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Algebra of Currents and Forss1 Factors at Finite Momentum Transfer*
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By using equal-time commutation relations of chiral SU (3) )&SU (3) current components, and the partially
conserved-axial-vector-current hypothesis, we derive several relationships among the axial-vector and
electromagnetic form factors and the pion electroproduction amplitude at nonzero momentum transfer.
In the approximation of retaining only the (3,3) resonance contribution to the pion electroproduction
amplitude, we derive an approximate identity of the isovector Dirac charge form factor and the axial-vector
form factor. Further sum rules for the isovector and isoscalar Pauli magnetic-moment form factors are ob-
tained which are fairly well satisfied. The form factor for the induced pseudoscalar coupling is discussed.

I. INTRODUCTION

POWERFUL method has been derived by Fubini
and Furlan' to extract physical information from

the current algebra proposed by Gell-mann. ' This
method together with the notion of a partially conserved
axial-vector current' (PCAC) has been used by Adlers
and Weisberger' to obtain the renormalization of the
P-decay axial-vector coupling constant in impressive
agreement with experiment. The method has since then
been extended to various other decays with encouraging
results. ' All the applications of the method so far, how-
ever, have been discussed at zero momentum transfer in
connection with the decay constants and not with the
form factors. In this paper we apply this approach to
calculate the axial-vector and the electromagnetic form
factors. Thus we derive several sum rules among the
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axial-vector and electromagnetic form factors and the
pion electroproduction amplitude at nonzero momentum
transfer. At zero momentum transfer, two of the sum
rules reduce to the expressions relating the isovector and
isoscalar Pauli magnetic-moment form factors to the
pion photoproduction amplitude, the relations derived
previously by Fubini, Furlan, and Rossetti. In particu-
lar, in the approximation of retaining only the (3,3)
resonance contribution to the pion electroproduction
amplitude, we obtain

G~(t) iG~= F,'(t),
-', Fs (t) = (8/9)-,'Gsr (t), (1 2)

where G~(t) is the axial-vector form factor, F,v(t) and
Fs (t) are the isovector Dirac and Pauli form factors,
and Gsr (t) is the isovector Sach's magnetic-moment
form factor. The form factors are normalized such that
G~(0) =G~, Fr (0)=1,Fs (0) =trv', Gsr (0)=trv, where
p&' and p, & are respectively the isovector anomalous and
total magnetic moments of a nucleon; pal = 4.7, py'= 3.7.
We also discuss the form factor for the induced pseudo-
scalar coupling and show that besides the usual contri-
bution from the pion pole, this form factor has also a
small second-order contribution in our approach.

At zero momentum transfer the left-hand side of Eq.
(1.2) is 1.85 while the right-hand side is about 2. The
small discrepancy is discussed in the last section.
Equation (1.2) also implies the form equality of the
form factors Fsv(t) and Gsr"(t) and in turn that of
Fr (t) and Fs (t). Such a form equality is consistent
with the existing experimental data on electron-nucleon
scattering. The relation (1.1) can be tested in high-
energy neutrino experiments and in fact these experi-
ments' do indicate that the relation (1.1) is consistent
with the data. A similar approach to ours has been
suggested by Fubini. '

' S. Fubini, G. Furlan, and C. Rossetti Nuovo Cimento (to be
published).
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2. FORMULATION

We start with the identity'

With the use of Eq. (2.3), Eq. (2.1) is written

i d4xe-*'& *b(xo)(P'~PAD (x),j (0))~P)

iq&M „=i d4xe(xo)&P'~$B„A„(x),j„'(0))~P)e '& *

where

p
=~q"M„,~+ —R„(v, ve, —q' k')— (2 5)

~gqa+"2

+i d'xe —"*5(xo)(P'~$AO (x),j„ei(0))~P), (2.1)
v

nzv= —P k,
2mvz= q k,

k=p'+q —p, and P=-', (p+p').
(2.7)

d'xe "*e(xo)(P'IrA (x) j (0)PIP). (22)

where A„(x) is the axial-vector current of the isospinn, X&p'le( o)E4..( ),j."(0)]lp). (2.6)
and j„"=V„'+(1/v3) V„' is the electromagnetic cur-
rent. The matrix elements are taken between the The quantities v, vg, and k are defined by
nucleon states of momenta p and p'. M„„ is defined by

According to the PCAC hypothesis, we have

B„A„(x)= —(f./v2) p'@» (x) (2.3)

where p denotes the pion held of isospin n and of mass
p. The Goldberger-Treiman relation" is

f-/~~= —(G~/G)[m/g. K(0)3 (24)

where G~ is the axial-vector coupling constant, G~
—1.186, g„ is the pion-nucleon coupling constant,

g 2~( 4) &&14.5, m is the nucleon mass, and K(t) is the
pion-nucleon vertex form factor normalized to unity at
t =p,', t being the invariant momentum transfer squared.

Consider the limit q„~0 of Eq. (2.5). The left-hand
side reduces to'

&&'~&I-'(0)» "(0)jl p)=~'e- 6"IA '(0)
I p) (2 g)

where I '(t) =J'd'x Ao~(x, t), and we have assumed the
chiral SU(3)XSU(3) algebra of current components.
Thus

'"-3e(p'IA. '(o) lP)
f-

=lim iq"M„„+ —R„~ . (2.9)
ItP~ ~ qm+"2

To evaluate the right-hand side of Eq. (2.9), we write

f- fx
i'e~3e(P'~A„e(0) ~P)= lim iq"M +—R ~a""& +lim — (R„—R «no»&)

v2 q& 0 ~2q2++2
where we define

ypq iqy5
R„'& ""&=I(p') g,K( q) — r—F„(k) g,K( q)F„(k—)r-

2m(vs —v) 2m(ve+v)

(2.10)

~=P' P—K( ~')F (—k') (k——2q) K(—q')Fi" (—k') —F.(—P)K(—~') (2.11)
kg"I r~&ran~'Y& + k„ l(p),

k —2k q+q2+p, 2 k2

The quantities E and P„are given by

(P'I&-
I P)=, g.KL (P P')'JN(p')~v—'r.«(—p),"'+(p—p')'

&p'I j Ip)= (p')F. (p' —p) (p), (2.12)

F.(k) =
kgF, e( k')+r, F,v( P)Fi (—k')+rP, (—P)

pv &vy
2 "2m

"V. Alessandrini, M. Beg, and L. Brown, Phys. Rev. 144, 1136 (1966). See also S. Okubo, Nuovo Cimento 41A, 586 (]966).Qljth
Alessandrini, Bdg, and Brown, we maintain that the surface term is absent if q+p' does not lie on a mass hyperbola. pn our case,
we must keep q„not equal to zero, but small. The limit q„—+ 0 must be taken at the very end."M. L. Goldberger and S. B. Treiman, Phys. Rev. 110) 1178 (1958); 110, 1478 (1958).

"The use of this commutation relation in evaluating the axial-vector form factor was also suggested by S. Qkubo, Ref. 10.
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F (—k') is the usual pion electromagnetic form factor. R. ' ""' is defined so that k "R„»&s""&(v, v&z, tz', —k') =0.The
limit of the first curly bracket on the right-hand side of Eq. (2.10) is well defined. To evaluate the second term on
the right, we assume that the behavior of the term inside the second curly bracket near q„0 is dominated by the
pole term at —q2=@2. Thus we assume

p2
(R„»—R»(so~)) = lirn (R„»(v v tgg —kg) —R»(s&»») (v v tgg —kz))

ging
Q f2+p2 r,r~ (2.13)

3. SUM RULES

The left-hand side of Eq. (2.10) may be expressed in terms of G&(t) and gz(t):

Gg(t) g„(t) r—
(P'l~.

I
p)=u(P') z~.vg —(P' P). —

vg ~(p),
G G 2

gz —
(p p~)z

(3 1)

The term iq„M„„vanishes unless an intermediate state contributes which is degenerate in mass with the
nucleon. "This is the case here. The nucleon contribution to iq&M„, is

zqvM„. =u (p') (1/G) ([G~yg+2mGg (ygzq/2m(v&) v) )]', r,—F„(k)+-F„(k)-,'r»
X$G~qg 2mG—~ (gag/2m(vs+ v))5)u(p)+O(l qv

l ) (3..2)

Hence, by virtue of (2.4), Eqs. (2.11) and (3.2) give

lim(iq"M„„+(f /v2)R„' '~&j
Qtt~

G~ 1 G, -E'(t) F.(t)=u(p') ——fr.,rg]-,'F,-(t)y,y g m ',[r.—,rg5iy-gk„
G 2 G E(O)t—ug

E(0)F,v(t) F (t)E(t)- G~ 1 Fgv(t) 1 Fgs(t)+- —8.g +r ygo„—gk" u(p). (3.3)tE (0) G 2 2m 2 2m

The amplitude R, (v, vt&, tgg, —k') is just that of the electroproduction of pions, and has been studied by Fubini,
Nambu, and Wataghin, "and others. "In the isospin space, this can be decomposed into

and we write
R„=b gT„'+'+ ,'Pr, rg]T„& &+-r T„&'&— (3 4)

R,»(v, vg), tgg, —k') = (R„(v, v», tzg, —k') —R„»' '~'(v, vs tg' —k'))
Hence from Eqs. (2.10), (2.13), (3.1), (3.3)—(3.5), we obtain

G~(t), g~(t)
u(p') — v.vg z(p' P). vg u(P—)—

G G

G, G& E(t) F.(t)— E(O)F,'(t) —F.(t)E (t)~
=u(p') — F '(t)v.~ + ——2m + 7 (p' P). u(P)—G G E(0) t tgg—tE(o)

(3 3)

+v2f lim T„&—
& (v, vs, tz', k'), (3.6)—

r, v~
G„1Fzv(t) 1

0=l ——— u(p')ygo. &k"u(p)+ f 'lim T.&+&—(v, vz), tgg —k')
G 2 2m v2

Gz 1Fgs(t) 1' ysorA"u — lim T„&'& v, v~, p,', —jP .
G 2 2m

» S. I-ubini, Y. Nambu, and A. Kataghin, Phys. Rev. 111,329 {1958)."P. Dennery, Phys. Rev. 124, 2000 (1961).See also J. S. Ball, ibid. 124, 2014 (1961).
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Writing —
M~ =yog„qk" = i—y, (y„k k—7.), the last two equations can be put into the form

G~ 1 Fov(i)
u(p')Mgu(p) = (1/V2) f. lim T„&+&(v, vg, 44', —k'-),

G2 2m v,r~ (3.7)

(
G~)1 Fo'(&)

u(p')M~u(p) = (1/V2)f lim T o&(v, vg, g,', —k').
G)2 2m I4

& VH~
(3.8)

First we observe that since the electromagnetic cur-
rent is conserved, we must have in the limit of zero
momentum transfer (k'=0= t), the following relation

G~(0) = ——Fgv(0),
G G

(3 9)

M~ ,'iso(——y„—k ky„)—= —goo, ),k), ,
Mg= 2iyog2mv gP„+mvq, 7,
Me=go(2mv gy. kq.7—,
Mn= 2yo[ may„P„k—7 2mM—g, —
Mg=iyo[2mv gk„k'q„7, —
M v=yot kk„—k'y„7. (3.11)

We assume that H, (v, vg, +u', —k') satisfy the unsub-
tracted dispersion relations"

i.e., Fqv(0) = 1. Hence for t=0, there is no contribution
from the last term of (3.6), i.e., from the continuum.

Ke now discuss the contributions from T, T+, T' to
Eqs. (3.6), (3.7), and (3.8) . It hs.s been shown in Ref. 13,
that any of T's or T's can be written as

T„=u(p')$HgMg+H gM g+HoMo+H gMn
+H gM g+HvMv7u(p), (3.10)

where

T„=u(p')P A,M,u(p), (3.14)

where

My= My, Mo 2iy——ofP„(2mv g ,'k')+—(—q„',k„—)m-v7,

M3 ——Mg, M4 ——Mg), M5= M~, M6= N p.

We then have

4mv~
——Hg,

4mvgg —P

2mv
AS=HE+ Hg,

4mvg —k2

(3.15)

and A&, A3, A4, A6 are equal to HA, H&, H&, and H p
respectively. The amplitudes A; are devoid of kine-
matical singularities as vg ~ 0 (see Appendix).

Now as q„v 0 (vg~0, v~0), we have

It turns out, however, that the decomposition (3.10) is
not a convenient one for our purpose, since the ampli-
tudes Hg and H~ contain singularities at v~=0 as we
show in the Appendix. A more convenient set of ampli-
tudes is gotten by writing"

8,(v, vg, u' kg)— 2~+S~v= ~A, ~2= ~PSI'v~= -2~~A y

Mo ——M4 ——Mo ——0, Mo= 2imyo(—P' P)„+ly—oy„,

(3.16)

dv' ImH, (v') vg, u', k')—
1

X ~, (3.»)
V V V+V

and

4m
AQ(v', 0 p, t) = lim vgHg(—v', vg 14,t) . (3.17)F~

where B;=LH, —H;(Born) 7, vo= vg+u'+u'/2m. In the
dispersion integral the plus sign holds for HA+', H~+',
H~+', H~-, H~-, H&- and the minus sign for HA-, H~-,
Hn, Ho+ o, H g+, Hv+ . It follows, then, from (3.12)
that

O=B& (0, vg, u, —k ) =Bg (0, vg, u, —k )
=En-(0, vg, u', -k') =Bc+ '(o, vg, u', -k')
=Bg+'(0, vg, u', —k') =Bv+ '(0, vg, u' —k'). (3.13)

T„+'(0,0,p', t) =J+'(t)u(p')Mgu(p), (3.18)

T„—(0,0,u', t) =Bv—(0,0,p', t) Ltu(p')

goy�

„u(p)
2imu(p'—)yo(p' p)„u(p)7—, (3.19)

where

Thus from (3.10), (3.12), (3.13), (3.15), (3.16), and
(3.17), we obtain

I' The only subtraction is that included in R, (~"n), Eq. (2.ii),
to make k"R„& "&(v, vg, y~, —k~) =0. It is possible that, for
negative k, corresponding to t&0, subtractions are necessary. To
be more specifIc, are assume that amplitudes H;(v, vg, p,', —k')
obey the unsubtracted dispersion relations (3.12) for positive k', or
t &0. Equations (3.22) to {3.25) are then valid only for t (0. For
t &0, these equations must be analytically continued from t &0.

2
J+,o(0 0 uo, t) =— dv

Iml+ o(v', O,uo, t),
V

ImHv (v', O,u', t),
2 dv'

Hv (0,0u', i)=
V

(3.20)
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with

Iml+ '(v', O,p', t)

= llm DmP~ ' (v ~ vs) jP) k )

+2m' ImPs+'(v', vs, p', —k')j. (3.21)

Hence by using Eqs. (3.18) to (3.21), we obtain from

Eqs. (2.4), (3.6)—(3.8), the following sum rules:

G~(t) Gg
— 2m 2t
F, (t)——

G G g,E(0) pr

of tWO for these sum rules as well as for (3.22) and

(3.23) to get any experimental information in evaluating
the dispersion integrals one has to appeal to the
electroproduction of pions. Such an information may be
very hard to get. We, therefore, in the next section
evaluate the dispersion integrals in the resonance ap-
proximation, keeping only the 3,3 resonance in the
absorptive parts.

4. RESONANCE APPROXIMATION

We introduce the c.m. frame p+k=o= p'+q. Then
the c.m. particle energies are given by

8v
ImP v

—(v', O,p', t), (3.22)
V

W —m' —k' W' —m' —q'

gg(t) Gg E(t) F (t)
2m

G G E(0) p' —t

F„(t)E(t)—F,v(t)IC(0) 2m 2

+ — — +
tK(0) g,E(0) pr

pp

8"+m'+k'
pp

W'+m'+ g'

(4 1)

ImPv (v', O,p', t), (3.23)

1 Fpv(t) m 2 dv'—ImJ+ (v', O,y', t),
2 2m g„IC(0) s v'

1 Fps(t) m 2 dv'—I Jm(v'P, 0,p', t).
2 2m g,E(0) pr v'

(3.24)

(3.25)

where 8' is the total c.m. energy. When q„~o, then in
the c.m. frame

&~m, («~~0, kp~
2m'

—t+2m'

It should be noted that Eqs. (3.22) and (3.23) give
pp ~

2m
pp ~m

G& (t) g„(t)
2m+ tD(t) —=—

Gg
—X(t) p'F. (t)-2m, (3.26)

G K(0) (p' —t)

i.e., D(t) does not depend on dispersion integrals. This,
in fact, follows from current conservation, since the
current conservation,

k„LR„(v v p —kP) —R„~~sP'~~{v v~ pP —kP)]=0

and Eq. (2.10) imply that

i'p p k,(p'~A. ~(0)
~
p)=k„ lim iq„M„, + R„&—

V2

which, on using (3.3) and (3.1), gives Eq. (3.26).
Since in the production of pions by real photons (t =0)

3IJ. and M p do not appear, one can in principle extract
ImJ+ P(v', 0, p', t=O) from the experimental data on the
photoproduction of pions in evaluating the sum rules
(3.24) and (3.25) for the case t=0. For the general case

AVe shall evaluate the dispersion integrals in (3.22),
(3.23), (3.24), and (3.25) by assuming that they are
completely dominated by the 3,3 resonance. We believe
it is a reasonable approximation for the following
reasons: (i) Such an approximation for the sum rule
(3.24) for the special case of t=0 has been shown by
Fubini, Furlan, and Rossetti' to be quite good, and
(ii) even for large values of momentum transfer t the
final pion-nucleon state is still at low energy (in the
c.m. system) and therefore is completely dominated by
the (3—3) resonance. Our procedure will now be as
follows": First solve the Eqs. (3.12) in the static ap-
proximation keeping only the (3,3) resonance in the
dispersion integrals; then insert the imaginary part of
the solution thus obtained into the right-hand side of
the dispersion relations (3.12) to create the real part of
the whole amplitude. The procedure is reasonable be-
cause the recoil is more e6ective in producing new
multipoles than in any large change of the resonant
amplitudes since the static approximation is good for
the resonant amplitudes as in the end we have to take
the limit ~«~~0. In the static approxima. tion it has
been shown in Ref. 13 that the scattering amplitude in
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the c.m. system is

{—,5-,—6[v-,"]}{2q(kxe)+ie sq k
—ie k.q e}B(—0') f33/~q~', (4.2) [G,(t)/G„] =F,v(~), (4.11)

Hence in the resonance approximation, our sum rules

(3.22)—(3.25), give, respectively,

where a is an arbitrary vector and

faa ——e"»sinb, p/~q~,
while

g, G-v( 8)/—2m
B(—P)=

2m 2(gP/4-)(1/4mn)

(4.3)

(44)

g&(&) G~ 2m -E(t)F.(r)
G G E(0)

F.(t}Z(1)—F,"(1)E'(0)-+,(4.12)

Then ImP; are shown in Ref. 13 to be given by

ImH»(v, vB p' —k')=S;B( k') Im—f33/~q~', (4.5)

where

lF '(t) =(1/&(0))(4/9)G '(t),
-'F2 (t)=0

5. DISCUSSION AND CONCLUSION

(4.13)

(4.14)

So 0

S.+= —2S. =-:(cu—IP/m+6vB),
SB+=—2SB ———(1—k'/3mvB)(1/m),

Sc+=—2Sc = —-,'(1+34'/4m'),
Sg)+= —2SD =3,
SB+=—2SB———2co/3mvB,

Sp+—-0,

(4.6)

X ~ . (4.7)
-+VB V N+VB+V

Then Eqs. (3.20), (3.21), (4.5), (4.6), and (4.7) give

7033(0,0,p', t) =0,
2 Im f3, (co')

J+"(0,0,p', t) =-',B(t)— dco' —, (4.8)

Hv —"(00@',t) =0

In the narrow-resonance approximation" one finds that

1 Im f33(co'} g„'
da,

~q'~' 12+m'

so that we obtain finally

J'"(00''t) =0

g. gG "(~)
J+ "(0,0p', t) =——

2m 9 2m

(4.9)

(4.10)

Hv —"(00'',t) =0.
"G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,

Phys. Rev. 106, 1337 (1957).

and the dispersion relations (3.12) are now written as

Hi(V~VB)/l~ 8)
p

ka'ImH 33(co'+vB, vB, y,', —k')
7r

Equations (4.11) to (4.14) are our final results. These
have been obtained in the resonance approximation.
Equation (4.14) ™pliesthat-,'p, '=0, the left side being—0.06 and so Eq. (4.14) is satisfied to a good ap-
proximation. Equation (4.13) gives, for zeromomentum
transfer [taking E(0)=1),

k&V =(4/9)&V (5.1)

The left side here is 1.85, while the right side is about 2.
The value on the right side is consistent with that
obtained by Fubini, Furlan, and Rosetti who obtained
it to be 1.99 by using the isobar model of Gourdin and
Salin. "The agreement between the left and right sides
of Eq. (5.1) is fair; the small discrepancy here as well as
in Eq. (4.14) may be removed by the contribution from
higher states to the dispersion integrals. Indeed it has
been shown in Ref. 7 that the (1,3) resonance at 1515
iMev reduces the right-hand side of (5.1) to the right
amount. Ke also note that the resonance approximation
gives an overestimate. This is the case with our Eq.
(5.1) and in Ref. 7. This was also the case in Adler and
Weisberger's calculation' ' where, as shown by Mler,
the (3,3) resonance alone gives —Gx/G=1. 44 which is
reduced to 1.2by thehigher states. Equation (4.13) also
implies theshape equality of the form factors F2v(t) and
G-v(t) which in turn implies that the form factors
F2 (~) and Fi (t) have the same form since GMv(t)
=F,v(t)+F, v(t).

Our Eq. (5.1) shows that the (3,3) resonance ap-
proximation is quite good. This may, however, not be a
good approximation for the axial-vector form-factor
sum rule since otherwise it will be hard to understand
the relation (4.11). The point is that while Fiv(t) is
dominated at low momentum transfer by the p-meson
pole, no axial-vector meson has been found at about the
mass of the p meson to dominate G.(t). Hence the
higher states in the dispersion integral of the sum rule
(3.22) might be important and change the relation
(4.11) obtained on the resonance approximation. It will
be very interesting to measure the axial-vector fornax

» M. Qourdin and P. Salin, Nuovo Cimento 27, 193 (1963),
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factor in high-energy neutrino experiments to test the
relation (4.11).Relation (4.12) is interesting because it
includes, besides the usual contribution from the pion
pole Lthe first term on the right side of (4.12)), the
second-order contribution. It is reasonable to take
F (/) =Fiv(i) for low momentum transfers" and we
know from the success of the Goldberger-Treiman rela-
tion that R'(0) =1; then the second term on the right
side of (4.12) is =0 for zero momentum transfer.

Our sum rules (3.22) to (3.25) are dependent solely on
the equal-time commutation relation (2.8), the PCAC
hypothesis, and the dispersion relations with no sub-
tractions t except that dictated by gauge invariance,
namely the term (F&v(—k') —F (—k')R'( —LP)}/k' in
our expression for R.~& '~', Eq. (2.11)).Actually the
PCAC hypothesis is not necessary'; all that is needed is
that

R„(v, vs, —q', —k')
—[R a(v v& q2 p) R a(sorn)]

where

R„(v, vs, —qs, k»)—

for publication, it came to our attention that the sum
rule, Eq. (3.22) was derived also by S. L. Adler LPro-
ceedings of the International Conference on Weak
Interactions, Argonne National Laboratory, 1965, p.
291 (unpublished)).

It also came to our notice that the sum rules for the
axial vector form factors have also been discussed by
Furlan, Jengo and Remiddi (Nuovo Cimento, to be
published). The treatment of the (3,3) resonance in
their paper is difI'erent from ours. They explicitly put
the (3,3) resonance as a particle in the intermediate
state which dominates the dispersion integral, and in
this way they get a contribution to GA(t) from the (3,3)
resonance whereas we do not. This is probably due to
different treatment of the (3,3) resonance in the two
papers. Out treatment is based on the I'NW method
which makes use of static approximation. The (3,3)
contribution to GA(t) in our method is probably a
higher order eGect.

APPENDIX

In this Appendix we show that in general the ampli-
tudes N& and Mz have a kinematic singularity at
v&=0. It has been shown by Dennery'4 that if one
writes T(v, vs»i', —k') as

should be dominated near q„=0 by the pion pole at—q'=»i'. The sum rules (4.11)—(4.14) are further de-
pendent on the resonance approximation of keeping only
the (3,3) resonance in the dispersion integrals, which
appears to be a good approximation at least for the
relations (4.13) and (4.14).

Soke added in proof. After this paper was submitted"For experimental indication in support of this viewer, see C. W.
Akerlof et a/. , Phys. Rev. Letters 16, 147 (1966).

(A1)

where

Mi=Mg, M2 ——2'»[P„(2mvii ——,'k')+(q. ——,'k„)n»v],

Ma=Mo, M4=Mn, M»=Ms, Ms= M», (A2)

then A, do not have any kinematic singularity at v=0
and v~=0. Now one can write M2 as


