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We report the results of calculations of several shielding and antishielding effects pertaining to the hyper-
fine structure of various ions and atomic systems. The following shielding (or antishielding) parameters
have been considered in the present work: (1) the parameter o2 for the rare-earth ions, which measures the
reduction of the 4 2P5(cosf) term of the crystal field at the location of the 4f electrons due to the shielding
effect of the more external 5s and 5p electrons; (2) the quadrupole antishielding factor v., which gives the
total quadrupole moment induced in the closed shells of an ion by the nuclear quadrupole moment Q;
(3) the corresponding atomic shielding factor R which describes the effect of the induced quadrupole moment
on the valence electrons; (4) the hexadecapole antishielding factor 7., which is analogous to v.,, except that
it pertains to the induced hexadecapole (16-pole) moment produced by a possible nuclear electric hexa-
decapole moment. The calculated values of o2 for the Pr3* and Tm3* ions are in good agreement with the
experimental results. We have obtained improved values of v., for the following ions: AB*, Cs*, I-, Prét,
and Tm?3*, The atomic shielding factor R has been calculated for the 4f electrons of Pr3* and Tm3*, and was
found to be in reasonable agreement with experiment. A discussion is given of the most likely regions of
atomic number for which it might be possible to detect a nuclear hexadecapole moment. In addition, an
evaluation of the second-order terms in the antishielding factor v, for the Cl~ ion has been carried out.

Expressions for v, (7l — 1=2) for the case of hydrogenic wave functions have been obtained.

I. INTRODUCTION

HE purpose of the present paper is to give the
results of calculations of several shielding and
antishielding effects pertaining to the hyperfine struct-
ure for various ions and atomic systems. In par-
ticular, we have obtained values for the shielding
parameter'? ¢» for the 4f electrons in rare-earth ions
and for the quadrupole antishielding factors®* v, and

* Work performed under the auspices of U. S. Atomic Energy
Commission.
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R for a number of ions. In addition, the paper contains
results on the hexadecapole antishielding factor® 7.,
the second-order antishielding for the CI~ ion, and on
the values of v, which one would obtain using hydro-
genic wave functions.

In Sec. II, we give the results of calculations of the
shielding parameter oy for the Pr3* and Tm?" ions. The
constant op gives a measure of the shielding of the
A 9r*Py(cosh) term of the crystal field, which is produced
by the external 5s and 5p shells at the location of the
4f electrons of the rare-earth ions. In order to obtain oy,
we have used the same procedure as was previously
employed in the calculation of the quadrupole anti-
shielding factor?® v, and the dipole and quadrupole
polarizabilities® ag and «,, namely, the direct solution
of the inhomogeneous Schrédinger equation for the
perturbed wave functions. The resulting calculated
values of a9, namely, g2(Pr*t) =0.60 and oo(Tm?*)=0.48
are in good general agreement with the corresponding
experimental values.! It should be noted that the
present results include the contribution from the ex-
change terms of the electrostatic interaction between
the 4f and Ss (or 5p) electrons. It was found that the
exchange terms are small compared to the dominant
direct terms (<109, of the total o).

In Sec. IT1, we obtain improved values of the quadru-
pole antishielding factor v, for the following ions:
Al3*, Cst, I, Pr3*, and Tm?3*. The results for Cst and
the calculations of y. and R has been given by A. J. Freeman
and R. E. Watson, in Treatise on Magnetism, edited by G. Rado
and H. Suhl (Academlc Press Inc., New York, 1965), Vol. IIA,
p. 167. See also C. H. Townes, in Hcmdbuah der Phynk edited by
S. Flugge (Springer-Verlag, Berlin, 1958), Vol. 38/1, p. 377.

5 R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961) Phys.
Rev. 123, 870 (1961).

§R. M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565
(1957); 115, 1198 (1959), 127 1220 (1962) Calculations of the
ionic pola.nza.bﬂltles by the variational method have been carried
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I~ were obtained by means of the Hartree-Fock wave
functions for these ions which have been calculated
by Freeman and Watson.” The values for Pr*" and
Tm?+ represent an improvement over those previously
reported,® on account of the fact that the terms
Yo(20 = 1), V(30— D), Yeo(3d — d), and v.,(4d— d)
which had not been previously calculated are included
in the present results. For Cs*, the present result,
Yo=—102.5, is appreciably smaller in magnitude than
the previously published value® (—143.5) which was
based on Hartree wave functions (excluding exchange).
In Sec. III, we have also given a table of all of the
values of ., which have been calculated by the method
of direct solution of the inhomogeneous wave equation.?
For a given zero-order wave function, this method gives
values which are believed to be accurate to ~3%. This
table also includes the calculated values of the quadru-
pole polarizability a, (obtained by the same method®),
wherever they are available. In addition, Sec. III in-
cludes a calculation of the atomic quadrupole shielding
factor® R for the Pr3* and Tm3* ions. The results in-
dicate that there is a small shielding (~10-20%) for
both cases.

Section IV gives a general discussion and an evalua-
tion of the second-order quadrupole antishielding
effects for the CI~ ion. The second-order antishielding
arises as a result of including the induced quadrupole
moment in the total quadrupole perturbation which
produces the distortion of the closed shells of the ion.

In Sec. V, we prove the equivalence of two alternative
methods of calculating the second-order antishielding.
In the first method, one considers the perturbation due
to the nuclear quadrupole moment Q, and subsequently
the perturbation due to the resulting induced quadru-
pole moment Qing, and its effect on the closed shells,
whereas, in the second method, one starts out with the
external charge (at a distance R), and calculates in
first order the distortion of the closed shells arising
from the quadrupole part of the potential due to the
external charge, namely, (e2r?/R3)Py(cosf). In this
second method, the antishielding factor 7, is obtained
by dividing the field gradient at the nucleus due to the
quadrupole distortion of the closed shells by the field
gradient 2¢/R3® which would be produced by the ex-
ternal charge acting alone. The second-order effect
which is considered here arises from the field gradient
at the nucleus which is due to the closed-shell distor-
tion produced by the quadrupole potential arising
from the first-order perturbation. In first order, it has
been proved some time ago that the two methods are
equivalent,’ and it is here shown that the equivalence
also holds for the second-order terms of ..

In Sec. VI, we give some additional results for the

7A. J. Freeman and R. E. Watson (private communication).

8 R. M. Sternheimer, Phys. Rev. 132, 1637 (1963).

(1'9951;{6') M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731

10 R, M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1953).
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hexadecapole antishielding factor 7%, This factor
pertains to the 16-pole moment induced in the closed
shells by a possible electric 16-pole moment of the
nucleus. We also give a discussion concerning the ques-
tion as to the types of nuclei which are likely to have a
relatively large and therefore measurable héxadecapole
moment.

In Sec. VII, we obtain the values of y,(nl— 1)
for =142 (shielding modes) assuming hydrogenic
wave functions for the unperturbed closed-shell func-
tions. The results are, of course, only of academic
interest as far as the evaluation of an actual antishield-
ing factor is concerned, since in this case one must
always use accurate (preferably Hartree-Fock) wave
functions for the ion considered. Nevertheless, the
results are interesting from a theoretical point of view,
for two reasons: (1) It was found that in all cases con-
sidered, namely, ns — d, np — f, nd— s, and nf— p,
Yeo(nd— 14=2) is simply a linear function of the principal
quantum - number: v, (#l — I')=an-+b, where ¢ and b
depend only on ! and I’ (but not on %), and are in-
versely proportional to the atomic number Z. (2) In
the course of the calculation of v, an interesting
orthogonality property of the hydrogenic wave func-
tions has been discovered.

Finally, Sec. VIII gives a brief summary of the main
results obtained in the present work.

II. THE SHIELDING PARAMETER ¢,

In this section, we will obtain the general expression
for os for the case of a valence 4f electron, which is
being considered in the present work.!! We will also
give some details of the actual calculation of o.

The shielding parameter o» represents the electro-
static effect of the shielding!:? of the internal 4f elec-
trons by the more external 5s and 5p electrons of the
rare-earth ions Pr®* and Tm3*. We note that there
will also be some shielding by the other shells of the
atom, besides 5s and 5p. However, this effect due to the
inner shells is expected to be small compared to that
of 55 and 5p, and it has been neglected in the present
work.

In the shielding parameter o3, there will be terms due
to the direct electrostatic interaction between Ss (or 5p)
and 4f, and also the corresponding exchange terms. We
will first discuss the direct terms.

We assume a unit external charge +e¢ placed along
the positive z axis at a distance R from the nucleus of
the ion which we are considering. The quadrupole
potential energy due to this charge is given by

Ve=—(2r*/R?)P2(cosh), 1)

where Vg is in Rydberg units, » and 6 are the polar co-
ordinates of a point within the ion, measured with
respect to the nucleus and the z axis (defined above); »

11 A preliminary account of this work has been given in Bull.
Am. Phys. Soc. 10, 597 (1965).
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and R are in units of the Bohr radius ez, and P, is the
Legendre polynomial.

Now we consider the perturbation due to Vg of a
closed shell wave function u,(nlm) of the ion. Obviously,
we will be interested in the cases where #/=35s and 5p.
The potential Vg gives rise, in first order, to a perturba-
tion #1(nl— Iy) in the zero-order wave function, which
is determined by the equation

(Ho—Eo>u1(nl - ll) = (EI—HI)MO(WZ) ’ (2)

where H, and E, are the unperturbed Hamiltonian and
energy eigenvalue pertaining to »n/; Hy and E; are the
corresponding first-order perturbations of H, and E,,
respectively. We have H1= Vg, and

Ey= / / wH1dr sinddo 3)
0 0

where we should note that #, and #%; actually refer to 7
times the corresponding wave functions, and the nor-
malization for the radial part of u,, to be denoted by
uy’ is given by

/ uy'2dr=1. 4)
0

As discussed in several earlier papers,?%:12 the pertur-
bation Vg will produce the following types of perturba-
tions: Ss—d, 5p— p, and 5p— f. The following
discussion is very similar to that of Ref. 12 (see Sec. II).
We write

wi(nl— h)=(2/R¥)duy' (nl — 1) O™, (5)
uo(nim)=uy'(nl) O™, (0)

where the spherical harmonics ©;™ are normalized to 1:
/ (©,)2 sinfdf=1. (7)
0

In Eq. (5), d is a constant to be determined below. The
radial function #,"(#l— l,) is defined by the condition
that it should satisfy the following inhomogeneous
Schrédinger equation:

h(h+1)

a2
( —t
dr? r?
= uo’(nl)[1’2— (7’2>n15l11] (8)

and moreover, for /;=I/, the orthogonality condition

'+' Vo—E())Ml,(nl g ll)

/°° uy' (nl)uy' (nl— 1)dr=0. 9)

In Eq. (8), the effective potential ¥, is obtained directly
from the unperturbed wave function #,'(%l) by a pro-

2 R. M. Sternheimer, Phys. Rev. 127, 812 (1962).
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cedure previously described by Sternheimer?::
1 ' I(+1)

Vo—E¢y=— — .
uy’ dr? r?

(10)

From Egs. (2), (5), (6), and (8), we obtain for d

d=/ Pg@;mE‘)llm sinfdf. (11)
0

Thus, d is defined by the condition that Eq. (5), with
u1'(nl — 1) obtained from Eq. (8), should represent the
solution to Eq. (2).

The integral of Eq. (11) was previously denoted by
Iy, ®™ in Ref. 12. The overlap density 2ugu; for the
state nlm can be written as follows:

2uo(nlm)ui(nl — 1)
= (4/R3)[”l (2)7”740/%1,(1’” - ll) @fn@zlm . (12)

The quadrupole part of the potential due to the density
(12) is

8 1 pr
V (nim)=—"[1I, <2)m]2P2(c050)[— f wo'uy'v'2dr’
R3 7’3 0

-l—r2/ uo’ul’r’—3dr’:l, (13)

where %, and u;" are to be evaluated at the radius #’
(the variable of integration). In Eq. (13), as compared
to Eq. (12), a factor of 2 arises from the fact that the
quadrupole part of the electrostatic interaction energy
is: 2(r</7%) Py(cosf), when expressed in Rydberg units
€?/2an, as is done here.

In order to obtain the total ¥, due to a closed shell,
we must sum over all 7 values in Eq. (13), and multiply
by 2 to take into account the two spin states for each .

If we denote the function in square brackets in (13)
by f(r), we can therefore write

16 l
V(nl)= Ef(r)l%(cosﬂ) > [Tuy®@2,  (14)
m=—1]
for the potential due to the filled 7! shell. We note that

+1
16 2 [Tu,@"]2=2Cy, @,

m=—1

(15)

where Cy;,® is the angular factor for the quadrupole
antishielding factor, as previously defined in Ref. 12
[see Eq. (28)]. For the excitations which are relevant
to the present work, we have Cps®=8/5 for 55— d,
Cu®=48/25 for 5p—p, and Cis®=72/25 for
Sp— f.

We now consider a valence 4 f electron with magnetic
quantum number m,. The wave function of this electron
times 7 will be denoted by . Thus,

7)(4f,m¢)=v’(r)®3me, (16)
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where v’ is the radial part of v, with the normalization

[cf. Eq. (4)]: 3}
/ v2dr=1.

The energy change E, due to the potential ¥V (nl)
acting on the 4f electron is given by

2Cll1(2)

17

E (nl)= / v’2f(r)dr/ Py(@3m<)2sinbdf, (18)
0 0

which can be rewritten as follows [cf. Eq. (11) and the
definition of I;;,®"7]:

20y, @I, @me o
] {9

E(nl)= v'2f(r)dr,

0

where /,=3.

The energy E,(nl) has to be compared to the direct
interaction energy with the external charge, in order
to obtain the contribution of the #/— I, perturbation
to o3, to be denoted by o2(nl — 4).

The direct interaction energy Eg is given by

Er= / / V rv2dr sinfdo
0 0

2 0
= ——“Iz‘l‘(Z)me/ o' 22y . (20)
R3 0

The integral in Eq. (20) will be denoted by (%), A
comparison of the signs of Egs. (19) and (20) shows that
the effect of E, is a shielding (decrease in magnitude of
the original interaction), provided that the integral
S0 v'2f(r)dr is positive. It turns out that the integral
over f(r) is positive for 5s— d and 5p— f, but that
it is negative for 5p — p, corresponding to an anti-
shielding in this last case. This result is not too surpris-
ing when one considers the fact that the 5p — p ex-
citation mode provides the dominant (negative) term
in the total quadrupole antishielding factor? v,.
The contribution (7l — I,) is defined as

—Ey(nl— l)/Eg,
so that we obtain
E, (nl— 1)
0’2(%1 bl ll) = ——f_;
R

=Clll(2)(/:o ’U'Zf(f)df/m)u)- (21)

The total direct (i.e., nonexchange) term of o2 is then
given by
oo(direct) =o2(S5s — d)+02(5p — p)+o:(Sp— ), (22)

provided that the perturbation of the inner core elec-
trons (#=4) can be neglected. The effect of the positive
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terms o2(5s — d) and o2(5p — f) predominates, leading
to a net shielding.

Before proceeding to a discussion of the exchange
terms of o9, we wish to point out the connection of the
integrals of Eq. (13) with the antishielding factor?
v and the quadrupole polarizability® .

Thus, the contribution of #l— I; to v, is given es-
sentially by the second integral of Eq. (13) evaluated
for »=0. We have

Yool — l1)=Cul(2)/ wuo'ui'r3dr . (23)
0

Similarly, the contribution to the polarizability a,
is obtained from the first integral evaluated for r= o :

ag(nl— )= szl(Z)/ wuo'uy'r2dr . (24)
0

The values of v,,(5p— p) for Pr3+ and Tm?* have
been previously obtained by considering the perturba-
tion of the 5p electrons by the nuclear quadrupole
moment . We can, therefore, obtain a check on the
present wave functions #:'(5p — p) by comparing the
resulting values of v.(5p — p) with those previously
calculated using the nuclear perturbation. It turns out
that the agreement is very satisfactory (to $5%), as
will be shown below (see Sec. II1.)

We will now obtain the exchange terms of ¢5. For
simplicity of notation, in order to avoid the subscript:
“exchange” each time, we will refer to these terms as
¢2. We consider first the 5s — d perturbation. The ex-
change arises from the interaction of the density
uo(55)v4; with the density #:1(5s — d)vss. The electro-
static interaction energy can be written as follows:

L

Vel=2 Z PL(COSGH), (25)

L= It

where 612 is the angle between the two electrons as
measured from the common origin (nucleus); < and
7> are the smaller and the larger, respectively, of the
distances 71 and 7 of the two electrons from the nucleus.
We also have

P (cosfyz)
—2r 3 PP DBu(DBa*2), (26)
M—L

where &= (2w)~1/2%% ¢, ¢ is the azimuthal angle, and
the parentheses (1) and (2) indicate that the variable
of the angular function is the codrdinate (6 or ¢) of
electron 1 and 2, respectively. In Eq. (25), the factor 2
arises from the fact that Ve is given in Rydberg units.

In the case of 55— d considered above, since the
density u#o(5s)vs; behaves as @™, it is obvious that
only the term L=3 of Eq. (25) will contribute. Simi-
larly, for 5p — p, we have uy(5p)vss interacting with
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u1(5p — p)vsy. Each density is the sum of two terms
which behave as ;™ and @, Hence, both L=2 and
L=4 will contribute exchange terms to {s. Finally,
for 5p— f, uo(5p)vay (o ®2™ and O,™) interacts with
w1(5p — flvay (= B¢, @™, O, and Og™), so that we
will again have two terms in {; arising from L=2 and
L=4.

We will now discuss the general exchange integral
for the nl— I; perturbation of #(»l) in order to obtain
the relevant radial integral and the coefficient C which
replaces Cy;,® for the direct term of o2 [see Eq. (21)7].

From Egs. (5) and (16), the overlap density

2%1(%l‘—> l1, m)v,;f(me)
can be written as follows:
Pexcn=2u1045=(4/R3)duy (nl — 11)v4 OOy,

with J,=3.

As has been pointed out after Eq. (11), d=1;,®",
and this integral is in turn a special case of the coef-
ficient C© (Im; lymi) of Condon and Shortley!® which
can be written as follows:

@7

C O (Im; l1m1)=/ Pymm@m0; ™1 sinfdl, (28)
0

where the arguments (¢m) and (lym1) must be so labeled

that m—m1=0. Thus, from Eq. (11), we have
d=Ip;,®m=C®(Im; lym), (29)

i.e., the special case of (28) with L=2 and mi=m.

# The density wo(nl)vss(mc;) which interacts with
pexcn LEQ. (27)] is obtained by means of Egs. (6)
and (16):

wo(nl)vss(me) =1y’ (nl)vay OmO1,ms. (30)

The Pr, term of the electrostatic potential energy
due to (27) is given by

8
Vexch(nl - ll, L) = E;C (2)(lm; llm)

XCD (Lym; Leme) Prm—mo(0)G(r), (31)

where G(7) is the following radial integral:
G(r)=—1~ rul’(nl — I)va 7' Ldy’
W 4

—l—rL/ uy' (nl— Iy, (32)
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where 7’ is the variable of integration at which
and v4; are to be evaluated.

In Egs. (27), (30), and (31), we have omitted the de-
pendence on the angle ¢, since the ¢ dependence is
integrated out by the factor ®,,_,, which multiplies
Ppm—mein Eq. (26). In Eq. (31), thefactor C& (lym; Lom.)
arises from the integration over ©;,70,; " in Eq. (27).

Upon using Eq. (30), the exchange energy Eoxcn(#l —
I, L) becomes

Eexch(nl - ll) = (8/R3)C<2) (lmy llm)

XCD(lym; Lem)CE (Im; lem)K ,  (33)
where K is defined as the integral
K= / uy' (nl)vaf' G(r)dr . (34)
0

In Eq. (33), the last angular factor, CE(Im;lm.)
arises from the integration over @;70;m in (30).
We have included a minus sign in Eq. (33), because
the exchange energy as calculated from the determinant

(uotu)(1)  (wotu1)(2)
’ (35)
2(1) 2(2)

corresponds to terms in the density ¥*¥ of the form
—u1(1)v(2)a0*(2)v* (1) = — w1 (1)v* (1) ue*(2)2(2)  which
carry a minus sign, as is well known.

The total exchange energy for a closed shell, for the
perturbation (#l— 1, L) is obtained by summing
Eq. (33) over all m values (from —/ to +17).

In order to obtain the contribution to {» (exchange
part of a3), we must divide — Eexen(nl — I3, L) by the
direct interaction energy with the external charge Ep,
as given by Eq. (20). Note that I;,;, @me=C® (I m,;
leme). We thus obtain

—AR(l— 1, L) 1
> CO(lm; lym)
D4 CO(Lame; lone) m=—1

XCE(Im; leme)C B (Lym; Lame) .

¥v(1,2)=

§'2(7Ll g l1, L) =

(36)

The result, Eq. (36), is independent of the value of .
(magnetic quantum number of the valence electron).
This fact can be used as a check on the calculation of
the sum over m (by repeating the calculation for two
values of m,). We can write (36) as follows:

K(nl— 1, L)C(nl— 1, L)

Colnl— 1y L)=— , (36a)
(%45
where C(nl— 11, L) is defined as follows:
1
4 Y COUm; Lim)CE(Im; Lame)CE (Lym; Lans)
1
37)

Cnl— b, L)=

CO(lame; lame)

B E. U. Condon and G. H. Shortley, Theory of Alomic Spectra (Cambridge University Press, London, 1935), p. 175.
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It may be noted that the coefficient Cy,® for the
direct interaction [Eq. (15)] can be obtained from (38)
by multiplying by 2 (summation over spin states),
setting L=2, and changing C®(lm; lsme)C P (lum; lam.,)
to C®(lm; lum)C P (lame; lams). This gives

+1
Cul(2)=8 Z [C(z)(lm;llm)]"’,

m=—1l

(37a)

which is identical with Eq. (15) [see also Ref. 12,
Eq. (28)].

The relevant values of C(nl— I;, L) for the pres-
ent case (l,=3) were obtained using the tables of
CW(Iymy; lams) of Condon and Shortley.!3 The results
for the S5s and 5p shells are as follows:

Clns—d; L=3)=4/7; C(np— p; L=2)=108/175;
Clnp— p; L=4)=4/21; Clnp— f; L=2)=72/175;
Clnp— f; L=4)=4/7. (38)

In connection with Eq. (37), we note that this equa-
tion could be used to obtain the values of C(nl — I, L)
for the case of an external p electron (J,=1). These
values have been previously calculated.** Thus, we find
for l,=1, and for the s and p electrons of the core

Clns—d; L=1)=4/3; Cnp— p; L=0)=4,
Clnp— p; L=2)=4/25, Clnp— f, L=2)=36/25.
(38a)

By means of Eq. (36a), we obtain for the total ex-
change term of o for the rare-earth ion

fa={a(Ss > d; L=3)+¢o(Sp— p; L=2)
+62(5p— p; L=4)+¢2(5p— f; L=2)
+¢(5p— f; L=4). (38b)

In all of the terms of (38b) the coefficient C(nl—
15 L) is positive [ Eq. (38)]. The integrals K (nl — Ii; L)
are positive for 5s—d and 5p — f, while they are
negative for 5p— p. The sum of the 5s—d and
5p— f terms predominates, and hence the net effect
of {2 is equivalent to a small antishielding, on account
of the minus sign in Eq. (36a). However, the magnitude
of ¢ is considerably smaller than that of the direct
term o9, [ Eq. (22)7], so that both for Pr3* and for Tm?t,

TasLE 1. Contributions of the direct electrostatic terms to the
shielding factor o2 for the Pr3* ion. The values of v (nl — l;)
and aq(nl — 1) are also given.

Perturba- 2
tion 02,int 02,ext o2 Yoo Qg (AE)
S5s—d 0.0814 0.2081 0.2895 0.577 0.300
Sp—p —0.0572 —0.1301 —0.1873 —73.7 0.273
Sp— f 0.0609 0.5150 0.5759 0.515 1.140
Total 0.0851 0.5930 0.6781 1.713

4 R. M. Sternheimer, Phys. Rev. 95, 736 (1954).
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TABLE II. Contributions of the direct electrostatic terms to
the shielding factor o for the Tm3* ion. The values of ., (nl — I1)
and aq(nl — ;) are also given.

Perturba- R
tion 02, int 02,ext o2 Ve ag (AY)
Ss—d 0.0765 0.1972 0.2737 0.468 0.1200
Sp—p —0.0838 —0.1563 —0.2401 —65.5 0.1284
Sp— f 0.0216 0.4785 0.5001 0.491 0.4755
Total 0.0143 0.5194 0.5337 0.7239

the complete result is a (positive) shielding of the order
of 50%, in good agreement with the experimental data.

We will now briefly describe the calculation of the
terms oo(nl— I;) and {a(nl— i, L) using the wave
functions #,'(#l— 1) determined by Eq. (8). The
functions #,'(nl— 1) were obtained by numerical
integration in the same manner as in our earlier work.!®
We note that the present #y/(#l— I;) are the same
functions as those occurring in the calculation of
the quadrupole polarizability aq(nl— l;). The term
— o’ (nl){(r¥)ni81r on the right-hand side of Eq. (8)
arises from the energy term Fiu, in Eq. (2). For the
unperturbed functions, #y'(5s) and #,'(5p), we used the
Hartree wave functions of Ridley.!® The corresponding
values of {r%);, which enter into Eq. (8) are as follows:
3.74a? for Pr¥+ and 2.73ax? for Tm?*, For the case of
5p — p, the inward integrations of Eq. (8) were carried
out on the Brookhaven IBM-7094 computer by means
of a program used previously in the calculations of the
antishielding factor v.,(%#! — I). For 55 — d and 5p — f,
the calculations are equivalent to the solution of an
eigenvalue problem, and were done on a desk computer.
Thus, the inward integrations are started at a large
radius 7i(~5—6ay), with various starting values
#y'(r1). Only for the correct value of ui'(r1) will the
resulting function be well-behaved (i.e., go to zero as
rI+1) at the origin r=0. In practice, of the order of
10-15 trial integrations must be performed until one

TaBiE III. Values of the exchange terms pertaining to the
shielding factor o for the Pr3* ion.

Perturbation § 2, int ¢ 2,ext $2
Ss—d (L=3) —0.0071 —0.0290 —0.0361
Sp—p (L=2) -40.0229 -+0.0109 -+0.0338
S5p—p (L=4) -+0.0054 -+0.0035 -+0.0089
S5p— f (L=2) —0.0295 —0.0134 —0.0429
Sp— f(L=4) —0.0239 —0.0149 —0.0388
Total —0.0322  —0.0429  —0.0751

15 Tables of the perturbed wave functions u,’(nl — 1) which
represent the effect of the crystal-field perturbation are given in
a supplementary paper “Wave Functions for Crystal Field Calcu-
lations.” This paper has been deposited as Document No. 8800
with the ADI Auxiliary Publications Project, Photoduplication
Service, Library of Congress, Washington 25, D. C. A copy may
be secured by citing the Document number and by remitting
$1.25 for photoprints, or $1.25 for 35-mm microfilm. Advance
payment is required. Make checks or money orders payable to:
Chief, Photoduplication Service, Library of Congress.

E, C. Ridley, Proc. Cambrldge Phil. Soc. 56 41 (1960).
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TasLE IV. Values of the exchange terms pertaining to the
shielding factor o3 for the Tm®* ion.

Perturbation $2,int $2,ext $2
S5s—d (L=3) —0.0068 —0.0267 —0.0335
S5p—p (L=2) +-0.0231 40.0128 -+0.0359
Sp—p (L=4) +-0.0055 -+0.0039 +4-0.0094
5p— f (L=2) —0.0271 —0.0065 —0.0336
S5p— f (L=4) —0.0199 —0.0083 —0.0282
Total —0.0252 —0.0248 —0.0500

obtains the solution #i(nl— I, L) over the entire
region of 7. For the valence 4 f wave functions, we used
the Hartree-Fock functions v’ of Freeman and Watson.’
The corresponding values of (r2?)s; are as follows:
1.088ax? for Pr¥t, and 0.646a 52 for Tm3+.

The results of the calculations are given in Tables
I-TV. The direct terms o2(nl — I;) are given in Tables I
and II; the exchange terms {2(nl — 1, L) are presented
in Tables IIT and IV. In connection with the direct
terms o2(nl— I1), we have given for each case the con-
tributions of both parts of f(r) as shown in Eq. (13).
Thus we can write for f(r):

f(?’)E fint(7)+fext(r) ) (39)

where

1 7
Sint(r)= S f wuo'uy'v"2dr’ (39a)
" Jo

fext(r) =y¢? f %0’%1’7’—3d7, . (39b)

Upon substituting Eq. (39) into Eq. (21), we obtain
(40)

(Tz(%l = l1) = Uz,int(nl d l1)+0'2,ext(%l b d l1) )

where 02,int and o3,exs are defined by

o2,imt(nl— 1) =Cu, P[{rD) 4, ] / V2 fine(r)dr,  (40a)
0

02, ext(1l — 1)) =Cryy D[ (r) 4 1 / V2 fexs(r)dr.  (40Db)
0

In Tables I and II, we have listed o3,int, 02,ext, and the
total a2 for each perturbation #/— /3. As indicated by
the notation, o3,ist represents the effect of the shielding
density #o'#,” which is internal to the 4f electron,
whereas, 02, ext gives the effect of the part of the density
uo'uy’ which lies outside the 4f shell. As would be ex-
pected since #y'(5s) and #,’(5p) are mostly external to
v'(4f), we find that in all cases |os,ex¢| 1S appreciably
larger than |o2,int|. Tables I and IT also give the values
of the quadrupole polarizability a4 (7/— /) and the
antishielding factor vy.(#l— ;) connected with the
mode 7l — ;. These values were obtained from Egs.
(23) and (24).

17 A, J. Freeman and R. E. Watson, Phys. Rev. 127, 2058
(1962), and private communication.
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It is seen that the total direct term o3 is 0.678 for Pré+
and 0.534 for Tm?*. As will be discussed below, these
values and also the decrease with increasing Z are in
general agreement with the experimental observations.
For the quadrupole polarizability, only the outermost
(n=135) shell contributes appreciably, so that the sum,
namely, 1.71A5 for Pr3+ and 0.724A5 for Tm?* is a good
estimate of the total a,. As concerns the antishielding
factor 7., there are small contributions, mostly from
Yo(4p — p), which are not included in the terms given
in Tables I and II. Our best present values for v.,(total)
are as follows: —81 for Pr®* and —75 for Tm3*. The
values for v,(5p— p) as listed in Tables I and II
(—173.7 for Pr3* and —65.5 for Tm?*) are in good agree-
ment with the results previously obtained from the
perturbation v,/(5p — ) due to the nuclear quadrupole
moment Q (these values are —69.7 and —67.2 for
Pr3t and Tm?*, respectively).?

For the exchange terms {a(nl—l;, L) listed in
Tables III and 1V, we have made a similar separation
into internal and external contributions denoted by
$o,int and {2 ext, respectively. Thus, in connection with
Eq. (32), we write

G(?’) = Gim(?’) +Gext(7) )
where Gint(7) and Gexi(r) are defined by
(41)

7

1 r
Gint(f’) = 74-: / M1,<7Ll - l1)v4f'1"Ld7" ,
0

Gexi(r)=rT / wy'(nl — h)vafr 171y . (42)

Then we obtain from Eq. (36a)
Co(nl— by L)= {2, ime(nl— by, L) 4§ 2 ext(nl— h, L), (43)
where (2,1t and {2,ex are defined as follows:

King(nl— 1y, L)C(nl— Iy, L)

$o,ime(nl— Iy L)=— , (44)
' (")
Keox(nl— 1y, L)C(nl— Iy, L)
Co,ent(nl — ly; L)=— . (45)
(r%)ar

In Egs. (44) and (45), we have

K= / o' (nl)vay Ging(r)dr (46)

0
Kow= / s (D)8 Gt 47)

0

so that [cf. Eq. (34)]
K= Kint+ Kext . (48)

The values of {2 int, 2,0xt, and the total {5 are listed in
Tables ITI and IV. It is seen that the net {»(total)



146

corresponds to a small antishielding ({2<0) for both
Pr3* and Tm?. Thus, in view of the previous results
for ao(direct), the total value of o3 including exchange is
positive, corresponding to shielding. The calculated
values are as follows:

o2(Pr3) =0.678—0.075=0.603, (49)
o5(Tm?) =0.534—0.050=0.484. (50)

The preceding results are in good general agreement
with the experimental values. Thus, Barnes et al.
have obtained the following results: o2=0.71 for Tm?3*
in thulium ethyl sulfate, and ¢,=0.41 for Tm?3t in
thulium oxide. Our result ¢5=0.48 is in good agreement
with an average of these two values. Moreover, Wick-
man and Nowik?! have obtained o2=0.69 for the Dy3*
ion in the ethyl-sulfate lattice. In addition, these
authors have presented good evidence (partly from
data of Blok and Shirley) that oy decreases with in-
creasing number of 4f electrons. We have obtained a
similar result from the present calculations, namely, an
appreciable decrease of o» in going from Pr3t+ to Tm?t.

III. CALCULATIONS OF v, AND R

In this section, we will present the results of the
calculation of the quadrupole antishielding factors!s
v~ and R for several ions.®* We have obtained improved
values of the ionic factor #., for the following ions:
AP+ Cst, I7, Pr¥*) and Tm?®*. As concerns the atomic
correction term R, we have obtained values pertaining
to the 4 f electron in the Pr3* and Tm?* ions.

The calculation of v,, proceeds'in the same manner as
described in several previous publications.? For Cst
and I-, the Hartree-Fock wave functions obtained by
Freeman and Watson were used. For Pr®* and Tm?3,
we have employed the Hartree wave functions of
Ridley.’® The effect of the radial modes of excitation
nl— | was obtained by solving the equation

a2 I(+1)
[“-Jr
a2

+ Vo— E()]?)ll('ﬂl - l)

() ] o

where the effective values of V— E, are obtained from
the unperturbed wave function #,’(nl) by means of
Eq. (10). The integrations of Eq. (51) were carried out
by means of the Brookhaven IBM-7094 computer.
The solution vy/(nl—[) represents the effect of the
distortion of u,’ (#) due to the potential produced by
the nuclear quadrupole moment Q, namely,

Vo= —QPy(cosb)/r* (52)
in Rydberg units; here Q and 7 are expressed in units
ax® and ag, respectively.

18 A preliminary account of this work has been given in Bull.
Am. Phys. Soc. 9, 14 (1964).
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TaBLE V. Values of v, (nl — 1) for several ions. For A+, the
various terms of v.(ang) are given in the text [see discussion
preceding Eq. (54)].

Ion Als+ Cst I- Pr3+ Tms+
Yeo(20 —p) —2.82 —0.266 —0.280  —0.243  —0.196
Yeo(30 = D) —1.662 —1.775  —1.545  —1.175
Y (3d = d) —0.360 —0.391  —0.322  —0.237
Yoo (4D — 1) —9.99 —10.78 —8.81 —6.79
Yo (4d — d) —2.89 —3.54 —2.83 —2.18
Yoo (50 = ) —90.25  —124.85  —69.7 —67.2
Yeo(ang) +0.46 +2.9 +3.2 +2.5 +2.5
Yeo(total) —2.36  —102.5 —138.4 —80.9 —75.3

The resulting contribution to v, is given by

0

wuo'vy (nl— Dr2dr,  (53)

vw(nl - l) = sz(z)/

0

where C;®=48/25 for np — p, and 16/7 for nd — d.
The term v, (ang) due to the angular modes of excita-
tion, nl-— 142, is obtained by using the Thomas-
Fermi model, as discussed previously.

The resulting values of v, are given in Table V. The
value —102.5 for Cs* is appreciably smaller in magni-
tude than that previously obtained (—143.5) using
Hartree wave functions.’ The difference is due to the
inclusion of exchange in the Hartree-Fock wave func-
tions, which contracts the outermost parts of the elec-
tron density, in particular for the 5p electrons. A
similar difference has been previously noted for Rb*
(vo=—47.2 as compared to —70.7 without exchange).8-?
For Pr’* and Tm?, the present values of v, are es-
sentially the same as those previously published in
Ref. 8. We have now obtained v,=—81 for Pr3* and
Yo=2—75 for Tm®", showing that |v,| remains es-
sentially constant in going through the rare-earth region,
although there may actually be a small decrease with
increasing Z from Pr to Tm.

For Al3*, we used the Hartree-Fock wave functions
of Froese.l® The results are as follows: v,(1s— d)
=0.0530, vo(2s — d)=0.1744, v,(2p — f)=0.2352,
giving a total y,(ang)=-+0.463. The radial term
Y(2p — p) has the value —2.821, so that the total
Yo 18

’Yw(A]-3+) ='Yang+7oo(217 - P)

=0.463—2.821=—2.358. (54)

The term v,(1s — @) was obtained from the expression
for hydrogenic wave functions,® namely, v.,=(%)Z:1,
where Z,is a suitable effective nuclear charge (Z,~212.6)
The angular terms v,(2s— d) and y.(2p — f) were
calculated by integrating the corresponding inhomogen-
eous equation:

a2 L(h+1)
l:'——‘i" + Vo—Eo]vll(ﬂl - l1)
dr? r?
=uy'(nl)/r3,

19 C. Froese, Proc. Cambridge Phil. Soc. 53, 206 (1957).

(53)
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TaBLE VI. List of the values of v, and «, obtained by direct
solution of Eq. (51) for v. and Eq. (8) for ag. The notation (H)
indicates that the unperturbed wave functions uy'(nl) were
Hartree functions. In all other cases, Hartree-Fock wave func-
tions were used for the uo’(nl). The superscripts (a-f) give the
reference to the paper in which the calculation of v. or ¢ was
carried out.

Ion Yeo aq (R9)
H~ +1.131¢ 66.50
He +0.424¢ 0.09930
Lit +0.263¢ 4.73X1073b
Be?t +0.189¢ 6.37X10~4
Bt -+0.768 (H)°
F- —22.53e
Nat —4.560d 0.0634¢
ARt —2.36f
Cl- —56.6* 13.77v
K+ —17.32¢4 0.733b
Mn** —11.374
Fett —9.144
Cut —15.0= 1.280»
Ga’t —9.504
Br~ —123.0¢
Rb* —47.2¢ 2.99(H)P
Ag* —34.0a
I- —138.4t
Cs* —102.5¢ 7.80(H)P
Prit —80.9(H)f 1.71(H)t
T+ —75.3(H) 0.724(1)t

a Reference 9.

bR, M. Sternheimer, Phys. Rev. 107, 1565 (1957).
¢ R. M. Sternheimer, Phys. Rev. 115, 1198 (1959).
d Reference 20.

e Reference 8.

f This paper.

where nl — ly=2s — d or 2p — f, and u,’(#nl) is the cor-
responding unperturbed wave function (2s or 2p). The
resulting terms of y.(ang) are given by

00

'yw(nl - ll) = sz‘(z)/ Mo’7)1/(nl i 11)7’2d1' , (56)

0

where Cy,P=8/5 for 2s—d, and 72/25 for 2p— f.

In connection with the preceding results for Al*t
and the values of v, for Cst, I7, Pr¥*, and Tm?*, as
given in Table V, it seems useful to collect all of the
values of v, (calculated by the present numerical
method) into a single table. Such a table has been
previously published® in Ref. 20. The present table
includes these earlier results, as well as those obtained
in Ref. 8 and in the present work.

In Table VI, we have listed all of the values of v,
obtained up to date (altogether 21 ions). Except for
B*, Pr3*, and Tm3*, the wave functions used in the
calculations were Hartree-Fock functions. Since the
quadrupole polarizabilities a, are closely related to v,
and since values of a, cannot, in general, be obtained
experimentally, so that one has to rely on calculations,
we have also listed the values of a, when they are
available (for 12 ions). In the calculations of «,, the
zero-order wave functions #,” were Hartree-Fock func-
tions in all cases, except for Rb*, Cs*, Pr3*, and Tm?+.
Thus because of the loose binding of the outermost p

2 R. M. Sternheimer, Phys. Rev. 130, 1423 (1963).
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TasirE VIIL. Values of quantities involved in the calculation of
the atomic shielding factor R for the Pr¥* and Tm?* ions. The
values of T and (#78) are in units az™>.

Ion Pr3t Tmd+
Tune 1.585 2.890
Trea —0.883 —1.223
Ttotal 0.702 1.667
=y 5.360 12.86
Rung 0.2952 0.2247
Riaa —0.1644 —0.0951
R (total) -+0.1308 +0.1296

electrons for Rb+(4p) and Cst(5p), the corresponding
values of a, may be appreciably too large. The same
comment probably does not apply to Pr¥ and Tm?3,
where the binding of the outermost (5p) electrons is
tighter, so that the inclusion of exchange would not
contract the 5p wave function by a large amount. In
Table VI, the notation () indicates that Hartree wave
functions were used for u,'(nl), and the superscript
(a-f) denotes the reference in which the value of 7.,
or a, was calculated.

In connection with the perturbed wave functions
v/ (nl— 1) for the rare-earth ions Pr** and Tm?*t, we
have also obtained the values of the atomic shielding
factor R for the case of a valence 4f electron. The
Hartree-Fock wave functions of Freeman and Watson
were used for vs;/. The results indicate a net shielding
of ~13%, i.e., R=2+4-0.13 for both Pr¥*4 f and Tm3*4f.
The various terms which enter into the calculation of R
are listed in Table VII. The notation is essentially the
same?! as in Ref. 21 (see, in particular, Table ITI). Thus
we define

Tang= <'Yang/ r3)es= /

0

0

(57)

!’ —
Yangtas % 3dr,

I‘radE (’Yrad/7'3>4f=/ 'Yrad'v4f/27'_3dr P} (58)
0

where Vang(r) and yma(r) are the effective potentials

(times 73) due to the induced moment (divided by the

nuclear Q) for the angular and the radial modes of ex-

citation of the core, respectively. Thus,

1 r i
’)’ang(r):EI: / Qi,angd7,+75 / Qi,angﬂ_sd",jl , (59)
0 r

1 7 0
7rad(7)=_é|: / Qs,raad?’ 47" / Qi,raar’“""dr’:l . (60)
0 L

In Egs. (59) and (60), the induced density Q;,ang is ob-
tained from the Thomas-Fermi model®14.2!;

Qi,ang= (3/10)Q<Xx)1/2(x/7') ) (61)
where X and x are the Thomas-Fermi function and
variable, respectively; x=(Z'/3/0.8853)r, with 7 in
units az.

2t R. M. Sternheimer, Phys. Rev. 105, 158 (1957).
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It has been shown in Refs. 3 and 14 that the Thomas-
Fermi calculation tends to overestimate the actual
value of Ra.e by about 509%,. Thus, it was found for
both CI~ and Cs* that when the perturbed wave func-
tions v1'(nl— I142) are calculated, the resulting values
of Rang are smaller by a factor of ~1.5 than those ob-
tained with the Thomas-Fermi induced moment density
of Eq. (61). For this reason, in obtaining the values of
Rane in Table VII, the Thomas-Fermi result was
divided by 1.5, i.e., effectively we used a coefficient
(1/5) in Eq. (61), instead of (3/10).

The radial density (Qir.a is obtained from the
expression

48 5
Qi) =0r] = 3 !l (np = )

16 4
—|-7 2 o (nd)vy (nd — d)] , (62)

n=3

where the sums extend over the occupied p and d shells
of the ion core. The perturbed wave functions v/ (nl — I)
are obtained by means of Eq. (51).22:23

Finally, in terms of the integrals Tane and Tpa of
Egs. (57) and (58), the shielding factor R is given by

R= Rang+Rrad ) (63)

where
Rong=Tang/{r )4y, (64)
RradE Prad/ (7'_3>4f . (65)

The value of (r~3)4[= /0 v4/23dr] is 5.37ay=3 for
Pr¥+ and 12.86a5~2 for Tm3*+.

It is seen from Table VII that in each case Ty
predominates over I'wq, so that the net effect is a
shielding of the nuclear moment Q. As is usually the
case [cf. Table I of Ref. 217, the radial modes produce
some antishielding, but since the 4f electron density is

2 Tables of the perturbed wave functions v’ (nl — I’) obtained
in connection with the present calculations (Sec. III) are given
in a supplementary paper “Wave Functions for Quadrupole
Antishielding Factors.” This paper also contains the wave func-
tions pertaining to Sec. IV (second-order antishielding for the
CI~ ion) and Sec. VI (hexadecapole antishielding factor 5. for
the Cs* ion). The supplementary paper has been deposited as
Document No. 8801 with the ADI Auxiliary Publications
Project, Photoduplication Service, Library of Congress, Wash-
ington 25, D. C. A copy may be secured by citing the Document
number and by remitting $3.75 for photoprints, or $2.00 for
35-mm microfilm. Advance payment is required. Make checks
or money orders payable to: Chief, Photoduplication Service,
Library of Congress.

% A complete list of the perturbed wave functions which have
been obtained in previous calculations of antishielding factors
and polarizabilities (Refs. 3, 5, 6, 8, 9, 12, 20, and 21) is given in
a supplementary paper “List of Perturbed Wave Functions
Pertaining to the Calculation of Quadrupole Antishielding Factors
and Electronic Polarizabilities of Ions.” This supplementary paper
has been deposited as Document No. 8799 with the ADI
Auxiliary Publications Project, Photoduplication Service, Library
of Congress, Washington 25, D. C. A copy may be secured by
citing the Document number and by remitting $1.25 for photo-
prints or $1.25 for 35-mm microfilm. Advance payment is
required. Make checks or money orders payable to: Chief, Photo-
duplication Service, Library of Congress.
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relatively internal (and mostly inside 5p), the magni-
tude of T'ya is smaller than the angular term Iy,
which always leads to shielding.

It should be emphasized that the calculations of
Table VII do not include the exchange terms between
947 and the core excitations. Nevertheless, we may note
that a value of R of the order of 0 to 40.1 (shielding)
is indicated by the experiment of Barnes et al.,! who
have obtained R=+-0.11 for Tm?®" in thulium ethyl
sulfate and R=—0.01 for Tm?3* in Tms03. Moreover,
from the data of Cohen?! for Fe;Tm, Barnes e al.l
have deduced a value of R=-40.20. Thus, it can be
concluded that our results for R are in reasonable
agreement with experiment, provided that the exchange
terms can be neglected.?

It should be noted that some of the experimental
papers give a somewhat larger value of R than the
results quoted above. Thus, Hiifner e al.?6 obtain
R=24-0.3 for erbium metal, and they also give references
to earlier work in which a value R~0.3 rather than
~0.1 was deduced. If the value R~0.3 would be the
more nearly correct one, the difference between our
calculated result and the experimental value could be
due to small inaccuracies of the zero-order (Hartree)
wave functions or perhaps the neglect of exchange
effects. Another possibility is that the reduction factor
1.5 which has been applied to the Thomas-Fermi result
for Q;.ang [EQ. (61)] s too large. In this connection, we
may remark that if we would apply no correction to the
Thomas-Fermi result, we would obtain: (1) for Pr3+:
Tang=2.377a573, Rang=0.4427, and R(total)=-+0.2782;
(2) for Tm®*t: Tune=4.335a7"3 Rang=0.3370, and
R(total)=0.2419 (see Table VII). The present modified
results for R(total)=2+0.25 would be more nearly in
agreement with the value of Hiifner ef @l.25 It appears
that at present, both the experimental and theoretical
situations are somewhat unresolved as to the exact value
of R for the4f electron (in the range of 40.1 to 40.3).
However, the important point is that almost all of the
relevant experiments definitely indicate the presence of
a shielding factor (1—R), and therefore provide evi-
dence for the existence of the shielding effect (1—R) in
the rare-earth ions, in good general agreement with the
author’s calculations.

It may be noted that the values of R,,, for Pr3*+

% R. L. Cohen, Phys. Rev. 134, A9%4 (1964). See also S. Hiifner,
M. Kalvius, P. Kienle, W. Wiedemann, and H. Eicher, Z. Physik
175, 416 (1963).

2 In two recent papers by M. N. Ghatikar, A. K. Raychaudhuri,
and D. K. Ray, &o be published), calculations of vy., R, and o
for Pr3* and Tm?3* have been carried out, which are very similar
to those of Secs. IT and IIT of the present paper, and use essentially
the same method as that of Ref. 3 (direct solution of the inhomo-
geneous wave equation). The results for . and R are in close
agreement with those obtained here. For ¢s, the calculation of
Ghatikar et al. differs slightly from ours, in that it contains the
(small) effect of the shielding by the inner shells (# <5), but does
not include the exchange term {» which has been calculated in
the present work. I wish to thank Dr. D. K. Ray for sending me
an advance copy of his papers.

26 S, Hiifner, P. Kienle, W. Wiedemann, and H. Eicher, Z.
Physik 182, 499 (1965).
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and Tm?3* given above are compatible with the result
for Eu®t published by the author in 1950 (see the first
paper of Ref. 3). Thus, for Eu’t, we have previously
obtained I'sng=0.3X9.29=2.787a 5~ using the Thomas-
Fermi method [cf. Eq. (61)]. The value for I'y,, was
deduced using a 4 f wave function calculated by means of
the Thomas-Fermi potential, giving (r—%)4;=6.88ax3.
The result is R;=2.787/6.88=0.405. This may be com-
pared with the value obtained by linear interpolation of
the above results for Pr3* (Z=359) and Tm3t (Z=69).
For Eu®t, Z=63, one obtains Ran,=0.402, in very good
agreement. Since the same method was used in both
cases to obtain the induced moment density Q;,ang, the
only possibility of a difference between the two results
would arise from the use of slightly different radial
wave functions for the 4f electrons. Indeed, the
Thomas-Fermi wave function used in Ref. 3 gives
(r=%)4;=06.88a73, as compared to 8.37ax~3 deduced by
linear interpolation of the wave functions used in the
present calculations (see Table VII). Thus, although
the present wave function is appreciably more internal,
the results for R,y are very insensitive to such a change
of the 4f wave function.

Finally, we wish to point out that when second and
higher order effects on the values of Ty, are included,?
the effective value of R is reduced somewhat (by about
30%). Thus, as shown in Ref. 27 (see Table II), the
influence of the higher order shielding effects reduces
Ring for Eu from 0.405 to 0.292. This effect acts in the
same direction as the apparent inadequacy of the
Thomas-Fermi method in obtaining the first-order
induced moment density, discussed above, which also
leads one to decrease the Thomas-Fermi values of
R.ne by an appreciable factor (~1.5).

In connection with the present calculations of the
atomic shielding (or antishielding) factor R, we wish
to point out that the existence of this correction term
has also been strongly supported by two types of recent
experiments: (1) In a series of papers, Murakawa? has
shown that the factor (1—R) is required in order to
make the values of Q obtained from different spectro-
scopic levels consistent with one another, and also with
values of Q obtained by Coulomb-excitation measure-
ments. Murakawa defines a parameter A by the equa-
tion: 1+A=1/(1—R), so that A=R/(1—R) and
R=A/(1+A). The spectroscopic hfs measurements
were done for the following nuclei: As™ Lal%? Lul75
Tal®!) Os!89 and Hg?!. In particular, for the elements
in the neighborhood of Lu (Z=71), Murakawa finds
that for the 6p electron, there is a weak antishielding
A=—0.1 (R=—0.11), in good general agreement with
the results of Refs. 14 and 21. For the configurations
Sd, 5d?, 5d3, and 3d6s, the experimental hfs values
lead to A=~—0.3 (R=—0.43) for the 5d electron,

27 R. M. Sternheimer, Phys. Rev. 84, 244 (1951).

28 K. Murakawa and T. Kamei, Phys. Rev. 105, 671 (1957);
K. Murakawa, sbid. 110, 393 (1958); J. Phys. Soc. Japan 16, 2533
(1961); 17, 891 (1962).
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whereas, for the configurations 5d46s of Tal and 5d%6s
of Osl, the results indicate a strong shielding of the 54
electrons. At present, our knowledge of the Hartree-
Fock wave functions in this region of the periodic table
seems to be insufficient to enable one to make a reliable
calculation, which could be compared with the results
for A(5d™) and A(5d"6s).

(2) In the papers of Refs. 14 and 21, the author has
predicted the existence of a weak antishielding (of the
order of 20%,) for the excited (p) states of the alkali
atoms. Measurements of the hyperfine structure of the
excited states of rubidium 5%Pj3,s, 62P3/s, and 72P3, by
zu Putlitz, Schenck, and Schiissler,? using the method
of optical double resonance, have confirmed the exist-
ence of the antishielding correction 1/(1—R). Upon
using the values of R given in Ref. 21, namely, R(5p)
=-—0.271, R(6p)=—0.209, and R(7p)=—0.183 (by
extrapolation), the values of Q(Rb8) and Q(Rb%) as
obtained from the 5p, 6p, and 7p states are brought
into better agreement with one another than if the cor-
rection 1/(1—R) were not applied. This result con-
stitutes indirect evidence for the existence of R and for
its calculated variation with the principal quantum
number n. Moreover, the experimental value of Q is
reduced from 0.14X102* cm? to 0.11X 10724 cm? for
Rb%, and from 0.29X1072¢ cm? to 0.24X 10724 cm?
for Rb? by making the correction for the antishielding
effect.

It should be noted that besides the quadrupole
shielding and antishielding factors v, and R, there exist
also shielding terms associated with the magnetic
hyperfine structure. These terms arise from the ex-
change interaction of the core with the valence electron,
which leads to differences between the core wave func-
tions pertaining to a given shell (#/), but having differ-
ent magnetic quantum numbers® »; or different spin
orientations®—3%2 m,. A comprehensive review of these
magnetic exchange polarization effects has been given
by Freeman and Watson.3?

IV. SECOND-ORDER ANTISHIELDING FOR
THE CI~ ION

We have obtained an estimate of the second-order
effect for the antishielding factor v, of the Cl~ ion. It
has been found that the effect of taking into account the
direct (nonexchange) terms of the electrostatic inter-

2 G. zu Putlitz and A. Schenck, Z. Physik 183, 428 (1965);
H. A. Schiissler, ¢bd. 182, 289 (1965) ; H. Bucka, H. Kopfermann,
M. Rasiwala, and H. Schiissler, ¢bid. 176, 45 (1963). See also the
review article of G. zu Putlitz, Ergeb. Exakt. Naturw. 37, 105
(1965).

% R. M. Sternheimer, Phys. Rev. 86, 316 (1952).

81 E. Fermi and E. Segre, Rend. reale accad. naz. Lincei 4, 18
(1933) ; Z. Physik 82, 729 (1933).

2 G. F. Koster, Phys. Rev. 86, 148 (1952); A. Abragam, J.
Horowitz, and M. H. L. Pryce, Proc. Roy. Soc. (London) A230,
169 (1953).

3 A. J. Freeman and R. E. Watson, in Treatise on Magnetism,
edited by G. Rado and H. Suhl (Academic Press Inc., New York,
1965), Vol. TIA, p. 167.
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action in second order is to reduce the value of |v]
from 57.1 to 45.9. The reduction arises from the shield-
ing effect of the angular modes of excitation of the Cl~
core and the shielding due to the (radial) 2p — p and
3p — p modes in the region near the nucleus.!®

We will first consider only the contributions of the
2p — p and 3p — p perturbed wave functions. In first
order,® one obtains from the wave functions v1'(2p — p)
and v/(3p — p) the values v,(2p — p)=—1.51 and
Yo(3p — p)=—357.0, respectively. Here the functions
91’ (nl — 1) represent the perturbation due to the nuclear
quadrupole moment. The v{/(#l— 1) are determined
by the equation:

@ I0+1)
[——+
dr? r?

+ Vo—Eoi]'l)]_/(nl d l)

=u0'(nz)[;3—<;1;>m], (66)

where the effective (Vo— Ey) is obtained from Eq. (10).
Moreover, we have the orthogonality condition

/-°° uy (nl)vy’ (nl — 1)dr=0. 67)

The second-order calculation is carried out by taking
Q—+Qina for the perturbation instead of Q, where Q is
the nuclear quadrupole moment and Qinq is the (first-
order) induced moment. This means that instead of Eq.
(66) we are led to solve the following equation:

dz 1(+1)
[+
dr? r?

+n-&%mmHn

_ uo’(nl)[l “‘r':’rad <1 —-:ad>:l ()

where vrq is defined by Egs. (60) and (62); thus
vraaQ/7? gives the potential due to the induced moment
Qind,raa arising from the radial modes (2p— p and
3p— p). The modified values of the antishielding
factor ¥,(nl— [) are obtained in the same manner as
the first-order v,(nl — ), namely,

0

Foo(nl— )= Cu@)/ w0 (nl— Dridr.  (69)

0

In the present case, Cp;¥=48/25.

The inward integration of (68) can be carried out by
means of the IBM-7094 program, in the same manner as
for Eq. (66). We thus obtain

’)_’oo(ZP - P)= - 148: '7w(3p - P)= —350.57 ) (70)

giving a total ¥,(rad)=—52.05, as compared to
—57.0—1.51=—358.51 for the first-order calculation.
The decrease of |y(rad)| is due to the shielding
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TasrLe VIII. Values of v.(2p— p) and v.(3p — p) which
enter into the calculation of the second-order effects for CI~.
For comparison, the values of v., in the first row of the table are
obtained from the usual first-order calculation. The column
vo(rad) gives the sum of the 2p — p and 3p — p terms. In the
last column, +ye(total)=7v,(rad)+v.(ang), with the angular
term +vyo(ang)=-1.4. The quantities ¥, V«, and Y. (£) are
defined in the text.

Term 2p— p 3p—p Ve (rad) v (total)
Yoo —1.51 —57.00 —58.51 —57.11
Yoo —1.48 —50.57 —52.05 —50.65
Yo —1.404 —45.89 —47.29 —45.89
Y (£) —3.58 —48.27 —51.85 —50.45

effect of the 2p — p and 3p — p modes near =0, which
results in values of v;2q>0 in this region.

We note that the present calculations of both the
first- and second-order effects were carried out by means
of the same Hartree-Fock wave functions (to give a
reliable comparison), namely, the functions originally
calculated by Hartree.?* The various terms ¥ (np — p),
Fo(np— p), and Y,(£, #p — p) obtained in the present
calculation (see below) are listed in Table VIIL

As the next step in the calculation, we can include the
shielding effect of the angular modes (/1=1[2=2), as ob-
tained from the function yane(r) [Egs. (59) and (61)].
We are thus led to obtain the solutions of the following
equation:

a I(I+1)
[~—+
dr? r?

=y (nl)l:

+Vo— EO:Iﬁl’(nl —1)

1'_"}’rad-'Yan 1'_'Yrad_'Yan
- < 3].0n
73 r3

The resulting values of | 7,,(nl — [)| are again decreased,
as compared to |¥o(1nl— 1)|. We have obtained

Fea(2p = p)=—1.404; 7,(3p— p)=—45.89, (71a)

giving a total J,(rad)=—47.29. Upon including an
angular term3? y,(ang)=-+1.4, we obtain F.(total)
=—45.9. For comparison, the first-order calculation®
gives

vo(total) = —57.0—1.514+14=—57.1. (72)

Thus, the reduction in second order due to shielding
effects is

| Fo(total) /y.(total) | =45.9/57.1=0.80. (73)

As a check on the calculation of ¥,(rad), we have ob-
tained this quantity by an alternative method, namely,
by considering the perturbation due to an external
charge. The corresponding equation for the perturba-
tion u1'(np — p) is given by Eq. (8) in first order. The
appropriate equation pertaining to the second-order

3 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London),
A156, 45 (1936).



152 R. M.

perturbation is as follows:
d2111, l(l+ 1)
il
dr?

; + Vo"Eo]’ﬁl'
= M0,[7'2(1 - grad) - <72(1 - Emd»"l] ) (74)

where £raq s given by

48 3 b
Erad=£ > l: / g (np)us (np — p)r'=3dr’

n=2
s / m’(np)uf(np—»p)r’zdr'] (75)
0

The function £,q is analogous to yraq used above. Thus,
£maa represents the effect of the quadrupole distortion
induced in the 2p and 3p shells (by the external charge)
on the total field gradient acting on either 2p or 3p.

The resulting contribution to v, is given by

=

48
Yol &, np — p)=;§ / u’ (np)id (np — p)r=3dr.  (76)

0
We thus obtain

7w<$) 2? - ﬁ)= —3.58. '7eo(£7 315 - P) = _4827 . (77)

The total 7.,(¢,rad)=—>51.85 is in very good agreement
with the value —52.05 [see Eq. (70)] previously ob-
tained from the functions #,'(zp — p). This comparison
provides a reliable check on the accuracy of the
calculations.

The present calculations of second-order effects for
CI~ were carried out partly in order to provide a com-
parison with a paper of Watson and Freeman,® in
which they have obtained a total y,=2— 85 for CI~ using
the unrestricted Hartree-Fock method. In order to ob-
tain a more accurate comparison with this result, we
have recalculated the first-order vy,(3p — p) using the
same (analytic Hartree-Fock) wave function as was
employed by Watson and Freeman? (WF), instead
of the (numerical) function calculated by Hartree,?
as was done above. This gives y,(3p — p) = —68.4 for
the WF function, as compared to —57.0 obtained above.
The difference between these two values is due to the
fact that the WF 3p function is slightly more external
than that of Hartree. If we make the reasonable assump-
tion that the second-order shielding effects due to the
angular and radial modes decrease |v,(WF, 3p— p)|
by approximately the same factor as for the wave func-
tion of Hartree, namely, 0.80 [Eq. (73)], we obtain:
Yo(total, WF function)=—68.4X0.80=—54.7, which
is still considerably smaller in magnitude than the
result of Ref. 35. The disagreement is by a factor of
85/55=1.55. At present, we have no definite explana-
tion of the discrepancy, especially since for Cut, the
value of v, obtained by Watson and Freeman3® (—17)

3 R. E. Watson and A. J. Freeman, Phys. Rev. 131, 250 (1963).
36 R. E. Watson and A. J. Freeman, Phys. Rev. 123, 521 (1961).
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is in close agreement with that of Sternheimer and
Foley® (—15) using the conventional first-order pertur-
bation theory. There is, of course, the possibility that
the discrepancy for ClI~ is due to the presence of ex-
change® and orthogonalization effects which are in-
cluded in the unrestricted Hartree-Fock method of
Ref. 35. In this connection, we wish to call attention
to our previous calculations of Ref. 27 [see Egs. (68)-
(72)7], in which the effect of including the second-order
terms was evaluated in connection with the atomic
shielding factor R for Cl. In this work, it was shown
that besides the direct Coulomb terms (there denoted
by ), which lead to a decrease of |R| (see the calcula-
tion for Cl 25 — d), there may exist a noticeable effect
due to the exchange terms acting on the radial excita-
tions 2p — p and 3p — p. This effect goes in the direc-
tion of increasing the values of [v1/(2p— p)| and
[2:/(3p— )| and, in the present context, it would
probably enhance the values of |v.(Cl7)|, although no
specific calculations have been carried out.

In connection with the preceding discussion, it
should be stressed that the difference between the two
calculated values of 7,(Cl™) is mainly of academic
interest, since the actual 3p wave function of the CI~
ion in a solid lattice will be appreciably different from
that in the free ion. Thus, in view of the large radial
extent of the Hartree-Fock free-ion 3p wave function,
we can expect that the wave function in the solid will
be appreciably more internal, leading to a decrease of
|7<(Cl7)|. Hence, the preceding calculations for Cl—
(and for negative ions in general) give values which are
only of limited accuracy, perhaps leading to an over-
estimate by ~509,. It should be noted that such a
situation does not arise, in general, for the positive ions,
which are smaller in extent, and more tightly bound.
This point has been previously emphasized by Burns
and Wikner.38

V. EQUIVALENCE OF THE SECOND-ORDER
TERMS OF 7., AND ., (%)

In connection with the calculations of Sec. IV con-
cerning the second-order terms of v, we wish to give
the formal proof that the two ways of calculating v,
(by considering the internal or the external perturba-
tion) are completely equivalent for the second-order
terms of v,. The fact that the calculations are equival-
ent for the first-order terms has been previously shown
by Sternheimer and Foley.!® It should be noted that on
physical grounds, one expects that the equivalence is
complete, i.e., that it is correct to all orders of the
nuclear quadrupole and the interelectronic perturbation.

37 The formal treatment of exchange for the Hartree-Fock
equations with a perturbing field has been given by L. C. Allen,
Phys. Rev. 118, 167 (1960); A. Dalgarno, Proc. Roy. Soc.
(London) A251, 282 (1959); and S. Kaneko, J. Phys. Soc. Japan
14, 1600 (1959).

3 G, Burns and E. G. Wikner, Phys. Rev. 121, 155 (1961); G.
Burns, sbid. 115, 357 (1959). See also R. Bersohn, J. Chem.
Phys. 29, 326 (1958).
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We will consider two electron shells, labeled ¢ and b.
The notation for the perturbed wave functions will be
the same as previously; i.e., v; denotes a perturbed
function due to the influence of the nuclear quadrupole
moment Q, while #; denotes a perturbation due to the
Coulomb interaction, either with an external charge or
with a different electron in the same atom. The proof
to be given below applies to any type of excitation, i.e.,
both to the radial (’=1) and angular modes (' =142).

We will first calculate the term Ay, s, defined as the
change of ., for electron shell 4 due to the quadrupole
moment induced in shell ¢ by the nuclear moment Q.
Then we will show that Avye,ss is equal to Aye o5(£)
defined as the change of v, for shell ¢ due to the field
gradient produced in shell & by an external charge.
Obviously, as a special case, for b=a, we will then have
A'Yoo,aa=A7w,aa(E)~

The perturbation v;,, of the wave function for a,
due to the effect of the nuclear moment Q, is deter-
mined by the equation

1 1
Mla’vl,azuo,a<—— <——'> 6lala'> (78)
73 3/ 4
and the orthogonality condition
/ #o,q01,a@r=0 (for 1/=1,). (79)
0

In Eq. (78), I, and I,/ are the values of [ for the un-
perturbed and the perturbed state, respectively, with
wave functions #,,, and vy,4, respectively. Thus, the
perturbation considered is #.l, — I,/. Furthermore, M,
represents the following differential operator:

d I(+1)

I=——

dr? 72

+Voni—Eo,ut, (80)

where the effective values of Vy, ,i— Fy,; are obtained
from?:6
1 o0 l(la+1)

(Vo,u—Eo,nt)a=—— — .
Uy, dr? r?

(81)

The quadrupole potential due to the overlap density
2u40,491,4 involves the function T',(r) defined as follows:

I‘a(r)Eca[/ uo,avl,ar’Zdr’—}—rE‘/ uo,avl,ar’_3dr'J, (82)
0 T

where c,=c(l,— I,’) is the angular coefficient pertaining
to the excitation n.,—1.; e.g., ca=8/5 for s—d;
48/25 for p— p; 72/25 for p— f.

The perturbation 73l — I3’ induced in shell b by the
quadrupole potential due to 210,421, Will be denoted by
91,04 (radial function). If the unperturbed function is
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written as #,,5, we have

I, I,
1Mlb'v1,bu=M0,b[__ <*> alblb'] ) (83)
s 3/ 4
/ uo,501,6a@7=0 (for I/=1p). (84)
0
In Eq. (83), (I'y/73)s denotes the average
(Pa/r3)bE/ (To/7%) a9, v%dr . (85)
0
Finally, the resulting term Aw,, s, is given by
A'Ym,ba=6b/ %o, 501,ba?2d7 (86)

v o

where the coefficient cy=c(ls — Iv).

We will now obtain the expression for Avye, .5(£).
The radial part of the perturbation #i,, of the wave
function #g,, for shell 5, arising from an external
quadrupole field is determined by

(87)

Moyyurp= Mo,b(”z— (’2> balblb') )

/uo,bm,bd7=0 (for Iy'=ls). (88)
0

The field gradient due to the overlap density 2, 5%1,5
is proportional to the function £,(r) defined as follows:

o0
£b<i’)56b[/ uo,bM1,b7,_3d1”
T

+r—5/ ug,bul,br'zdr’], (89)
0

where again cy=c(ly — It).
The perturbation #y, 45 of %o, due to the field gradient
o £3(r) is the solution of the following equation:

Mla,lul,ab= uo,a(£b7'2— (557’2>a61ala’) ’ (90)
with
/ #o,a1,a6dr=0 (for 1/=1,), (91)
0
() o= f Eurug,  2dr . (92)
0

We note that the values of 7,/ and /" considered in the
present calculation of Ay, .5(£) are the same as the
previous azimuthal quantum numbers /,” and Iy’ per-
taining to the calculation of Ay, pa.

By means of #i,., we obtain the expression for
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A'Yoo,ab(g):

0

A'Yw,ab(g) = Ca/ u(),aul,abr—3d7 I} (93)

0

where c,=c(l,— 1./), as before.
In order to prove that Avye,.s(£)=Avx,be [Egs. (86)
and (93) ], we rewrite Ay, o5(£) as follows:

00

A%o,ab(f):Ca (Mza'ﬂl,a)ul,abdf’
0

00 0
=ca/ (Mlu:ul,.,b)vl,adrzcacb/ %o, 401,00 A7
0

0

0 0
=cacb/. uo,avl,aﬂ[/ o, vy, v 3dr’
0 r

+1’_5/ Mo,b%1,brl2d1"]. (94)
0

In obtaining the various expressions of Eq. (94), we
have used Egs. (78), (79), (89)—(91), and partial integra-
tion in obtaining the second expression for Ay, qs(¥).
In order to justify this latter step, we note that

/(Mlafvl,a)ul,abdf’—/ (M1,11,00)01,0d7
0 0

( du1@b> » ( dea>
=\ %14 —\ %1,ab
dr 0 dr

At =0 all of the four functions involved (v1,q, %1,as
and their derivatives) are zero. At =0, the values of
91, and dvy o/dr are finite. In general, vy, and dvy o/dr
are zero for large /, and /,/. However, for #s — d, both
91, and dvy ./ dr are different from zero as » — 0 and for
np— p and np — f, v1,4(0)=0, but (dv1,o/dr) (r=0) is
finite. On the other hand, #;,,5 behaves as 7%+, so that
#1,45=0 in all cases, and duy, qp/dr#0 only for I,/=0.
The only case for which Z,” is O corresponds to the
nq4d— s excitation, and the corresponding vy, 4(724d — )
is proportional to  near the nucleus, and thus vanishes
at #=0. Hence Eq. (95) gives a zero result regardless
of the types of excitation nde—Ils and nuls— 13/,
so that the procedure of Eq. (94) is justified.

For the double integrals in the last expression of
(94), we obtain the following expressions by partial
integration:

o0 CO
/ o, 401,07 A7 / wuo, sy, v %Ay’
0 r

0 r
- [ Uo, v, br_sdr/ uo'avl,a'rlzdr, ) (96)
0 0

0

(95)

0
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0 r
/ uo,avl,ar"’dr/ s, stt1, 57 2dr’
0 0

0 0
= / o, 161, 5 2d7 / o,a01,a7 2dr" . (97)
0 T

Upon inserting Eqs. (96) and (97) into (94), and using
Eqgs. (82)-(88), we obtain

0 0

Ave,ab(§)= Cb/ o, o1, s a7 3dr=cyp
0 0

(M 101, 8a) 102,507
o0
=Cb/ (M 11,0)01, 0007
0

=cb/ u(),bvl,baf’zd?’:A"/w,ba, (98)
0

which completes the proof that Ay, 45(£) =AYe, b

In connection with the results of Sec. IV for the Cl—
ion, we can write [see also Table VII and Egs. (70)
and (77)]:

Ve 2 — P) =Ye(20 = )+ AY0,20,30

+A%w,2p,20=—148, (99)
'7«:(3? - P) = %0(315 - 1’)+A7w,3p,2p
+A’Yeo,3p,3p= '—5057 y (100)
700(5, 2p— ?)Z'Yoo(ZP - P)'}'A'Yoo,?:uﬁp(g)
+A’yw,2p,2p(5)= ‘—358, (101)
'700(5’ 3? - p) :7w(3P - p)+A7w,3p,2p(£)
+A’Y°°,3p,3p($)=-48.27. (102)

Here 7,(2p— p)=—1.51 and 7v,(3p— p)=—57.00
represent the first-order terms. In view of the theorem
proved above, we have

AYe,20,20= MVoo 2, 2p(E) = 25, (103)
AYeo,30,30= Ao0,3p,3p(E) =3y, (104)
AYe,25,80= AV 0,3p,20() =01, (105)
AYe,3p,20= MVos,2p,3p(£) =12, (106)

where we have defined the terms a@sp, @sp, 01, and b, in
order to simplify the notation. Upon inserting Egs.
(103)-(106) and the values of the first-order terms into
Egs. (99)-(102), we obtain the following equations for
the ¢ and b terms:

b1+ aspy=-0.03, (107)
byt+as,=6.43, (108)
—by—a2,=+2.07, (109)
bitas,=+8.73. (110)

It can be easily seen that these equations are not
independent of one another, since the sum of (107),
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(108), and (109) gives b1+asp on the left-hand side,
and the value 8.53 on the right-hand side [cf. Eq.
(110)]. In order to make the set (107)-(110) internally
consistent, we change the value of (109) from +2.07 to
~+2.27. This change by 0.20 is well within the errors of
the calculations, and corresponds to the small difference
between the calculated values of vy.(rad)(=—>52.05)
and ¥,(§rad)(=—51.85) .
With byt asp=—2.27, Egs. (107)~(110) give

a2p=0.03—b1, a3p=8.73——b1, b2=—2.30+bl. (111)

It appears from Eq. (107) that as, and b; are probably
both small. These terms represent the change in
Yo for the 2p shell as calculated from the nuclear
perturbation, due to the effect of the moment induced
in the 2p and 3p shells, respectively. It would be un-
reasonable to assume a large shielding due to 2p, i.e.,
a large positive as,, because according to Eq. (107),
this would force us to assume a large negative by
= AYe,2p,3p, cOntrary to the fact that in the region of the
2p charge distribution, the 3p induced moment is
shielding, i.e., 5;>0, rather than antishielding.

The simplest assumption is that both &; and as,
are very close to zero. Upon taking ;=0, we obtain
from Eq. (111) @2,=0.03, a3,=8.73, by=—2.30.

The rather large positive value of asp=Av, 3p,3p
corresponds to a shielding of the 3p electrons by the
part of the 3p — p perturbation which is internal (close
to the nucleus), and which we know to be shielding??7
(%0,3091,3p>>0). If this term would act alone, it
would change v,(3p— p)=—57.00 to —57.00+8.73
= —48.27. On the other hand, the 2p shell is sufficiently
inside the 3p distribution that the effect of the 2p
induced moment on 3p is to produce some antishielding
(%9,201,2p-p<0 in the region outside the 2p wave
function maximum). This effect, here denoted by
bs=AYw,3p,2p, 15 therefore negative (i.e., by=—2.30).
Thus, one obtains y.(3p— p) = —48.27—2.30= —50.57.
Alternatively, b. represents the extra antishielding of
the 2p electrons by 3p when the calculation is done by
considering an external charge. This effect is numerically
more important than vy.(2p— p) itself (—2.30 as
compared to —1.51). If one would assume that it acts
alone (which it essentially does, since | Avw,2p,20(£)]| is
very small, <0.1), one would obtain ¥.(& 2p— p)
=—1.51—2.30=—3.81,as compared to the value calcu-
lated directly, namely, — 3.58. The effect of Avye, 2p,3,(£)
has been previously pointed out by Watson and Free-
man.’ However, our value of |Avyg,p3,(£)| is con-
siderably smaller than that of Ref. 35 (2.30 as compared
to ~10).

VI. THE HEXADECAPOLE ANTISHIELDING
FACTOR 1,

We have previously obtained values of the anti-
shielding factor® 5, for a possible nuclear hexadecapole
moment, for the Cu*, Ag*, and Hg*+ ions. The cal-
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culated values are as follows:

7o(Cut)=—1200; 7,(Agh)=—8050;

ne(Hg)=—63000. (112)

Since there has been some interest in doing an ex-
periment® using Cs, we have calculated 7., for the
Cs* ion. The 4d-d perturbation makes the pre-
dominant contribution. The appropriate equation for
v1,5°(4d — d) is given by

a2 6
l:—"—‘f'—"— Vo—Eo]vl,H’(4d — d)

dr?  r?
0] o

with the orthogonality condition

/ wi/ (4d)vy i (4d — d)dr=0. (114)
1]

The resulting 7.,(4d — d) is obtained from
7o(4d — d)=(80/63) / o' (Ad)vs, 7' (4d — d)ridr . (115)
0

As in the work on v, for Cs*, we used the Hartree-Fock
(4d) wave function obtained by Freeman and Watson.”
The result is 7,(4d— d)=—662.3. If one assumes
that 9,(3d — d) is of the order of —10, one thus ob-
tains for the total 7, for the Cs* ion: 7,(Cst)=—670.

This value is considerably less in magnitude than
the result for Agt(—8050), the reason being that the
4d wave function is very much contracted as compared
to that for Ag*t. This contraction arises from the fact
that the 4d electrons in Cs* are relatively internal,
being located inside the main part of the charge dis-
tribution of the Ss and 5p electrons.

In connection with the question of the possible detec-
tion of a nuclear hexadecapole moment (HDM), we
wish to point out that it is likely that the nuclear
HDM can be considerably enhanced by collective
effects, in the same manner as the nuclear quadrupole
moments. There are two regions of the periodic table
with large (collectively enhanced) quadrupole mo-
ments.*® The first region extends roughly from Pm?!5!
(Z=061) to Ir'¥! (Z=77), while the second region starts
approximately at Ac?’ (Z=89) and extends to the
highest Z values which have been investigated, in
particular, Am?¢! and Am?*# (Z=95). In addition to
large collective effects, one requires, of course, that the
spin I of the nucleus be =2 for the hexadecapole inter-
action to be measurable. In addition, if the experiment

¥ W. G. Proctor (private communication).
% G. H. Fuller and V. W. Cohen, Nuclear Moments, Appendix 1
to Nuclear Data Sheets (Oak Ridge National Laboratory, 1965),

pp. 1-17.
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is done with an ionic crystal (rather than by an atomic-
beam method), one would like to have as large an
antishielding factor |[7,| as possible. As shown pre-
viously in Ref. 5, one obtains a large value of |7,| if the
outermost shell of the ion is a d shell.

In connection with the first region, Z=61 to 77, we
note that the 44 shell is already filled at Ag (Z=47), so
that it will be relatively internal in the region of the
rare earths. However, it should be pointed out that
for thenium (Z=75), the 5d shell is at least half-filled,
the lowest configurations being 5d°6s? and 5d%6s. For
both Re!%5 and Re!®” the quadrupole moment is ~--2.6b
which is quite large (1b=10"2¢ cm?). Moreover, the
spin =% for both cases, which may make it possible
to observe a hexadecapole interaction, since the half-
filled 54 shell is expected to lead to a large | 1.,|, perhaps
of the same order as that for Hg**, which differs from
Re in two ways which tend to compensate each other:
the number of 5d electrons is greater for Hg, by a
factor of 2, but on the other hand, the 54 electrons are
on the average more tightly bound than for Re.

In the second (actinide) region, the 5f shell is being
filled, and for americium, the ground-state configuration
is 5f76s%6p%7s%. The nuclear quadrupole moment is
+4.9b for both Am?¥ and Am?24, with /=% in both
cases. Although the f electrons are not as effective in
producing a large |7.| as are the d electrons® (for the
same amount of binding), nevertheless the half-filled
5f shell for Am may produce an appreciable anti-
shielding. We also note that for U?% with I=%, the
quadrupole moment is large (4.1b), and although
the ground-state configuration contains only three 5f
electrons plus one 64 electron, the U?% nucleus may still
be a good candidate for detecting a nuclear HDM,
possibly by an atomic-beam method.

Summarizing this discussion, we can state that in
addition to the nuclei suggested previously*! for detect-
ing a nuclear HDM, namely Zn®’, Ge’3, In!3, Sb%,
and Sb!?3 which were chosen on account of the small
number of electrons outside closed d shells, it may
also be useful to consider nuclei in the lutetium-
rhenium region, as well as the actinide elements. In
each of these two classes of nuclei, the hexadecapole
moment is expected to be considerably enhanced by
collective effects.

VII. HYDROGENIC WAVE FUNCTIONS

In this section, we will obtain the values of
Yo(nl—1") for the case of hydrogenic wave func-
tions. It should be emphasized at the outset that these
results will be mainly of academic interest, since the
actual wave functions are considerably different from
hydrogenic functions (except for 1s, and possibly 2s
and 2p), so that the numerical calculations which have
been discussed above are required to obtain reliable
values of v,. Nevertheless, the hydrogenic results for

4 R. M. Sternheimer, Phys. Rev. Letters 6, 190 (1961).
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Y, in particular, for the angular modes (I'=I42),
may be of some interest, because they have led to the
discovery of a rather unexpected property of the radial
hydrogenic wave functions.

For the case of hydrogenic wave functions, the equa-
tions for u,'(nl— 1) and v/(nl—U) [Egs. (8) and
(51)] can be solved analytically.1®4? In the present
work, we will obtain v,(%/ — /;) by means of the pertur-
bation v,/(nl — l1), for which the equation is as follows:

a L(h+1) 2z 2*
[ 2D 22y

T
dr? r? r n

=ug/(ul)/r5. (116)

The resulting shielding factor vy.(#l— 1) is given by

0

Yeol 2l — l1)=Cu,(2)/ wo'vi'v%dr (117)

0

where Cy,®=8/5 for ns—d or nd—s; and Cy, @
=172/25 for np— f or nf— p.

We have previously*? obtained the following results:
VYo(ls = d)=2/3Z, vo(25— d)=4/3Z, v.(2p — f)
=48/257, and v.(3p — f)=78/25Z.

For the case of ns— d with =3 and np — f with
n=4, one encounters the difficulty that the correspond-
ing unperturbed states ns and nd, or np and nf are
degenerate, and therefore the unperturbed functions
uo'(nly) already satisfy the homogeneous equation
corresponding to (116). As a result, Eq. (116) alone is
insufficient to determine the function v,/(sl — I;), and
an additional condition is needed.

In order to resolve this difficulty, we will consider the
case of 3s— d as an example. According to the usual
first-order perturbation theory, any possible mixing
of 3s with 34 will depend on the matrix element of the
perturbation, namely, Hqo=—QP2s(cosf)/r® between
these two states. Thus, we are led to calculate the value

(H1)3s,3a= _Q/"’/“” 10(3s) [ P2(cos8)/r* Juy(3d)dr

Xsinddo, (118)

where #,(3s) and #%((3d) denote r times the complete
wave functions for 3s and 3d, i.e., including both the
radial and the angular part. Thus, we have

#0(35) =u,'(35) O,
ug™(3d) = uy'(3d) O™,

(119)
(120)

where the superscript 7 denotes the magnetic quantum
number m of the 3d state considered. It is clear that
for the 3d state with m=0, the angular part of the
integral (118) will not vanish, since /3™ ©,°0:0P,
Xsinfdf=1/(5)"2. However, we found the rather

2 H. M. Foley, R. M. Sternheimer, and D. Tycko, Phys. Rev.
93, 734 (1954).
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surprising result that the radial integral is zero, i.e.,

/ ; o' (35)ud' (3d)r—3dr=0. (121)

This property can be easily verified upon using the
expressions for #¢'(3s) and u,'(3d), namely,

27112
'(35)= Zr—27%2 4 (2/2T) Z4N)e= 213, (122
W)= O/, (1)
4z
uy' (3d)=—————(Zr)3% 2718, 123)
’ 81(30)!2 (

The result (121) implies that the perturbation Hg
does not lead to an excitation of 3s to 3d states in first
order, and therefore we must choose that solution of
(116) which is orthogonal to #y’(3d). Thus, the added
condition on v,’(nl — 1) can be written as follows:

/ o1’ (nl — L)uy (nly)dr=0. (124)
0

We will now show that the condition (124) holds in
general for all cases where there exists a state%/; which
is degenerate with the initial state #l.

To start with, it was found that an analogous
property to Eq. (121) holds for all = 3, that is, we have

f uy' (ns)uy'(nd)r3dr=0 for n=3. (125)
0

The result (125) can be easily verified for (4s,4d) and
(55,5d) using the expressions for the corresponding
radial functions %, (ns) and uy' (nd).

For the nd — s excitations, the situation is obviously
similar to that for #s— d. Since according to (115),
there will be no mixing of #,’(ns) with the unperturbed
function #y’'(nd), we must again impose the condition
(124) on the solution of Eq. (116), in which now /=2
and /;=0.

Proceeding to the calculation of vyo(np— f) for
n=4, we would again have a mixing of nf with np,
unless the corresponding matrix element (H1)np,ns
vanishes. In similarity to Eq. (118), the angular part
of the integral for (H1i)up,ny Will not be zero for the
state 2 f with the same value of the magnetic quantum
number m as the initial state (zp). However, it is
easily verified that the corresponding radial integral
vanishes in all cases (for all ). Thus, we find

/‘” uy' (np)uy’ (nf)r3dr=0 (n=4). (126)

Hence, the supplementary condition of Eq. (124) is
again appropriate, in which now /=1 and /;=3.

In the same manner, for the perturbations #f— p,
we have the condition (124) with /=3 and /;=1.
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We have subsequently discovered that a property
analogous to Egs. (125) and (126) holds for a wider
class of integrals. The complete statement of the
orthogonality property is that the integral

K ,s= / uy' (mh)uy (nl)r—2dr=0, (127)
0

provided that s=2, 3, - - -I—1'+1, where I>1". A proof
of Eq. (127) has been given by Pasternack and
Sternheimer.®

We will now obtain the value of y,(3s— d). For
simplicity of notation, we will take Z=1 in the follow-
ing derivations. It will be shown below that all expres-
sions for y.(n!— ") are proportional to 1/Z, so that it
will only be necessary to divide the final result by Z.
The dependence of the perturbed function v,/(nl— ')
on Z will also be derived below.

In view of Egs. (116), (121), and (122), the equation
satisfied by v1/(3s — d) is given by

ad 6 21

(———-I-—-~ —+")711'(3S —d)
ar® 2 r 9

1 2 2

———+——>, (128)

=A3se—”3(
2 3r 27

where A3, =2%(3)~1/2 It is easily shown that a solution
of Eq. (128) is given by

1 1
v’ @ (3s—d)=A4 336_”3(8_1_2;’) . (129)

We have used the additional superscript (0) for 1/
in order to denote the fact that this function is not yet
the actual solution, since it is not orthogonal to #,'(3d),
as is required by Eq. (124). Thus we find, upon using
Eq. (123) for u'(3d),

/ 21’ ©(3s — d)uy’ (3d)dr=— (130)
0

18(10)1/2”

Hence the actual solution v,’(3s — d) is given by

2/ (3s > d)=v/©3s— d)+ ' (3d)

18(10)172

1 1
= e ¥ 1——r+—3) . (131)
9(3)1/2 3 405

Finally, we obtain from Eq. (117)

00

uo' (3s)v1'(3s = d)r2dr=+2, (132)

8
Yo(3s > d)=- /

SJo
so that for arbitrary Z, y.(3s — d)=-42/Z.

4 S. Pasternack and R. M. Sternheimer, J. Math. Phys. 3,
1280 (1962).
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For vy.,(4s— d) we can proceed in the same manner.
The inhomogeneous equation for v:'(4s — d) is given by

a2 6 2 1

<——~—+———+—>v1'(4s —d)
ar? 2 r 16

1 3 1

v
=A4se“§"(~—-———|—————), (133)
P2 4r 8 192

where A4=%. The function v,/ @ (4s — d) obtained by
direct solution of (133) is as follows:
1 3 1
21/ @ (4s — d)=A4se“%’(———r+———r2> . (134)
6 72 192

By requiring orthogonality of the actual solution ,’
on #,’(4d), one finally obtains

1
’ — 0 7(0) d)-— '(4d
2/ (4s — d)=v,/ (45 — )+72————u(5)”2 o' (4d)

1 1 5 1 1
= —e—%r(———r-f——rz—f—
4 6 72 192 5760

1
73————1'4> . (135)
69 120

The resulting value of y,(4s — d) is
8 8
Yeo(ds — d) =g / o' (45)v1 (4s — d)r2dr= —l-g . (136)
0

In the same manner, we have calculated that
Yo(5s — d)=-+10/3. Upon using this result together
with the values of y,(ns— d) for n=1, 2, 3, 4, itis seen
that y,(ns — d) is given by

Yoltts — d)=—+3%n. (137)

The simple proportionality of y,(#s— d) to the
principal quantum number # was rather unexpected.
Actually, it will be presently shown that all of the
shielding factors y,(nl— l42) to be considered here
can be expressed in the form

Yol —> 1£2)=an+0, (138)

where ¢ and b are constant coefficients. Thus, for
Yeo(nns— d) we have a=-+%, b=0.

We will now obtain v,(3d—s). The equation
satisfield by v1/(3d — s) is given by

uy/(3d)

a2 21
(‘—~—+5)”1’<3d->s>= Asae™, (139)

7
where A34=4/[81(30)'/%].

The solution obtained by direct integration of
Eq. (139) is found to be

29/ ®3d— 5)=—2A307¢7%".

(140)
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It can be easily verified that the above function is
orthogonal to #y'(3s):

/ v’ 0 (3d — 5)uy' (35)dr=0, (141)
Jo

so that /@ (3d — s) is identical with the actual solu-
tion 91/(3d — s) to our problem. Finally, we obtain

Yoo(3d — 5)
8 0
- / o1/ (3d — s)uy' (3d)rtdr=—(6/5). (142)

The negative sign of v,(3d — s) indicates antishielding
of the nuclear quadrupole moment.

For v.(4d — s), the function v,/ ®(4d — s) obtained
by direct solution of the inhomogeneous equation is
orthogonal to #,'(4s), in the same manner as for 3d — s.
We thus obtain

29/ @ (4d — 5)=0v/(4d — 5)

7 3
= ————e"/‘*(r-——drz) , (143)
576(5)2 28
which gives v,(4d — s)=—28/15.

In an entirely similar fashion, we find v,(5d — s)
=—38/15. It should be noted that these three values
of yo(nd—s) are antishielding, and that they vary
linearly with #. In fact, we can write these values in
the form of Eq. (138), namely,

Yoo(d — s)—3n+%. (144)
Thus ¢=—%, b=-% in the notation of Eq. (138). We
remark that the value of a for (#d — s) is just minus
the corresponding value of & for (#s — d). We shall again
find the same situation for v(np — f) and v(nf — p).

For v,(2p— f) and v.,(3p — f), values have been
previously obtained in Ref. 42; these values are 48/25
and 78/25, respectively. For v,(4p — f), the inhomo-
geneous equation satisfield by »/(4p — f) is given by

az 12 2 1 1
(~—+———+_)v1,(4p — f)=—u(4p)
r 16 73

dr? 72

11 1
=A4pe—%r(———+—~r), (145)
4 80

7

where 4 4,=17¢()Y2 By direct solution of (145), we find

o' ©(4p— f)=Ape*[(1/12)r—(1/80)r*]. (146)
Furthermore,
/; 21’ (@ (417 — f)%o,(4f)d7’= —2—4(2—1);; . (14:7)
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Hence, the complete solution v1/(4p — f) is given by

o/ (4p— fl=v/O@p— )+ o'(4/)

—_—
24(21)12
S5\2/1 1 1
& G
3 64 3 20
whence

700(4P - f)

1
————-r4) , (148)
10 080

72 108
=5g/0 v1'(4p-—>f)u0’(4p)r2dr=+—2€. (149)

In a similar manner, one finds y,(5p — f) =-+138/25.
Thus, the values of y,(np— f) can be represented as
follows:

volnp = )=(6/9n—12/25,  (150)
ie., Eq. (138) with ¢=6/5, b=—12/25.

Finally, we will calculate y,(4f— $). The solution
v1/(4f — p) is determined by the equation

( - -+ 2 2+ ! ) (4 )
—_t —
dr? 2 r 16 W=

1
=—3uo'(4f)=A4;re"%’, (151)
r

where A 4;=1/(768(35)1/2). By direct solution of (151),
we obtain

0 O@f— p)=—Ayrte, (152)

and this function is orthogonal to uy'(4p), as can be
easily verified. The present situation, namely, that
v/ (nl— 1—2)=v/O(nl—1—2) is similar to that
previously encountered for (nd — s).

From Eq. (152), we obtain

;2 , , 9 ;2 )

Similarly, we find y.,(5f— p)=—102/25. Thus,” the
terms yo(nf — p) are antishielding in the same manner
as Yo(nd — s). We can write

Yolnf— p)=—(6/5)n—48/25.

As previously noted, we see that the value of a for
(nf— p) is just the negative of a for (np — f) [see
Eq. (150)7.

Thus, we have found that the terms due to the angu-
lar modes v, (#l— I42) can be expressed in the form
an+b, as a function of the principal quantum number
n, for the case of hydrogenic wave functions. Moreover,
the coefficients @y for (nl— I4=2) are related by the

(154)
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equation ¢_=—a,. It is noteworthy that such a linear
relation does not appear to hold for the radial anti-
shielding terms v,(#l— 1), for which /= Thus, in
Ref. 42, we have obtained 7v,(2p— p)=—268/25
=—10.72 and v.(3p— p)=—1008/25=—40.32. We
have furthermore calculated y,(4p— p)=—2468/25
=—98.72, from which it is apparent that |y.,(7p — p)|
increases faster than linearly with increasing .

Finally, we will prove that for hydrogenic wave
functions vy,(nl— I;) is proportional to 1/Z in all
cases (l1=1I or I42). For this purpose, we consider
Eq. (116) for vi/'(nl— 1) and define y=_Zr. We thus
obtain

zz[ @ 1) 2 1

—— fF— | (nl— b)
dy? »? y n?

Z3uy (nl)
=2 (1ss)
y3
The unperturbed function #,'(%l) can be written as
follows:

u)=21%(y), (156)

where f(y) is a function of y only, as indicated. It
follows from Eq. (155) that

o' =2%%(y), (157)

where g(y) is a function of y=Zr only. Hence the
shielding factor 4., can be written as follows:

000

uy'vi redr

) y2d
= Cll1(2) [ szg( y)
v 0 Z3

Yool — )= Czh(”/

0

= Cm“’)Z“I/ foyidy, (158)
0

which completes the proof that vy.(nl— I;) is propor-
tional to 1/Z.

VIII. SUMMARY

In this paper, we have shown that the first-order
perturbation theory which has been previously applied
to obtain the quadrupole antishielding factors v,
and R, and the polarizabilities ag and a, can also be
used successfully to calculate the rare-earth ion shield-
ing parameter o2 The values obtained for o2(Pr¥*t) and
a2(Tm3*) are in good agreement with the experimental
results.! The present calculations are more complete
than previous ones,? since they include at once the
excitation of S5s to all possible d states (including the
continuum states), and similarly the excitation of 5p
to all possible p and f states. Moreover, the author’s
method? of direct solution of the Schrédinger equation
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has been used, which is inherently more accurate than
the variational procedure or the method of configura-
tion interaction, using a limited number of excited
states. In addition, it has been shown that the effect
of the exchange terms of o3 is small compared to that
of the direct Coulomb terms.

The present calculations of the quadrupole ‘anti-
shielding factor v, for Cst*, Pr¥, and Tm3* give more
accurate values than those which have been previously
obtained in Refs. 8 and 9. For Cs*, the improvement
comes from the use of Hartree-Fock wave functions
instead of the Hartree functions (excluding exchange),
which were the only ones available at the time of our
previous calculation® (in 1955). As a result of the use of
the Hartree-Fock wave functions of Freeman and
Watson,” the value of |v.,(Cst)| is reduced by ~30%
as compared to the Hartree function value. A similar
decrease? has been previously found for v, of Rb*.
For Pr#*+ and Tm?*, the present results for v, (—80.9
and —75.3, respectively) are slightly more accurate
than those obtained previously,® because the present
work includes a calculation of the #/— modes of
excitation of the inner shells (#=<3, and 4d— d),
which had not been carried out in Ref. 8. The quadru-
pole antishielding factors v, for the AI** and I~ ions
obtained in this paper have not been previously cal-
culated by the method of direct integration of the
inhomogeneous Schrodinger equation. In addition, we
have also calculated the atomic shielding factor R
for the 4f electrons in Pr¥* and Tm3*, and the results
(corresponding to a shielding of the order of 10-209)
were found to be in reasonable agreement with experi-
ment.
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The problem of the detection of a possible nuclear
electric hexadecapole moment (HDM) has been dis-
cussed, and it has been pointed out that if collective
effects play an important role in enhancing the nuclear
HDM, then the most promising regions of the periodic
table are those extending from Pm (Z=61) to Ir
(Z=177), and from Ac (Z=89) to Am (Z=95), since
both regions exhibit large quadrupole moments. A case
of particular interest is that of rhenium (Re'®® and
Re!%"), because the presence of the half-filled external
5d shell of the atom is expected to lead to a very large
value of the hexadecapole antishielding factor® ||
(perhaps of order 50 000).

Finally, we have obtained the values of the shielding
factor ye(nl— I+2) using hydrogenic wave functions.
Although this calculation is only of academic interest
as far as the practical evaluation of v, is concerned,
it has led to two interesting results (1) the discovery
and proof*? of a new orthogonality property of the
hydrogenic radial wave functions; (2) the fact that in
all of the cases considered, v.(nl— /24=2) is a simple
linear function of the principal quantum number #:
Yo(nl— U')=an-+b, where the coefficients ¢ and &
depend on / and I’ only (but not on %), and are inversely
proportional to Z.
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