
addition to the nuclei suggested previously" for detect-
ing a nuclear HDM, namely Zn'~, Ge

&
In

y
Sb"'

and Sb'", which were chosen on account of the small
number of electrons outside closed d shells, it may
also be useful to consider nuclei in the lutetium-
rhenium region, as well as the actinide elements. In
each of these two classes of nuclei, the hexadecapole
moment is expected to be considerably enhanced by
collective effects.

VII. HYDROGENIC WAVE PUNCTIONS

In this section, we will obtain the values of
y„(nl —+l') for the case of hydrogenic wave func-
tions. It should be emphasized at the outset that these
results will be mainly of academic interest, since the
actual wave functions are considerably different from
hydrogenic functions (except for 1s, and possibly 2s
and 2p), so that the numerical calculations which have
been discussed above are required to obtain reliable
values of p„. Nevertheless, the hydrogenic results for

4i R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961).

y„(nl ~ li) = Cit, &'& gp'vy r dry (117)

where Cii, "'=8/5 for ns-+d or nd-+ s; and Cii, 's)

= 72/25 for np ~ f or nf +p. —
We have previously4' obtained the following results:

7„(1s~ d) =2/3Z, y„(2s -+ d) =4/3Z, y„(2p ~ f)
=48/25Z, and y„(3p —& f)= 78/25Z.

For the case of ns ~ d with n) 3 and np —+ f with
e)4, one encounters the dif6culty that the correspond-
ing unperturbed states ns and nd, or np and nf are
degenerate, and therefore the unperturbed functions
uo'(nli) already satisfy the homogeneous equation
corresponding to (116).As a result, Eq. (116) alone is
insufhcient to determine the function vi'(nl ~ li), and
an additional condition is needed.

In order to resolve this difhculty, we will consider the
case of 3s —+ d as an example. According to the usual
erst-order perturbation theory, any possible mixing
of 3s with 3d will depend on the matrix element of the
perturbation, namely, Ho —QPs(cos8)/r' be——tween
these two states. Thus, we are led to calculate the value

Ph)o. ,w= —
Q

0 0

uo(3s) LP o (coso)/r o'juo(3d) dr

&(singd8, (118)

where uo(3s) and uo(3d) denote r times the complete
wave functions for 3s and 3d, i.e., including both the
radial and the angular part. Thus, we have

uo(3s) =uo'(3s) Oo

uo" (3d) =uo'(Bd) O~s",

(119)

(120)

where the superscript re denotes the magnetic quantum
number eg of the 3d state considered. It is clear that
for the 3d state with m=0, the angular part of the
integral (118) will not vanish, since Jo Oo'OsoPs
&&sinedO= 1/(5)'i'. However, we found the rather

4' H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
93, 734 (1954).

y„, in particular, for the angular modes (l'=l&2),
may be of some interest, because they have led to the
discovery of a rather unexpected property of the radial
hydrogenic wave functions.

For the case of hydrogenic wave functions, the equa-
tions for ui'(nl~ li) and vi'(nl~ li) LEqs. (8) and
(51)7 can be solved analytically. 'o 4s In the present
work, we will obtain y„(nl —+ li) by means of the pertur-
bation vi'(nl —& li), for which the equation is as follows:

d' li(ii+1) 2Z Z'
+—vi'(nl ~ li)

dr' r' r rI,'

=uo'(nl)/r'. (116)

The resulting shielding factor y„(nl ~ li) is given by



TS FOR ioNSSHIELDING AND0 ANTI SH I EL DING EFFEC 157

surprising resu alt th t the radial integral is zero, i.e.,

zzo'(3s) uo'(3d) r—'dr =0.
analogous to Eqs. (125) and (126) holds for a wider
class of integra s.f

'
1 The complete statement of the

h 1't roperty is that the integralorthogona ity proper y
'

This property can be easily verified upon using the
expressions for Np'(3s) and zzp'(3d), namely, +nZZ', s = No'(nl)Np'(nl')r 'dr=0, (127)

2Z1/2
I ' 3s = Zr —Z'—r'+(2/27)ZPro)e "IP (122)

3(3)'"
1/24Z

zzo'(3d) = (Zr) Pe x"». -
81(30)"'

(123)

T eresu ih ult (121) implies that the perturbation Hq
s in firstd t I ad to an excitation of 3s to 3d states in roes no ea o

or er, an ered d therefore we must choose that so u ion
s the added(116) which is orthogonal to Np'(3d). Thus, the a

condition on e1 ig —+ 1
d' ' '( l~ l ) can be written as follows:

v, '(nl ~ 4)go'(n4)«=0. (124)

We wi now s owW 'll how that the condition (124) holds in
general for all cases where there exists a state e 1 w ic
is degenerate with the initial state ml.

To start with, it was found that an analogous
property to q. iiE . (121)holds for all n )3, that is, we have

provi e a s=,=2 3 . i—i'+1, where l)l'. A proof
of Eq. (127) has been given by Pasternack an

We will now obtain the value o y„s~
i take Z= i in the follow-simplicity of notation, we wi a

d
' t It will be shown below that all expres-ing derivations. wi

so that itsions or y„m ~f (nl-+i') are proportional to 1 Z, so a
na result b Z.wi on y e'll 1 be necessary to divide the fina resu y

I i~ iI)The dependence of the perturbed function vi (n
on Z will also be derived below.

In view of Eqs. (116), (121), and (122), the equation
satisfied by vi'(3s ~ d) is given by

d' 6 2 1)
+ + lvi'(3s ~ d)

r 9i
(1 2 2)+ l~ (128)

3r 27&

=-"3i '/' lt is easily shown that a solutionwhere A3, =-,
of Eq. (128) is given by

n '(ns)N '(nd)r 'dr=0 for n) 3. (125) 1

18)
'«&(3s ~ d) =A ep"i'l ——-r (129)

The result (125) can be easily verified for (4s,4d) and
(5s,5d) using the expressions for the corresponding
radial functions Np'(ns) and up'(nd).

F th d —+ s excitations, the situation is obviouslyor em
similar to that for ms~ d. Since accor ing to
there will be no mixing of Np'(ns) with the unperturbed

' ed, we must again impose the condition
(124) on the solution of Eq. (116), in whic now

Proceeding to the calculation of y„inp~,)4 would again have a mixing o e,sJ with se, wew
unless the corresponding matrix elemen i 1g y f
vanishes. In similarity to Eq. (118), the angular part
of the integral for (Hi)„„,„r will no e z
state nf with the same value of the magnetic quantum
number rn as the initial state (np). However, it is
easily verified that the corresponding radial integral
va,nishes in all cases (for all n). Thus, we find

We have used the additional superscript 0 for v1

d t th fact that this function is not yet
the actual solution, since it is not orthogonal to Np ( ),
as is required by Eq. (124). Thus we find, upon using
Eq. (123) for Np'(3d),

Hence the actual solution vi'(3s ~ d is given by

1
51 S~ 1'(3 ~d)=vi'"'(3s~d)+ No'(3d)

18(10)'Iz

1 p 1 1
e ""I 1—-r+ "

I (131)
9(3)'I& i 3 405 i

Finally, we obtain from Eq. ii7
No'(np)mo'(n f)r—'dr =0 (n) 4) . (126)

Hence, the supplementary condition of Eq.
~ ~ . ,124 is

again appropriate, in which n
'

h now l=i and l1=3.
I th manner for the perturbations nf ~ p,

l =1.we have the condition (124) with /=3 and

7„(3s—+ d) =- zzo'(3s)vi'(3s ~ d)r'dr=+2, (132)
5 p

so that for arbitrary Z, y„(3s-+ d) =+2 Z.
48 S. Pasternack an d R M Sternheimer, J. Math. Phys. 3,

1280 (1962).
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For p„(4s~d) we can proceed in the same manner. It can be e 'ye easil verihed that the above function is
The inhomogeneous equation for e& (4s ~ d) is given by

1 b ortho onal to uo (3s):

d' 6 2 1)
+ + ~vi'(4s ~ d)

dr' r' r
vi'i'i (3d —& s)uo'(3s) dr =0, (141)

y„(3d~ s)
where A4, —= 4i. The function vi'i'i(4s ~ d) obtained by
direct solution of (133) is as follows: 8

ni'(3d ~ s)uo'(3d)r'dr = —(6/5) . (142)
5 0t1 5

ni'i'i(4s-+ d) =A4, e '"~ ———r+ r' (. (134)
k6 72 192 The negative sign of y„(3d —+ s) indicates antishielding

of the nuclear quadrupole moment.
For y„(4d —+ s), the function ei'io&(4d-+ s) obtained

by direct solution of the inhomogeneous equation is
orthogonal to uo'(4s), in the same manner as for 3d ~ s.
We thus obtain

By requiring orthogonality of the actual solution v&'

on uo'(4d), one finally obtains

»'(4s —+ d) =vi' &' (4s ~ d)+ uo'(4d—)
72(5)'~'

ii''"(4d —+ s) =vi'(4d ~ s)

1 3 1 r so that ei'& i(3d ~ s) is identical with the actual solu-+ ' ( tion wi'(3d~ s) to our problem. Finally, we obtain4r 8 192

1 )1 5 1 1
=—e *"~ ———r+ r'+ r'

4 k6 72 192 5760
r4 ~. (135)

69 120 i
7 3

e-'i4 r r' (, (14—3—)
576(5)'" 28

The resulting value of y„(4s-+ d) is

In the same manner, we have calculated that
y„(5s~ d) =+10/3. Upon using this result together
with the values of y„(ns —+ d) for n= 1, 2, 3, 4, it is seen
that y„(ns ~ d) is given by

y„(ns ~ d) =+3n. (137)

The simple proportionality of y„(ns~d) to the
principa q

'
cipal quantum number e was rather unexpected.

Actually, it will be presently shown that all of t e
shielding factors y„(nl —+ l&2) to be considered here
can be expressed in the form

oo 8
(4s —+ d) = uo'—(4s)vi'(4s ~ d) r'dr = + . (136)—7m ~ —

O

3

which gives y„(4d —+ s) = —28/15.
In an entirely similar fashion, we find y„(5d —+ s)

=—38/15. It should be noted that these three values
of y„(nd-+s) are antishielding, and that they vary
linearly with e. In fact, we can write these values in
the form of Eq. (138), namely,

y„(nd —+ s) ,'n+'——(144)

Thus a= —3, b=+-,' in the notation of Eq. (138). We
remark that the value of a for (nd —& s) is just minus
the corresponding value of a for (ns ~ d). We shall again
find the same situation for y„(np —& f) and y„(nf~ p).

For y„(2p —+ f) and y„(3p —+ f), values have been
previously obtained in Ref. 42; these values are 48/25
and 78/25, respectively. For y„(4p —+ f), the inhomo-
geneous equation satisfield by»'(4p-+ f) is given by

y„(nl +1+2)= an+—b, ( d' 12 2 1 ) 1
+—,—+ I»'(4p - f)=~o'(4p)

where a and b are constant coe%cients. Thus& fol ( dr2 r2 r
y„(ns~ d) we have a=+3, b=0.

We will now obtain y„(3d—& s). The equation
satisfield by i i'(3d-+ s) is given by

1 1=A 4~e:" ———+—r, (145)
r 4 80

ii'&'&(4p ~ f)=A4„e "i L(1/12)r —(1/80)rmj. (146)
where A 3e

——4/t 81(30)'i'j.
Furthermore,

The solution obtained by direct integration of
Eq. (139) is found to be

d' 2 uo'(3d)
where A 4~=—'(')'i'. By direct solution of (145), we find——+— vi'(3d s) = =A3se l", (139)

dr' r r'

vi'&'&(3d ~ s) = 4ABdre '". —(140)
ii'"'(4p —+ f)uo'(4f)dr=— (147)

24(21) 'i'
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Hence, the complete solution vi'(4p ~ f) is given by

vi'(4p -+ f) = vi'&P&(4p ~ f)+ up'(4f)
24(21)"'

ts~'~'t 1) (1 1 1
I

—
Ie '"I -r—~'+

k3) (64' k3 20 10 080

whence

v-(4p ~ f)
108

vi'(4p ~ f)up'(4p)r'dr=+
25

2

equation a = —a+. It is noteworthy that such a linear
relation does not appear to hold for the radial anti-
shielding terms y„(el~i), for which l'=1. Thus, in
Ref. 42, we have obtained y„(2p ~ p) = —268/25
= —10.72 and y„(3p-+ p)= —1008/25= —40.32. We
have furthermore calculated y„(4p~ p)= —2468/25

(14 ) = —98.72, from whichitis apparent that ~y (mp~ p) ~

increases faster than linearly with increasing e.
Finally, we will prove that for hydrogenic wave

functions y„(el-+li) is proportional to 1/Z in all
cases (li=l or l&2). For this purpose, we consider
Eq. (116) for vi'(el~i&) and define y—=Zr. We thus

(149) obtain

7„(np -+ f)= (6/5)e —12/25, (150)

d' li(ii+1) 2 1

In a similar manner, one finds 7„(5p~f)=+138/25. Z d,+, +, v' ("l
Thus, the values of 7„(ep—+ f) can be represented as
follows: Z'I p'(ll)

(1ss)
y'

i.e., Eq. (138) with a=6/5, b= —12/25.
Finally, we will calculate p„(4f~ p). The solution

vi'(4f ~ p) is determined by the equation

( dP 2 2 1)+ + l&i'(4f ~p)
dr' r' r 16)

=~p (4f)=A4rre ", (151)
r3

where A4r ——1/(768(35)'I'). By direct solution of (151),
we obtain

The unperturbed function Np'(nl) can be written as
follows:

I '=Z"'f(y) (1s6)

vi' ——Z' 'g(y) (157)

where g(y) is a function of y=Zr only. Hence the
shielding factor y„can be written as follows:

where f(y) is a function of y only, as indicated. It
follows from Eq. (155) that

vi'&p~(4f ~ p) = A4rr'e—(152) y„(el~ li) =Cii, &'& Qp8yf df

and this function is orthogonal to Np'(4p), as can be
easily verified. The present situation, namely, that
vi'(ll ~ l—2) =vi'&" (ril-+ l—2) is similar to that
previously encountered for (rid -+ s).

From Eq. (152), we obtain C„,(')Z—'
fgy dy~

Z'foal
&Z &

(158)

~-(4f~ p)

72

25 o

which completes the proof that y„(ril ~ li) is propor-

=
72 tional to 1/Z.

vi'(4f ~ p)N p'(4f) r'dr = ——. (153)
25

VIII. SUMMARY

Similarly, we find y„(sf &p) = —1—02/25. Thus, 'the
terms 7„(Nf~ p) are antishielding in the same manner
as y„(nd ~ s). We can write

y„(mf~ p) = —(6/5) n —48/25. (1s4)

As previously noted, we see that the value of a for
(nf~ p) is just the negative of a for (ep —+ f) Lsee
Eq. (150)j.

Thus, we have found that the terms due to the angu-
lar modes y„(el~ l&2) can be expressed in the form
ac+5, as a function of the principal quantum number
e, for the case of hydrogenic wave functions. Moreover,
the coeKcients a~ for (el~ i&2) are related by the

In this paper, we have shown that the first-order
perturbation theory which has been previously applied
to obtain the quadrupole antishielding factors y„
and E, and the polarizabilities o.~ and 0,, can also be
used successfully to calculate the rare-earth ion shield-
ing parameter ap. The values obtained for op(Pr'+) and
op(Tm'+) are in good agreement with the experimental
results. ' The present calculations are more complete
than previous ones, ' since they include at once the
excitation of ss to all possible d states (including the
continuum states), and similarly the excitation of sp
to all possible p and f states. Moreover, the author' s
method' of direct solution of the Schrodinger equation
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has been used, which is inherently more accurate than
the variational procedure or the method of configura-
tion interaction, using a limited number of excited
states. In addition, it has been shown that the effect
of the exchange terms of 0-2 is small compared to that
of the direct Coulomb terms.

The present calculations of the quadrupole ;'anti-

shielding factor y„ for Cs+, Pr'+, and Tm3+ give more
accurate values than those which have been previously
obtained in Refs. 8 and 9. For Cs+, the improvement
comes from the use of Hartree-Fock wave functions
instead of the Hartree functions (excluding exchange),
which were the only ones available at the time of our
previous calculation' (in 1955).As a result of the use of
the Hartree-Fock wave functions of Freeman and
Watson, ' the value of ~y„(Cs+)

~
is reduced by 30%

as compared to the Hartree function value. A similar
decrease" has been previously found for y„of Rb+.
For Pr'+ and Tm'+, the present results for y„(—80.9
and —75.3, respectively) are slightly more accurate
than those obtained previously, ' because the present
work includes a calculation of the el —+/ modes of
excitation of the inner shells (m~3, and 4d~d),
which had not been carried out in Ref. 8. The quadru-
pole antishielding factors y„ for the Al'+ and I ions
obtained in this paper have not been previously cal-
culated by the method of direct integration of the
inhomogeneous Schrodinger equation. In addition, we
have also calculated the atomic shielding factor E
for the 4f electrons in Pr'+ and Tm'+, and the results
(corresponding to a shielding of the order of 10—20%)
were found to be in reasonable agreement with experi-
ment.

The problem of the detection of a possible nuclear
electric hexadecapole moment (HDM) has been dis-

cussed, and it has been pointed out that if collective
e8ects play an important role in enhancing the nuclear
HDM, then the most promising regions of the periodic
table are those extending from Pm (Z=61) to Ir
(Z=77), and from Ac (Z=89) to Am (Z=95), since
both regions exhibit large quadrupole moments. A case
of particular interest is that of rhenium (Re"' and
Re'"), because the presence of the half-filled external
Sd shell of the atom is expected to lead to a very large
value of the hexadecapole antishielding factor'"

~ g„~
(perhaps of order 50 000).

Finally, we have obtained the values of the shielding
factor y„(el~ /+2) using hydrogenic wave functions.
Although this calculation is only of academic interest
as far as the practical evaluation of y is concerned,
it has led to two interesting results (1) the discovery
and proof4' of a new orthogonality property of the
hydrogenic radial wave functions; (2) the fact that in
all of the cases considered, y (el —+ 3&2) is a simple
linear function of the principal quantum number m:

y„(el~i')=an+b, where the coefficients a and b

depend on / and l' only (but not on n), and are inversely
proportional to Z.
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