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The ground-state properties of quantum crystals (crystals of the isotopes of He and H&) are studied by
means of a variational calculation using cluster-expansion techniques. The cluster expansion for such a
crystal is derived in a very general form and applied to a trial wave function that is assumed to be a product of
one- and two-particle functions. The energy minimum is calculated by 6rst truncating the expansion to re-
tain only the one-particle and part of the two-particle term. In this form the calculation can be viewed as a
Hartree calculation in which the true interaction is replaced by an appropriate effective interaction. The
validity of the truncation is assessed by computing all of the leading correction terms. Calculations of the
ground-state energy, pressure, and compressibility for the bcc and hcp structures of both 'He and 4He are
presented as a function of molar volume. Although the calculated energies are too high, they represent a
considerable improvement over previous work and the calculated pressures and compressibilities agree with
experiment to about 10%. Tables of the variational parameters which give the minimum energy are pre-
sented. A discussion of the accuracy of the approximations used to treat the correlations in the system is
given.

I. INTRODUCTIOÃ

~CRYSTALS of the various isotopes of helium and~ molecular hydrogen cannot be treated by the
classical theory of lattice dynamics. ' This difficulty is
due to the small mass of these substances and the
weakness of the attractive part of their van der Kaals
interaction. Therefore, the quantum-mechanical zero-
point kinetic energy in such crystals is comparable to
their potential energy, and the root-mean-square devi-
ation of a particle from its lattice site is not small
compared to the nearest-neighbor distance. The prob-
lem is not simply that the anharmonic terms are large;
it is that the harmonic approximation itself breaks
down. This result has been demonstrated by de Wette
and Nijboer' who, in their calculations of the phonon
spectrum for solids with potentials and at densities
appropriate to crystalline helium and hydrogen, found
that the phonon frequencies were imaginary at every
point in the first Brillouin zone. Since the classical
theory of lattice dynamics cannot be used to treat
these crystals, mainly because of their relatively large
zero-point motion, we feel that it is appropriate to call
them quantum crystals.

There were several early attempts to study quantum
crystals and, in particular, crystalline helium. 3 In the
main, they were variational calculations of the ground-
state energy using Hartree trial wave functions, i.e.,
products of single-particle wave functions. The energies
calculated in this work were in fair agreement with
experiment. However, many numerical approximations

* Work partia11y supported by the U. S. Air Force Once of
Scienti6c Research under grant number AF-AFQSR 840-65.

1 See e.g., M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Oxford University Press, Oxford, England, 1954).' F. W. de Wette and B. R. A. Nijboer, Phys. Letters 18, 19
(1965).' T. Nagamiya, Proc. Phys. Math. Soc. Japan 22, 492 (1940);
M. Toda, ibid. 22, 503 (1940); D. J. Hooton, Phil. Mag. 46, 422
(1955); 46, 433 (1955) i 46, 485 (1955); 46, 701 (1955); R. P.
Hurst and J. M. H. Levelt, J. Chem. Phys. 34, 54 (1961).

were used, so that it was not clear that an upper bound
to the ground-state energy had been obtained. This
question was settled by Nosanow and Shaw, 4 who did
this variational calculation exactly with the one as-
sumption that the single-particle wave functions were
spherically symmetric. They found energies which were
of the order of +10 cal/mole for 'He and +30 cal/mole
for 'He, results which are to be compared with experi-
mental values of —12 cal/mole and approxima. tely —1

cal/mole, respectively. In addition, the Hartree cal-
culations yielded poor values of the pressure and corn-

pressibility. ' These results showed that a trial wave
function which was a product of single-particle functions
was inadequate for calculating the properties of crystal-
line helium. ' '

Since it is well known that the Hartree approxi-
mation does not include the effect of correlations

properly, it is clear that this deficiency is the main
reason for the poor results obtained by Nosanow and
Shaw. In fact, the importance of correlations had been
realized before their work was done. The first attempt
to include them was that of Sernardes and Primakoff, '
who made a partly variational, partly phenomenological
calculation of the ground-state energy of crystalline

L. H. Nosanow and G. L. Shaw, Phys. Rev. 119, 968 (1962).
'L. H. Nosanow, ProceeCirtgs of the fVirtth Irtterrtatiortaf Cost

ference on Low Temperature Physics, Columbus, Ohio, 1964, edited
by J. G. Daunt, D. V. Edwards, F. J. Milford, and M. Yaquab
(Plenum Press, Inc. , New York, 1965).

6 The possibility that the assumption of spherical symmetry
could be mainly responsible for these high energy values can be
ruled out by a simple physical argument. Because the potential
has a hard core, the self-consistency of the Hartree calculation
requires each particle to be conQned to its own signer-Seitz unit
cell. Since these cells are approximately spherical for the lattices
in question, the assumption of a spherically symmetric single-
particle wave function should only lead to errors of the order of
10%%uq. In fact, Brueckner and Rosenwald (Ref. 7) have recently
calculated the ground-state energy of bcc 'He taking the lattice
symmetry into account and found an energy lowering of only 10'Pz.

K. A. Brueckner and D. Rosenwald, (private communication).
See also D. Rosenwald, Ph.D. thesis, University of California,
San Diego, California, 1965 (unpublished).' N. Bernardes and H. Primakoff, Phys. Rev. 119, 968 (1960).
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'He. They introduced the effect of correlations by re-
placing the true interaction by a one parameter
effective interaction. This parameter was determined
for 'He by fitting the ground-state energy of crystalline
4He. Unfortunately, they did not make a suKciently
good guess of the effective interaction, and their phe-
nomenological procedure led to a considerable under-
estimate of the kinetic energy. Thus they found a
rather large root-mean-square deviation and an ex-
change integral which was three orders of magnitude
too large. Nevertheless, their calculation pointed the
way for future work. .

More recently Saunders' has attempted to include
the sects of correlations by deriving a differential
equation for the correlation function. Unfortunately,
it is our opinion that this work. has many faults. In
particular, the derivation is not systematic, the equation
for the single-particle function can be shown to diverge, '
and the equation for the correlation function is solved
incorrectly. " Although Saunders obtained quite rea-
sonable results for the thermodynamic properties and
the exchange integral, in view of the deficiencies in his
work it is our opinion that the agreement with experi-
ment can only be considered fortuitous. Saunder's
approach has recently been analyzed thoroughly by
Garwin and I.andesman, " who have made some im-
provements in it. However, they find that his approach
breaks down completely for 4He. In our opinion, this
is a most serious difhculty since any theory which
describes crystalline 'He should describe crystalline
4He equally as well.

Recently, Bruckner and I'rohberg" have proposed a
new equation for the correlation function. Their deri-
vation is based on a modification of the approach
introduced by the author. "It is not yet clear whether
their approach will be successful.

The present work is devoted to a study of the
ground-state properties of quantum crystals. We give
a full exposition of our approach which is a variational
calculation utilizing cluster-expansion technqiues. "
Preliminary accounts of some aspects of this work have
already been published. "' " We begin in Sec. II by
formulating the problem. In particular, we give a
discussion of the physical reasons for choosing our trial
wave function and for the application of the cluster
expansion to this problem. In Sec. III, we derive the
cluster expansion in a very general form. In Sec. IV
this expansion is specialized to treat our particular

' E. M. Saunders, Phys. Rev. 126, 1724 (1962).
"W. J. Mullin, Ph. D. thesis, Washington University, 1965

(unpublished) .
"R.L. Garwin and A. Landesman, Physics 2, 107 (1965)."K. A. Brueckner and J. Frohberg, paper presented at Summer

Institute for Chemistry and Physics, University of California,
San Diego, 1965 (unpublished)."L.H. Nosanow, Phys. Rev. Letters 13, 270 {1964).

~4A similar approach has been used for crystalline Ne. See
W. J. Mullin, Phys. Rev. 134, A1249 {1964)and also Ref. 10."L.H. Nosanow and W. J. Mullin, Phys. Rev. Letters 14, 133
{1965).

choice of a trial wave function, and explicit expressions
for the terms we need for our calculations are given.
In Sec. V, we give our approximation scheme for calcu-
lating the ground-state energy and we show how the
calculation is done. We point out that our approach
corresponds to a Hartree calculation with an appro-
priate effective interaction. In addition, the leading
correction terms are discussed and shown to be small,
In Sec. VI, the results of our systematic calculations
of the ground-state energy, pressure and compressi-
bility are presented. The calculations are given for
both 'He and 4He for both the hcp and bcc structures.
In addition, we present tables of the variational
parameters, as we feel that they might be useful for
future calculations. In Sec. VII, we discuss the validity
of the results and possible ways of improving and
extending them. In particular, we give a critique of our
treatment of the correlation function. The numerical
details of our calculation are discussed in the Appendix.

(y)
—4eL(o/y)12 (o/y)sj (2.2)

which has a minimum at y;„=2'I'o. , where e(y; )= —e.
The two parameters in this potential are usually deter-
mined phenomenologically, "and for helium, c= 10.22'K
and o=2.556 A. We believe that this potential is
suKciently accurate for the calculations presented in
this paper.

In order to motivate our formulation of this problem,
we shall erst analyze the assets and deficiencies of the
Hartree approximation. In our opinion, the main asset
of this approach is that it does yield a self-consistent
solution which describes a crystal. Clearly, the existence
of a crystalline phase involves correlations in the
motion of an arbitrarily large number of particles.
Thus, we can say that the Hartree approximation does
indeed take into account the effects of what we may
call "structural" correlations. On the contrary, the
main de6cit of the Hartree calculation is that it does
not treat properly what we may call "dynamic"
correlations. Roughly speaking, there are two kinds
of "dynamic" correlations, those of short range which
involve the motion of a small number of neighboring
particles and those of long range which involve the

' See, e.g. , J. 0. Hirschfelder, C. F. Curtiss, and R. B. Bird,
Molecular Theory of Gases and Liguids {John Wiley 8z Sons, Inc. ,
New York, 1954), p. 1110.

IL FORMULATION

We consider a system of S particles of mass m with
the Hamiltonian

N

a= —(h&/2m) g V,s+ P g
1&~&q&N

where v,;=s(y,,) is the pair potential, and y,,= ~
r,—r;~,

where r, is the coordinate of the ith particle. In this
paper, we shall use the Lennard-Jones form of the
potential
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motion of a large number of the particles in the crystal.
The present work is primarily concerned with the short-
range dynamic correlations; the long-range dynamic
correlations, which lead to the low-lying excitations in
the crystal, have been discussed elsewhere. "

The short-range "dynamic" correlations have a large
effect on the total energy as they can serve to lower
both the kinetic and potential energies relative to the
Hartree result. They can lower the kinetic energy
because they serve to increase the radius of the effective
well in which each particle is located. They can lead to
a lower potential energy by allowing a pair of particles
to have a larger probability of being at a relative
separation ~r;„.It should be emphasized here that
in quantum crystals the nearest-neighbor distance E
can be as much as 50'Po larger than r; . Thus, the
two-particle probability distribution function is likely
to have two "bumps" —a large one at R and a smaller
one at r - . Of course, in a "classical" crystal, these
"bumps" coalesce.

Ke also wish to discuss the effect that the proper
symmetrization of the wave function would have on the
Hartree results. To obtain a finite energy with the
Hartree calculation, each iteration of the spherically
symmetric single-particle wave function g (r) must
satisfy the condition

P(r) =0, for r&R/2 (2.3)

Thus, the single-particle wave functions centered on
neighboring lattice sites can never overlap and there is
no exchange within the Hartree approximation. There-
fore, a Hartree-Fock calculation will always yield the
same result as a Hartree calculation for a crystal.
However, if "dynamic" correlations were included,
there would be overlap and it would be necessary to
use a properly symmetrized trial wave function.

In this paper we attempt to improve upon the
Hartree calculation by using a trial wave function of
the form

%(ri, ~,r&)=P&(tr,—R;)) Qg f(r; ). (2.4)
C& J&k&N

Clearly, (2.4) is not properly symmetrized; however, it
gives the dominant contribution to the energy since the
exchange effects turn out to be small. The modi6cations
to (2.4) that are necessary to include exchange are given
in the next section. The functions p(r) and f(r) are to
be determined to minimize the energy. This type of
trial function has been used by many other workers. "
In particular, it seems to yield excellent results when
used in Monte-Carlo calculations.

'7 Ql. Brenig, Z. Physik 171, 60 (1963); D. R. Fredkin and
N. R. Q"erthamer, Phys. Rev. 138, A1527 (1965);L. H. Nosanow
and N. R. Werthamer, Phys. Rev. Letters 15, 618 (1965).

'8 See, e.g., R. Jastrow, Phys. Rev. 98, 1479 (1955);F. Vfu and
K. Feenberg, ibid. 122, 739 (1961); W. L. McMillan, ibid. 138,
A442 (1965); D. Levesque, D. Schiff, T. Khiet, and L. Verlet
(unpublished report).

The function g, P(~r;—R;~) in (2.4) is just a
Hartree trial wave function. Thus, it will automatically
take the "structural" correlations into account so long
as the particles are very nearly localized. The general
boundary conditions on p(r) are

lim P(r) =finite,

limp(r) =0.

(2.5a)

(2.5b)

lim f(r)=0,

lim f(r) = constant.

(2.7a)

(2.7b)

In fact, on physical grounds, we expect that

f(r) exp( —const/r'), for r«0. (2.8a)

for r&R. (2.8b)const,

Clearly, (2.7a) and (2.8a) express the fact that the
large repulsion in v(r) makes it unlikely for two particles
to be close together. It is possible to derive (2.8a) by
solving the Schrodinger equation for two particles that
are so close that only the repulsive term in w(r) is
important. Conditions (2.7b) and (2.8b) express the
fact that particles on well-separated lattice sites will be
uncorrelated. Further, we expect that

f(r--) &f(~), (2.9)

i.e., that two particles will not have a larger probability
of being far apart than of being at r;„.An analytic
form which gives this general behavior for f(r) is

j(r)= exp) —Eg (r)7, (2.10)

where EC is a convenient variational parameter and
z(r) = (0./r)'2 —(0/r)' Clearly (2.10. ) does not behave
like (2.8a) when r«0; however, the most important
region is r~o, where (2.8a) certainly does not hold.

If P(r)WO for r&R/2, it is possible for neighboring
particles to exchange their positions and the effects of
symmetrization are nontrivial. It will turn out that
useful analytic form for g(r) is

P(r) = exp( —Ar'/2); (2 6)

and A will turn out to be a convenient variational
parameter.

The function g;&; f(r;;) is introduced to include the
effects of the short-range "dynamic" correlations. Of
course, this particular "ansatz" can only hope to treat
two-body correlations with any kind of accuracy.
A priori, the hope is that this approximation will be
sufficient because, having already taken the "struc-
tural" correlations into account, the main effect of the
"dynamic" correlations will be contained in the two-
body terms. The general boundary conditions on f(r)
are
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Since there is no simple analytic form for f(r) that has
all of the correct properties, we feel that (2.10) is the
best compromise.

The general program of this paper is to assume that
f(r) is given by (2.10) and then obtain a differential
equation for P(r) by minimizing the energy. Even with
the assumption of an analytic form for f(r), it is not
possible to calculate the energy exactly. However, with
our choice of %(r&,~,r~), this problem is very much
like that of evaluating the partition function of a
classical gas in an external field. Thus, it is natural to
try to make a cluster expansion" of the ground-state
energy. In the classical case, this expansion converges
when the density is sufficiently small; i.e., when there is
a small probability for large numbers of particles to be
close together. In our case, one might also expect the
cluster expansion to converge because the crystal
structure prevents large numbers of particles from being
close together. This argument says nothing about the
rate of convergence. In fact, this property depends on
the precise nature of f (r) and, in practice, can only be
tested numerically.

In summary, then, we 6rst choose the form (2.10)
for f(r); i.e., we choose a particular value of the pa-
rameter K. Then we make the cluster expansion and
vary the energy to obtain the equation for P(r) This.
equation is then solved approximately to obtain the
ground-state energy Eo as a function of E. Using that
value of K which minimizes Eo, we calculate all of the
leading correction terms to Eo. If these turn out to be
small and do not significantly alter the position of the
minimum, we shall conclude that we have obtained a
satisfactory approximation to an upper bound of the
ground-state energy.

multiply and divide M(y) by many equal factors and

group the resultant expression into an identity of the
form

(3.4)

The grouping is done in such a way that the only
sizable contribution to M„(y) comes from those
regions of phase space where e particles are close to-
gether; i.e., where they form a cluster. Since we are
dealing with a crystal, it is important to note that there
are many different spatial arrangements which contain
m particles. Clearly (3.4) leads to an expression for the
energy of the form

N

Bp QZp——„.
n=l

(3.5)

and
+~({~})=y(lr~ —R~l) (3.6a)

We wish to emphasize that such an approach is
a priori rather arbitrary. It can only be judged a
posteriori by showing that the resulting series is con-
vergent. In the case of the classical imperfect gas, this
result is obtained by isolating a small parameter —the
density. In our case, there is really no small parameter;
however, for our special trial function the convergence
will depend, in part, on the deviation of f(r) from the
constant value it has when r is large.

To make the derivation, we introduce the wave
function 4'„({I})and the Hamiltonian H„({n}),which
depend on the coordinates {I}of a subset of e particles
localized about the lattice sites Rq, , R„.For the
trial function (2.4),

III. GENERAL CLUSTER EXPANSION

~.= (+,H+)/(+8),
it is convenient to introduce

M(y) = (@,(exp')%),
so that

(3.1)

(3.2)

(3.3)

In this section we derive the general cluster expansion
of the ground-state energy Eo by means of a rather
straightforward generalization of van Kampen's
method. '0 We wish to emphasize that this derivation
does rot depend on the special trial wave function given
by (2.4). The special cluster expansion for this wave
function is given in the next section.

To make the cluster expansion of

for n&~ 2. To take the effects of symmetry into account
we need a more general trial function. In this case,
0'&({I}) is given by (3.6a) and the spatial part of
4'&({2})is given by

Ly(lrg —Rgl)y(lrp —Rp l)
+4 (lr~ —Rpl)4 (lrp —R~l) jf(r») (3 6c)

In (3.6c), the plus sign is chosen for 'He, whereas for
'He, the plus sign is chosen when the two particles are
in a singlet spin state and the minus sign is chosen when
they are in a triplet state. In this paper, we shall not
consider the effects of symmetry on %„({e})for ts)~3.
For the various Hamiltonians, we take

The idea of van Kampen's approach is to systematically

'9 See, e.g., J. E. Mayer and M. G. Mayer, Stutisticat Mechanics,
(John Wiley 8t Sons, Inc. , New York, 1940), p. 277.

2P N. G. van Kampen, Phypica 27, 783 (1961).

It is natural to choose

M~(y) =II (@~(r~), expLyH~(r, )g+~(r;)); (3.8)
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i.e., Mq(y), the erst approximation to M(y), is a Hartree-like product. The next term is

M2(r) = g g {(42(r rj) exp[+H2(r r )j+2(r. r ))
1&j&j&N

/(4'i (r,), exp[yHi (r,)]+,(r;))(4'i (r,), exp[yHi (r,)$4i (r,))}; (3.9)

i.e., the contribution from all pairs in which the contribution from each pair is divided by the way it was approxi-
mated in the previous term. It is to be expected that

lim (+~(r;,r,), exp[7H2(r;, r,)j%'2(r, ,r,))=(+i(r,), exp[yHi(r;)$%'i(r;))(+i(r, ), exp[yHi(r, )]+i(r;)),
)R;-R~) ~ ~

so that there will be contributions to Mm(p) only from that part of phase space where the two particles are suK-
ciently close together. The expression for arbitrary e that has this property is

M-(7)= IIII .II {(+-({~}),expbH. ({~})1+-({I}))/D-({~})}, (3.10)
1&6 &6 ~ &~~& N

where

n—I
D-({~})= II M-(v; {~}).

en=1
(3.11)

In (3.11),M„(p;{I})is defined by (3.10) but for the subset {I}of ii particles instead of for all E particles; e.g.,

Da(ml R2 R ) =g (+i(r ), exp[yHi (r )]+&(r )) Q g {(+2(r„,r ), exp[rH2(r„,r )1+2(r r ))
v=1 1&@ &v&3

/(41(r„),exp[ rHi(r„)]+i(r„))(Oi(r,), exp[ rHi(r, )j0i (1 ))}.

Each factor M„(y)is therefore a product of 1V!/n! (iV e)!facto—rs, the denominator of each of which is constructed
from the way the numerator of the factor was approximated in the previous ri 1 facto—rs of M(y). Therefore,

N—I

n=l
(3.12)

and, with all of these definitions, (3.4) is an identity.
Using (3.3), we find

Eoi ——p Ci(i), (3.13)

where

Similarly,

where

In general,

where

C (')=(+ ('),H (')+ (*))/(+ (')P ('))
E»= ZE C2(& j)

1&~&j&N

Cp(&,j)= (+2(r' r') H2(r' r')+2(r r'))/(+2(r r') +2(r' rj)) Ci(&) Ci(j) ~

Ep„PC„({e}), ——
)n) CN

(3.15)

(3.16)

(3.17)

C.({&})= (+-({~}),H-({~})+-({~}))/(+-({~})P-({~}))—2
m =1 (mI C In)

(3.18)

In (3.17), the sum runs over all e-particle subsets of cV particles; whereas, in (3.18) the last sum runs over all
ns-particle subsets of the particular e-particle subset of 37 particles. In contrast to the behavior of the cluster
expansion for a gas, C ({e})depends on the lattice positions of the n particles and therefore has different values
for different configurations.
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Iv. SPECIAL CLUSTER EXPANSION

In this section we shall apply the results of the previous section to our special trial wave function. The first
term in the cluster expansion of Eo is independent of the statistics. Thus

z» ——P ~-~ dr, y*(lr,—R;I)(—a2/2~)v, 2y(lr; —R;I), (4.1)

where

ca= dr, Iy(lr,—R;I) I'. (4.2)

We may a,iso write (4.1) as

~ =Z &T(*)) (4.3)

where
T(r;) = —(i22/2m)V' in'(lr, —R;I),

and the average is defined such that for an arbitrary function g(r&, ~ ~,r„),

(4.4)

&a(r~, ,r-))—=~ " dr~ dr- le(lr~ —R~l) I'" ly(lr. —R-I) I'g(r~" r-) (4 5)

In general, (4.5) depends on Rq, , R„,and this dependence is included in the subscripts on the variables in the
argument of g. The quantity &T(r;)) is independent of R; and is a constant equal to 3h A/4m when g is a Gaussian.

We shall first calculate 202 when the wave function is given by (2.4), i.e., when the eifects of synunetry are
neglected. In this case, the two-body wave function to be substituted into (3.16) is given by (3.6b) for e,=2. We
first need to calculate

(—h'/2nz) dr; dr; @2(r, ,r;)V',2@2(r;,r, )= (h2/2m) dr; dr, [p',@2(r;,r,)g2

dr; dr,. I+(Ir,—R;I)I'I+(Ir;—R;I)I'f'(r;)[T(r, )—(122/4e)V21nf(r, ;)], (4.6)

a simplication due to Jackson and I"eenberg. ' We may therefore write 802 in the form

where

+02 +02V++02T y (4.7)

(4.8)

(4.9)

The superscript I in (4.7) indicates that the effects of symmetry have been neglected. The primes on the sums in

(4.8) and (4.9) indicate the omission of those terms for which two indices are equal, and

V(r) =0(r)—(02/2m)V2 lnf(r). (4.10)

At this stage, it is quite arbitrary to put E02" into this form. However, E02z vanishes identically if p is approxi-
mated by a Gaussian or if the limit f (r) = 1 is taken.

The calculation of 802 including the effects of symmetry" is more complicated. The spatial part of two-body

"H. W. Jackson and E. Feenberg, Ann. Phys. (N. Y.) 15, 266 (1961).



H ~ NOSA NO VU126

(3 6 ) gn tbgs cs setiven byw ave unf ctlons ls now g

, , v,'+~'j+ {""'dr, 4's(r'trtm) gr,

pp/2tts) g s
1nf (rtt) j, s(r,,))Z'(r )+T(rt'R.l) I'I +(I r R, l) I f

(Ir,—Rtl)+{Irt—R'l)f' "
(41,)

. (Ir,—R.l)+(lrt —R, l)+ " '
(a,/2 )q, 1nf(r, ,)3

dr, dry r' '

~l T (r)+T(r)—
where

L-~,.y(lr —R;I)/p(l ' '
. R I)/y(lr, —Rt'I) j}'

,, R;I)j
. . (4.1»

R I)/~(lr, —R, l) '
I v,y( r

(y/2t»s) (I ~*'

(4 14)

n arb t'sry "" '

R.l)p(lr, —R;l)g{ 't t)'R, l)y(l, —R I)&{l', d„. dr, y(lr' — '(g(r;, r;) &*—"

the formrite jv02 ill~{f2(r.-))gt we rn y
~

d (4 13) by (f'{" ) "
V( .)I) (f (r,,)&*

If e multiply an divi e

Eo '=-'Z'(I (f'
~t2

We „oteth«T'(r'r. =T(r,).

(4.13)

tberefore write

s(r )&~{f{r't)&'j
.)+.T,(x;)+V{'t)}&'j '

We rn» '
+,(„,r))= "'t

s(r,,){T;r
.)@,{r,,r,))/(+s(r"r')t " '

)+T(r)+V{ 't)} ~ f
(+ {r"') '{'"'

XDf'(")(
where, it g(r'

It turns out thahat

so that we have

where

Eood +s 2 ~it't

'r )) 'r"
T(,)+V( ',)}&»(f' ', T; '{f'(')(T(r

E '=Eos"+Esse t02

(4.16)

(4.17)

(4.18)

(4 19)

T ')+T( )+V(')})j (4.20)

0

»,s, '(r;,)V(;,))„(,.)f'(;.)V(„)& (f „

(f'(r' )f'(r's)f'(» s))

)f'( ) ( ')) (f' .
yij y I, yj~ yj

where

Eos»= —Z'
2 i,j,k

1
Eosr= —Q'

2 i,jtk

ev. 92, 28 (1953).. J. Carr, Phys. Rov.
"W. J. Mu in,~ . M ll'n Phys. Rev.

111 d t to" is the difference in en
(4.19) reduces to

We shall only calculate ~03

E s"=Eosv+Eosrt
(4.7). We And

(4.21)

(4.22)

(4.23)
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or vanish in the limit f(r)= 1. In fact,

Of course, al o
nishesinvolve overlap vanis because e

in the limit f(r)=1.

V. CALCULATH) N OF Ep

n
' '

e shall present the deta'tails of the
use to calculate Ep. e a

'
method we use

1 ter expansion so t aproach is to tru ncate the cus er

(5.1)Eo—Eoi+Eosr

t es of corrections to 5 1 theTh h h typ
hich are Eo&r,

hese5.1 d th l t th
If th o tio

proce ure
'

r the minimum.correc i
8 hdo not seriously a ec

blwe feel that it is reas
r bound

the minimum, we
d a roxima iot n to an upper bthat we have a goo pp

(5.1) it is convenient to introduceTo minimize . , i is t

(5.2()=(4 P"~(),
be chosen to be real1 andwhere u(r) can e c

dr u'(r) . (5.3)

We may now write

Eo/X =—(fi'/2moi)
0

dr u(r)u" (r)

+s Z &pFpQp
—i 54

where

(5.5)dr dp u'(r)u'(p)Fi(r, p,Rp,p=CO

0 0

X V(~ r—9+Rp ~), (5.7

r—9+Rpi). (5.8= (16vr') —' dQ„dQ,f'
~

r—9 . 5.8Fs(r PRp =

le of r and np is thep ts the solid angle o r
iventice sites at a is an

we have'4 In writing . ilattice site.

s is in
'

al Tabless is in Internationa a
B' '

h
' The best tabulation

fo X-ray Crystallog p
England, 1959) Vol. II, p.

00 QO

5.6)dr d u (r)u (p)Fs(rip, Rp

and

= (16ir')-' dQ, dQ, f'(~ r 9Rp-Fi(r,p, Rp ——

nt and have therefotes are equivalent anssumed that a
neglected surfac

4 with respect to +
e sects.

r. KeWe first minimize (5.4 wi
be a solution ofind that u(r) must be

—(Ii'/2m)u" (r)+ziti(r) —pju r =0,
with the boundary cond'onditions

(5.9)

l' u (r)/r = finite, (5.10)

lim u(r) =0.
and

dp u'(p)Fi(r, p, Rp)(.)=Eu (
P=1

(5.11)

(~Qp'—) 'Fp
0

dp u( )pF (s,rpRp) (5.12)

er er particle isTh round-state energy pT e grou

E /$= p +s P NpQp
—1p

P 1
(5.13)

ei envalue of 5.9 .where ep is
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t t}1h
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'

b an effective in e
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t r —(fi'/2m Vri,rt(r) f (r)f (
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the small effect due to the Qe denominators. In any
case, we may view (5.14) as a local approximation to
the appropriate t matrix for this problem.

We are able to solve (5.9) and obtain Ep/1V to within
1%%uz,

. the details of the computation are given in the
Appendix. Typical results for given values of 8 and E
are displayed in Figs. j. and 2. The self-consistent
potential is very much like a parabola for small r but
levels out for r 2 A. The single-particle wave function
g(r) is remarkably well approximated by a Gaussian.
If m, and m; are, respectively, the maximum and
minimum values of w(r), we note that in Fig. 1

(eo—w;„)/(w .„—w; )=0.634,

whereas in Fig. 2

(ep —w;„)/(w .„—w;.)=0.716.
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FIG. 2. Plot of w(r) (in units of cal/mole) and p'(r) (in arbitrary
units) for bcc 3He with X=3.45 A, ; the numerical and Gaussian
@'(r) are normalized to the same value. Here log1pX= —0.75 and
2 =1.65 (A '). Again p'(r) is weighted by r' so that the dis-
crepancy near r =0 is not signi6cant.

Thus as the density increases, the bound state moves
up in the well. In fact, for suKciently high densities,
there is eo bound state in the well. We feel that this
behavior is due to the inadequacy of the analytic form
used for f(r) and we shall discuss this point in detail
in Sec. VII.

To complete the calculation it is necessary to mini-
mize Eo with respect to E. A typical result is shown in
Fig. 3. The energy has a broad minimum with respect
to E so that sufficient accuracy is obtained by deter-
mining log~OK to ~0.05. It turns out that, to the
accuracy we use, the calcula, tion yields logroll= —0.75
for 'He and log~OX= —0.65 for 'He independently of
the density. Again we feel that this result is due to the
inadequacy of the analytic form used for j(r) and we
shall discuss this point in Sec. VII.

It should be pointed out that the above calculation
is not really complete for helium since this substance

LOGIo K

FIG. 3. Plot of Eo (in units of cal/mole) versus logroZ for bcc
'He with R=3.55 A.. The Hartree approximation corresponds to
log1PK = —00 .

crystallizes only under pressure. In this case, it is
Ep+PV and not Ep itself that is a minimum. However,
if one wishes to obtain Eo as a function of molar volume
V, the two calculations will give the same result.
Further, one obtains the ground-state pressure and
compressibility by use of the well-known formulas
I'= —dEp/dU and Ir '= —V(dI'/dV). We obtained I'
and ~ simply by numerical differentiation of Eo so that
they have been less accurately determined than Ep.

It remains only to evaluate the various correction
terms to (5.1). The term Epos vanishes when g(r) is a
Gaussian because T(r) is a constant. Since Q(r) is so
closely approximated by a Gaussian, it is clear that
Epos is negligible compared to Epr+Epsv. Further, Eps J
has been evaluated by Mullin and Nosanow" and it
turns out to be four orders of magnitude smaller than
Epg+Epsv. The calculation of Epsv is very difficult and
will be the subject of a forthcoming paper. " It is
possible to see that, at the minimum of Ep, f'(r) satisfies
the necessary condition for Eosz to be small; i.e., that
f(r) 1 where qP is large. This behavior is pictured in
Fig. 4. However, there are so many terms in Eosy and
the cancellations turn out to be so delicate that an
exact numerical calculation is absolutely necessary. In
this paper, we shall give the results for one density and
refer to the future paper" for more details. For bcc 'He
with R=3.65 A, Ept+Epsv ——11.8 cal/mole when calcu-
lated using the Gaussian p, whereas Epsv =0.3 cal/mole.
Further, although the position of the minimum is
shifted a bit by Epov, the value of Eor+Eosv+Epov is
still accurate to within 1%.

In view of the small effect of the leading correction
terms, we feel that our procedure yields an approxi-

"J.H. Hetherington, W. J. Mullin, and L. H. Nosanow (to
be published).
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SCC HELIUM T HREE

I 0 WITH R $45A

7 0.5—

0

I I I I I I

I.O I.5 2.0 2.5 5.0 5.5 4.0 4.5

I.(A)

Fro. 4. Plot of f(r) Lnormahzed so that f(~) =1] and p'(r)
(in arbitrary units) for bcc 'He with R=3.45 A. Here ft'(r) is
centered about 3.45 to show that f(r) 1 in the region where qP(r)
is large.

mation to an upper bound for Eo that is reasonably
accurate.

existence of the bcc phase in 'He and 4He is due to the
effect of correlations in the motion of the atoms, an
effect which is large only because of the large zero-point
energy in the system. Of course, our results, if taken
literally, would predict that the hcp phase could not
exist. Clearly, the theory is not sufficiently accurate
that it can be trusted to 1%.However, we feel that it is
signi6cant that the bcc energy is approximately the
same as the hcp energy and not several cal/mole higher
as had been obtained previously. 4

Our results for the ground-state pressure and com-
pressibility are given in Figs. 6 and 7, respectively, along
with the appropriate experimental work2™ for com-
parison. The most interesting feature of these results
is that, in contrast to the calculation of Eo they agree
with experiment to within about 10/o. This result can
be understood on the basis of a simple physical argu-

I I--- Hcp

Bcc

VL PRESENTATION OF RESULTS

In this section we shall give the results of our cal-
culations of the ground-state energy, pressure, and
compressibility for the bcc and hcp structures of both
'He and 4He. In each case we present two results, one
for a p(r) determined numerically by solving (5.9) and
one for a Gaussian p(r) In the . latter case, we also

give the values of the parameters A and K as a function
of R. %e have included these results because this ex-

tremely simple form for the wave function gives remark-

ably good results and may be useful for future
calculations.

In Fig. 5 we plot Eo as a function of U, the molar
volume, and the appropriate experimental values" for
comparison. It is seen that our values for 4He are about
8 cal/mole higher than the experimental ones. These
results may be compared with those of Nosanow and
Shaw' which are about 25 cal/mole higher than the
experimental ones. Unfortunately, the values for Eo for
'He have not yet been determined, although it is esti-
mated that they are about —1 cal/mole at the lowest
densities. Thus, it is probable that our values for 'He
are approximately 10 cal/mole too high. In this case
the results of Nosanow and Shaw' are about 34 ca,l/mole
too high.

An important feature of the calculations of Eo is
that the energy of the bcc phase is lower than the
energy of the corresponding hcp phase in every case.
Such a result would be impossible in the classical case
because of the spherical symmetry of the pair inter-
action. In our opinion, this result shows clearly that the

"D. O. Edwards and R. C. Pandorf, Phys. Rev. 140, A816
(1965).
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Fro. 5. Plot of Es (in units of cal/mole) as a function of molar
volume for the bcc and hcp structures of both 'He and 4He. The
experimental data for 4He are those of Edwards and Pandorf
(Ref. 26).

"D.O. Edwards and R. C. Pandorf (unpublished report).
8 S. G. Sydoriak, R. L. Mills, and E. R. Grilly, Phys. Rev.

Letters 4, 495 (1960).
s9 D. O. Edwards, J. L. Baum, D. F. Brewer, J. G. Daunt, and

A. S. McWilliams, Helium Three (ohio State University Press,
Columbus, 1960).

~ E. D. Adams, G. C. Straty, and E. L. Qlall, Phys. Rev.
Letters 15, 549 (1965).
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TABLE I. Values of the parameters A and E as a function of molar volume for both the bcc and hcp structures of 'He.

R (L)

3.45
3.55
3.65
3.75
3.85

U (cm'/mole)

19.0
20.7
22.5
24.5

bcc 'He
A (L-')

1.65
1.54
1.42
1.30

log1PE

—0.75—0.75—0.75—0.75

U (cm'/mole)

19.1
20.7
22.5
24.3

hcp 'He
A (i.-')

1.75
1.64
1.48
1.36

log 1 QE

—0.75—0.75—0.75—0.75

120

HCP

ment. A typical value of Eo for bcc 'He is about 10
cal/mole. This is the sum of approximately 35 cal/mole
of kinetic energy and —25 cal/mole of potential energy.
Thus, the kinetic and potential energies are individually
determined to the order of 10%. Since the kinetic
energy changes more rapidly with pressure than does
the potential energy, it is more important in determining
the pressure and compressibility. Therefore, since we
can calculate the kinetic energy to 10%, it is quite
reasonable that we can obtain the pressure and com-

pressibility to 10%.

In Tables I and II, we give the values of the parame-
ters A and E which minimize Eo for 'He and 4He,

respectively. We have determined log»E to within

~0.05 and A to within ~0.02. We note that the value
of A for the hcp case is a bit larger than that for the
bcc case at the same density. This rejects the fact that
there are more near neighbors in the hcp case which

causes an atom to be more con6ned and hence to have
a smaller root-mean-square deviation from its equi-

librium position. Again the value of E is largely in-

sensitive to changes in the density.
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FIG. 6. Plot of I' (in units of atmospheres) as a function of
molar volume for the bcc and hcp structures of both 'He and 4He.
The data for 4He are those of Edwards and Pandorf (Refs. 26 and
27). The data for 'He were obtained along the melting curve and
approximate the ground-state data to within a few percent. These
data are those of Sydoriak, Mills, and Grilly (Ref. 28) and
Edwards, Baum, Brewer, Daunt, and McWilliams (Ref. 29).

VOLUME (cc /MOLE)

FIG. 7. Plot of sc (in units of 10 inverse atmospheres) as a
function of molar volume for the bcc and hcp structures of both
'He and 4He. The data for 4He are those of Edwards and Pandorf
(Refs. 26 and 27).i'The data for 'He are those of Adams, Straty,
and Wall (Ref. 30).
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TABLE II. Values of the parameters A and E as a function of molar volume for both the bcc and hcp structures of 4He.

3.35
3.40
3.50
3.60
3.70

V (cm'/mole)

17.4
18.2
19.9
21.6

bcc 4He

A (X-')

2.19
2.09
1.89
1.71

log1gK

—0.75—0.75—0.75—0.65

V (cm'/mole)

16.7
18.3
19.9
21.6

hcp 4He

A (x-')

2.42
2.23
1.99
1.80

log1t)E

—0.75—0.75—0.75—0.75

VII. DISCUSSION

The basic objective of this work has been to obtain
a better understanding of the effects of correlations in
quantum crystals. We have introduced these effects in
a crude fashion via a trial correlation function of the
form (2.10). It is a very remarkable result of our cal-
culations that, within the context of approximation
(5.1), the energy minimum occurs for a very small
value of E, namely E 0.178. Thus for r&o, f(r) turns
out to be very close to unity. Fundamentally, it is this
result which leads to the very rapid convergence of the
cluster expansion and the good agreement of our cal-
culations with experiment.

It is quite clear that these results depend strongly
on the choice of the analytic form for f(r). For example,
had we chosen the form

5()=em( —(./ ") (7.1)

we would rot have found a minimum within the
approximation (5.1). The physical reason for this is
that as C is increased the kinetic energy is continually
lowered until the particles are no longer localized. Thus
it is clear that it is not possible to make an arbitrary
variation of f(r) within the context of the approxi-
mation (5.1). This result has been emphasized by
Brueckner, ""and is due to the omission of the higher
terms of the expansion. However, it does not affect the
validity of the results obtained with an f(r) given by
(2.10).

As we mentioned in Sec. V, our approximation is
equivalent to a Hartree calculation in which e(r) is
replaced by v, «(r) given by (5.14).These potentials are
both pictured in Fig. 8. It is seen that v,«(r) differs
from v(r) in that it has a "soft" core and a slightly dis-
placed minimum. One of the main deficiencies of the
f(r) given by (2.10) is that it "softens" the hard core
too much. This effect shows up clearly in Figs. 6 and 7,
since, in the main, we calculate loner pressures and
higher compressibilities than those observed experi-
mentally. This inadequacy of (2.10) is consistent with
the fact that it gives an f(r) which vanishes too rapidly
for small r Lcf. (2.8a)).

Further, we feel that it is this inadequacy in our
choice of f(r) that limits the density range in which we
are able to calculate. As we noted in Sec. V, the cal-

"K. A. Brueckner (private communication).

$(r) = exp (—-',A r' ——',BZ'), (7 2)

where Z is the component of r along the c axis of the
crystal and 8 is another variational parameter.

We wish to discuss briefly the possible effect of the
higher terms of the cluster expansion. On a basis of the
calculation of E03~ at R=3.65 A it seems reasonable to
suppose that the cluster expansion converges rapidly
at this density. To understand this result physically,
we note that an important parameter is clearly
a= r;„/R. For the above-mentioned calculation
a=0.79; whereas, for a classical crystal u—1.0. Since
the cluster expansion is inherently a low-density one,
it is not so startling that it converges rapidly when
a((1. However, as the density increases, it is quite
possible that the cluster expansion will no longer be a
good approximation. This possibility has been con-

culation fails when there is no longer a bound state in
the effective well. This behavior is also due to the fact
that the hard core has been "softened" too much.
Further, it is consistent with the fact that our calcu-
lations of the pressure and compressibility are worse at
high densities than they are low densities. We also feel
that it is this inadequacy in f(r) which contributes to
the poor agreement between the observed and calculated
density dependence of the exchange integral" and the
various sound velocities. '~

We wish to point out that, although the calculations
with the numerical g's yield the lowest energies, those
with the Gaussian p's yield better pressures and com-
pressibilities. In our opinion this result is due to the
fact that the analytic form for P does not adjust
properly to a change in density. Hence, the single-
particle wave function compensates a bit for the fact
that the f(r) "softens" the "hard" core too much and
therefore, the Gaussian P's yield better values for the
pressure and compressibility.

Vile feel that our assumption of a spherically sym-
metric p(r) is probably quite good in the bcc phase,
but may not be sufficient in the hcp phase. In the bcc
phase, the Wigner-Seitz unit cell is very nearly spherical
and p(r) is certainly spherical for suKciently small r.
However, in the hcp phase, p(r) is never spherical, even
for suKciently small r. Further, the agreement between
theory and experiment in all of our calculations is worse
for the hcp phase than for the bcc phase. This question
can be studied by assuming a trial wave function of the
foD11
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IOO .

80-
— V(r)

computing w(r). It is numerically convenient to cal-
culate w(r) differently for three regions: (i) r(R/2,
(ii) R/2(r(R, snd (iii) r)R. We find that u(r) is
sufficiently small in region (iii) so that we can replace
the boundary condition at infinity by

60. V„,(r) u(R) =0. (A1)

40-

I- 20 .z

0
Q. 0-

Flo. 8. Plot of s(r)
and s,rr(r) (both in
units of degrees).
The maximum in
2 fr(r) is approxi-
mately 106'K and is
very sensitive to the
precise form of j(r).

Further, it is necessary to calculate Pj and F&. We
shall now show how the calculation of these functions
can be reduced to the computation of the sum of two
single integrals and how they may be tabulated in terms
of a few one-dimensional arrays. We are interested in
integrals of the form

5

-IO

I 2

2.0 3.0 4.0 5.0 6.0
p (A)

(162r ) dfli dfI2 F([fll $2+R12j ) ~ (A2)

Because of the spherical symmetry, the integrations
over the angles q» and p2 can be carried out explicitly,
so that

&12+P2

sidered in a preliminary way by Mullin" and may also
be pa, rtly responsible for the ina, dequacy of our results
in the high-density region.

In conclusion, we wish to discuss briefly the possi-
bility of extending the work described in this paper. The
central problem is certainly to obtain an improved
correlation function. It is clearly possible to derive a
differential equation for f(r) by varying Es with
respect to f(2'). Since it is not possible to make an
arbitrary variation of f(r) within the approximation
(5.1), it will either be necessary to introduce an appro-
priate constraint or to include higher terms of the cluster
expansion. ""In either case, the solution of the equa-
tions will probably be extremely difficult.
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I &u—p2l

dz P(z) . (A3)

dz (y —V'z)F (z), (AS)

and there are three cases:

(a) pl(IR» —psl, Ej.=i) E2=1 j

(b) IR12 P2 I (pl(R12+P2 y el 1 t &2= 1 j

(c) R12+ps(pi, ay= —i, 62= —i .

Thus to calculate Ii& or F2 we have only to tabulate
G(y) and use (A4) with a straightforward interpolation
scheme. These formulas reduce to those of Nosanow
and Shaw' when pi(R/2 and ps(R/2. For the present
calculations we need only cases (a) and (b), since case
(c) is eliminated by (A1).

It was also necessary to make approximations in
calculating the lattice sum in (5.12). We find that there
are again three regions: (i) P=1 or 2, (ii) 3~&P~(10,
and (iii) P)10. It is necessary to calculate the con-
tribution from region (i) exactly. In region (ii), we find
that we can use the approximations

After integration by parts, we have

(8plp2R12)I G(R12+pl+p2)
—G(I R» —ps I+pi) —e2G(e2[R»+ p2 —pi])

+eiG(ei[IR» —P2I —Pa), (A4)
where

APPENDIX

In this Appendix we shall discuss some of the nu-
merical details of solving (5.9) by iteration. In prin-
ciple, the problem is straightforward; however, in
practice it is quite complicated due to the difficulty of

dp us(p)F2(r, p,, R„) 1, for all r.

In region (iii), we use the approximations f(r) 1 and
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V(r)~s(r); further, we find that we can expand and

z(~r —y+R~) in powers of r and p and retain only
quadratic terms. The contribution to w(r) from this
region is

(A8)

where

dr r'u'(r)B(R) r' —co ' (A6) Our numerical procedures were sufIiciently accurate
0 to give three-place accuracy in Eo in each iteration. A

sufhcient number of iterations were run so that Ep was
&(R)=4eo sP2Cr4(o/&)" —5Cs(o/Jt')sj, (A7) determined numerically to 1%%uz.
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Laser-Induced Prebreakdown and Breakdown Phenomena Observed
in Cloud Chamber*
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(Received 23 August 1965)

Direct observation of initiating electrons below the threshold for visible breakdown discharge is reported.
With the cloud-chamber techniques used, minimum detectable ionization is estimated at 5000 ion pairs/cm'.
Production of initial electrons is ascribed to photoionization, in a manner which is consistent with Phelp's
model. Above the visible breakdown threshold, thermal-gradient effects overcome all other sources of droplet
formation in the cloud chamber.

' 'N this article the observation of laser-induced pre-
breakdown ionization'' and breakdown phenom-

ena3 '9 in a continuously sensitive cloud chamber ~
is reported. The nature of the cloud chamber is such
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that two separate and easily distinguishable effects are
produced when the laser power is above and just below
the breakdown threshold.

This observation of prebreakdown ionization is the
erst direct evidence that the breakdown-initiating
electron is produced by ionization of vapor by the laser
beam. Additionally, it contradicts the assumption'4''
that if an initiating electron is present, breakdown
is inevitably produced by an avalanche process. The
fact that breakdown can be realized in the cloud cham-
ber is indirect evidence that the trigger electron is not
naturally present. '" The specific form of the break-
down phenomena also gives indirect evidence of multi-
mode laser characteristics. "

The laser system incorporated a 4-in. diameter
3-in.-long ruby rod pumped by an E. G. R G. FX678
lamp. The Q-switched laser pulse had a peak power of
approximately 10 MW, i.e., 0.2 I of optical energy was
emitted in 30 nsec. Standard techniques for the opera-
tion of a continuously sensitive cloud chamber were
used. ' " A 100-V/cm clearing field was applied. The
condensable material was methanol or dimethyl
methylphosphonate (DMMP).

Prebreakdown ionization was observed when the
laser beam was focused into the sensitive volume of the
cloud chamber. Clusters of droplets ranging in diameter
from 0.1 to 0.5 cm formed and fell to the bottom of the
chamber at about the same rate as the background mist.

u Physics of Quauturrt Etectrouics, edited by P. L. Kelley et at.
(McGraw-Hill Book Company, Inc. , New York, 1965).


