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An example is given showing that the condition of broken symmetry can be formally satisfied without the
presence of interacting massless particles. The model used is an extension of Zachariasen's model and is a
relativistic generalization of the high-density electron gas. The model is defined by a sum of perturbation-
theory diagrams and also by an equivalent Lagrangian. In this nodel, when the physical vacuum is not in-
variant under a certain continuous symmetry of the Lagrangian, massless particles must be present. If,
however, a Yukawa interaction of infinite range is present, then these massless mesons decouple from all
physical amplitudes.

I. INTRODUCTION

'N this paper we review some consequences of broken
- - symmetry in a field theory that go under the name
of "Goldstone theorem. "The idea of broken symmetry"
(or hidden symmetry or long-range order) is that, in a
theory whose Lagrangian is invariant under the action
of a continuous group, the ground state or vacuum may,
for reasons of dynamical instability (into which we do
not enter), be unsymmetric in a way to be discussed.
The one-particle and other states built on this vacuum
will then hide the symmetry of the original Lagrangian.
The "theorem" in question claims~' that, if the con-
tinuous symmetry is broken by the vacuum, then there
must exist massless excitations of a definite symmetry
character determined by the broken symmetry.

The merits of the hidden-symmetry approach are that
while maintaining the symmetry of the Lagrangian,
states which do not transform covariantly under the
group are admitted, and that the existence of massless
particles is apparently associated with an invariance
principle. The Goldstone theorem would be remarkable,
if true, since it would constitute an exact statement
about the physical spectrum of real field theories, based
on symmetry alone. We will use an example to show
that, while the theorem is formally true, no physical
conclusions can be drawn directly from the broken sym-
metry alone. This is not to deny that massless particles
may very well appear in broken-symmetry theories
as a consequence of a dynamical calculation or
approximation.

There exist by now several more or less equivalent
"proofs'" ' of the Goldstone theorem. In Sec. II we
define the way in which the symmetry is broken and the
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sense in which the vacuum is degenerate. Following the
original method of Goldstone, Salam, and Weinberg
(G-S-W),' we emphasize the interplay of integral and
differential conservation laws. We are careful to dis-
tinguish between states ~g) of zero mass p, '=0, and
spurious states ~0') which, even if they existed at all
in a relativistic theory, would be uninteresting because
their energy-momentum would be identically zero p„
=0. We distinguish two ways by which the symmetry
may be broken, and mention more or less trivial ex-
amples in which the G-S-W condition is formally satis-
fied, yet the result is practically devoid of physical
content.

In Sec. III we exhibit a less trivial example in which
the broken-symmetry condition leads to physical par-
ticles of zero mass, except in the presence of infinite-
range forces, when these massless particles decouple.
Our model is an extension of that of Zachariasen' ' and
of Nambu and Jona-Lasinio, and is a relativistic gen-
eralization of the many-body problem of the high-
density electron gas. Section III contains a simple
diagrammatic formulation of this model. Another for-
mulation, in terms of an equivalent Lagrangian, is
given in the Appendix.

&ot pg, y(y) j ]
0&= &o~ a@~ 0&. (2.2)

In a normal theory, &Q) =0. Broken symmetry means

' F. Zachariasen, Phys. Rev. 121, 1851 (1961);M. Gell-Mann
and Zachariasen, i'd. 124, 953 (1961).
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(unpublished); N. G. Deshpande and S. A. Bludman, Phys. Rev.
143, 1239 (1966).
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II. BROKEN SYMMETRY AND THE
G-S-W CONDITION

A. Meaning of Broken-S~metry Condition

We consider a continuous group, represented in
Hilbert space by a set of unitary operators U=e' @

under which the fields transform infinitesimally as

(2.1)

and take vacuum expectation values
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and p(y) must have matrix elements between the differ-
ent vacua lo) and lo ).

The broken-symmetry condition merely asserts the
existence of a ground state which instead of being an
eigenstate of Q is a coherent superposition of such eigen-
states. This is a common situation in the nonrela-
tivistic many-body problem.

Q generates uniform transformations on p(x), and
the states lo ) are, like lo), states of zero four-mo-
mentum. Unless they are the limit of a continuous ex-
citation branch as p~o, the states lo ) do not refer
to an internal excitation of the system, but to a trivial
and dynamically uninteresting "spurious state" which
is degenerate with lo) because it is obtained from lo)
by going to another system. Technically speaking, the
Hilbert spaces built on these diferent vacua are in-
equivalent because the transformation U is not a
proper transformation when the quantization volume
V~~. This is so, because the only transformations
that can be actively realized in any localized experiment
are those over large but finite V.

Our universe is realized on a particular Hilbert space.
We have gone through this discussion in order to
emphasize the formal nature of the global transforma-
tions generated by Q, and the formal nature of the
vacuum degeneracy. In order to say something about
localized excitations in our particular universe, we have
to look at the differential conservation law for a local-
ized current j„(x) or its three-dimensional Fourier
transform j„(q) and study the limit q-+0 but q/0.
The above considerations regarding

Q= d'* jo(*)=jo(0) (2.5)

are relevant only if there is continuity at the limit
q~0, i.e., provided the forces are of finite range so
that there is nothing singular about the limit V —+~.
The validity of the Goldstone theorem is equivalent to
such continuity at q —+ 0.

B. Local Current Conservation and the
Goldstone Theorem

Goldstone, Salam, and Weinberg' consider

&ol [j„(x)A(y)71o&= ~„(p)~*'&.—~ d4p, (2.6)

that (Q)WO, or &Ol&(y) lo)W(ol&'(y) lo). If lo ) is used
to designate Ulo),

0.&w lo&. (2.3)

Because U is a symmetry transformation, Q only has
matrix elements between states of the same energy.
Thus in broken-symmetry theories,

&o
I [QA b)7 I

o&

=2i Img (OlQlo )(0 lp(y)lo&WO, (2.4)

where, in terms of a complete set of intermediate
states

l g),

c.(p) =p.g(p') [C~(p)+D7,
which already shows

limp, „(p)=0 for ppW 0,p~

(2.8)

(2.9)

so that the only states
l g) that can contribute are, at

most, those for which p« —+0 as p, ~0.
Now the integral conservation law that Q = J'jo(x)d'x

be independent of time, means

so that

Thus

&4&= (2x)' Po(p') l.-o ~po,

C= &&&.

(2.10)

(2.11)

&[j.(*)A (r)7& = (&&~.D(x—r)
+possible nonlocal term. (2.12)

The role of the broken symmetry is to assure that there
is excited by&(0) a branch for which p« —+0 as p, —+0.

Note that the G-S-W condition (2.12) asserts the
appearance of zero-mass states as intermediate states
in the rather unphysical vacuum expectation value
([j„(x),p(y)7&, and carries no implication that these
states appear in 5-matrix elements. qh can excite zero-
mass particles, but the proof does not show that the
spectrum of p contains anything else, nor does it say
anything about processes in which these particles should
appear nor about the strength with which these massless
particles are coupled. Thus the theorem may apparently
be satisfied by the presence of free massless particles
that are uninteresting physically.

C. Some Trivial Examples

The current j„(x)acts like a fieM operator in possess-
ing matrix elements between the vacuum lo) and one-
particle states

l g). There are rather trivial examples in
which jo(x) is practically the field canonically conjugate
to P(x), and the G-S-W condition (2.12) can be formally
satisfied by the presence of free massless particles. It is
useful to distinguish two kinds of field transformation:

(1) Field translation: Q= c number—=g,

(2) Field rotation: Q,= T;,g;, with some (P;)40.

X2 Im(0
l j„(0)l g&&glqb(0) l

0). (2.7)

The intermediate states lg) are not states of p„,=o.
We will show that they are states of zero mass, p, '=0.
In the following, we always consider p/0 but lim p ~ 0.

Local conservation, Bf'j„=0, requires, in a manifestly
covariant theory,
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The corresponding symmetry generator,

(2.13)

is respectively linear or bilinear in the 6elds

or
(2.14a)

(2.14b)

iLPt(x),P(y))=i da 0(a)h(x —y, a) (2.16)

is a c number. Then

[ j„(x)A (y)j= da a(x—y, a)TBA (x), (2.17)

and current conservation gives

(0~[j„(x),Q(y)j~0)=Q)TB„A(x—y). (2.18)

The current operator j„(x) acts like its linearized ap-
proximation if/ &)T8„$—B„g'P(p)1, so that this exam-
ple practically reduces to the previous case of 6eld trans-
lations. All these examples point the way in which the
G-S-W condition (2.12) can be satisfied and still be
devoid of useful dynamical content.

G. S. Guralnik and C. R. Hagen, Imperial College Report No.
ICTP/64/75 (unpublished).

9 S. A. Bludman, in 1965 Tokyo Summer Lectures in Theoretical
Physics, II. Irigh Energy Physics, edited by G. Takeda (Syokabo
and W. A. Benjamin, Inc. , New York, 1966).

'0 S. A. Bludman, in Proceedings of Seminar on Unific Theories
of Elementary Particles, edited by H. Rechenberg (Max-Planck
Institut fur Physik und Astrophysik, Munchen, Germany, 1966).

Whenever the symmetry transformation is that of
6eld translation, "current conservation" 8&j„=0 is no
more than the free held equation 8'&=0. These cases
are essentially trivial, as Guralnik and Hagen' have
pointed out, because the presence of free massless par-
ticles is asserted directly by the symmetry principle,
and the self-consistency condition

(2.15)

does not introduce into the theory any new parameters
characterizing a new ordered or condensed state; in-
deed q is a "gauge variable" on which nothing depends.
Examples where the broken symmetry is that of 6eld
translations occur in the acoustic excitations in a homo-
geneous medium9 and in the Gupta-Bleuler formulation
of Lorentz gauge quantum electrodynamics. ~"In both
these cases, the G-S-W condition is satisfied by the
presence of massless mesons which, however, are not
real interacting particles.

The case of 6eld rotations is equally uninteresting
when the 6elds are generalized free fields, i.e., fields
whose commutator

Generalized free 6elds lead to no scattering. The
model we will now discuss can be formulated as a sort
of generalized free Geld (a Geld with parameter")
which, however, does lead to a nontrivial S matrix. %e
present such a formulation in the Appendix. In the
next section we prefer, however, to de6ne the model

simply as a sum of selected perturbation-theory dia-

grams. The model will show how a broken symmetry
leads to physical particles of zero mass, except in the
presence of infinite-range forces, when these massless

particles decouple.

III. PAIRING APPROXIMATION: THE
ZACHARIASEN MODEL

A. Diferent Formulations

The model we now consider was first formulated by
Zachariasen' in terms of a dispersion relation for s-wave

scattering, incorporating elastic unitarity but neglecting
the left cut. In this form, it appears as an approximation
to a full relativistic theory in which, at least for a
range of energies, the contributions of crossed channels
are dominated by a single-particle pole. Because the
scattering amplitude is analytic except for the right cut
demanded by unitarity, crossing symmetry is violated.

The model has also been expressed by Thirring" in
terms of selected (chain) perturbation-theory diagrams.
Ke consider three relativistic scalar mesons A, 8, C
and allow vertices A ~~8+C with bare Yukawa cou-

pling constant go, and 8+C ~+8+C with bare Fermi
coupling constant Xo. Because we do not include the
crossed diagrams 8 ~+ A+V, C ~+ A+B, or 8+0 ~+
8+C', the model is a generalization of the Lee model
in which relativistic kinematics is used for V, E and
Feynman rather than retarded propagators are em-

ployed. Khile crossing symmetry is still clearly violated,
the Zachariasen model still has interesting physical
content. Vertex corrections are present, charge renor-
malization is 6nite, and ghosts do not appear for a
finite range of coupling strengths. In this form, defined
as a sum of chain diagrams, the Zachariasen model is a
relativistic generalization of the Gell-Mann —Brueckner
high-density electron gas, and is equivalent to a linear-
ized Hartree approximation or random-phase approxi-
mation. The A, 8, and C particles correspond to
phonons, electrons, and holes and the X& and gf) couplings
correspond to the bare electron-electron and the bare
electron-phonon interactions in a metal. The non-
relativistic limit of the Zachariasen model is therefore of
definite physical interest.

Finally, the model has been treated by Thirring" by
replacing B(x)C(x) pairs by a single Geld p(x, s) of

"A. L. Licht, thesis, University of Maryland, 1963 (unpub-
lished); A. S. Wightman, revised notes for lectures at the French
Summer School of Theoretical Physics, Cargese, Corsica, July,
1964 (unpublished) .

'~ W. Thirring, in Theoretical Physics, edited by A. Salam {In-
ternational Atomic Energy Agency, Vienna, 1963).

'3 W. Thirring, Phys. Rev. 126, 1209 (1962).
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B. Diagram-Sum Pormulatton

We begin by considering three relativistic scalar
mesons A, 8, C with nonderivative trilinear and quadri-
linear interactions,

(3.1)Z =Zp+Zy,
where

gp ——B„A~8&A —p pA tA+8„8~8f'8 —mego'8'(8

+B„CB„C—mco2C2, (3.2)

Z.,=goAB&C+XpB&CBC+H. c. (3.3)

continuous mass gs equal to the sum of B and C
particle energies. This is a Lagrangian held theory in
which, because individual 6eld 8 and C particles do not
appear, asymptotic completeness is not satis6ed. In
this form, the Zachariasen model is a relativistic
generalization of Wentzel's effective (pair-theory) Ham-
iltonian" treatment of the high-density electron gas.

These three formulations give identical results for
the BC scattering amplitude T(s), for the A particle
propagator h(s), and for the ABC vertex I'(s). The
dispersion theoretic formulation has already been given
in an earlier paper. ' In the remainder of this paper, we

employ the second formulation of the Zachariasen
model, as a sum of perturbation-theory chain diagrams.
In the Appendix, we present the third formulation in
terms of a 6eld of continuous mass.

where the proper self-energy is

(s) = goL
—B(s)]gol' (s)

in terms of the unrenormalized proper vertex

(3.7)

Here

B(s)=
(P»2+ms2) (PoS+ mc2)

1 " p(s') ds'

/ ~

(~gg+~g) ~ $ —s—z~

(3.9)

p(s) = (1/26&rs)

X [s' 2(m—'+mc')s+ (m»' —mc')2]'" (3.10)

is the relativistic kinematic factor for two scalar par-
ticles of physical masses m& and mt.-. Although we allow
no A-particle dressing of 8 and C particles, m~ and mg
may differ from the bare masses m~p, mt.-p because of
the possibility of BC mixing.

The A-particle self-energy is

g&
'=

(& ') = —go'B(~')/[I+~&(& ')], (3 11)

and the wave-function renormalization

Zo '=[dD„'/ds], „2=1+go2+I(p2)Z& ', (3.12)

I'„(s)= I/[1+ &&oB(s)] (3 8)

and the irreducible A-particle polarization (BC bubble
diagram)

The A and 8 particles are charged so that the current where

j „(x)= i[A &(x)&l„A (x)+Bt(x)8+(x)]
is conserved.

We will study the s-wave scattering of 8 and C
particles. In Born approximation, this scattering pro-
ceeds through direct BC interaction with bare coupling
strength Xp and through the exchange of A particles of
bare mass pp and bare coupling gp. The Born amplitude
1s

To(s) = l&o+go'/(s —&2o'), (3.5)

where s= (p»+p, )2. The physical A particles, which
may be elementary A particles or BC bound states, are
identified as poles of the scattering amplitude T(s),
lying at s=p, '.

We now calculate in pairing approximation, where 8
and C particles are always emitted and absorbed to-
gether, so that B(x)C(x) is approximated by

2 2

,LB(s)—B6 ')]=-
$—p lr

I(s) =

p(s') ds'X,(3.13)
(s'—p') (s' —s—io)

Z; =r„(,)=[ly~~&)]-. (3.14)

T(s) = To(s)+To(s)[—B(s)]T(s). (3.15)
Since

T(s) = To(s)/[1+To(s)B(s)], (3.16)

the A-particle poles are the zeros of 1+To(s)B(s), or

go
1+(4+ Bo'&=0

P —Po
(3.17)

Note that 0&Z3&2.
The BC scattering proceeds through a sum of bubble

diagrams,

6„—'(s) = s—p, o2—&r(s), (3 6)

"G. Wentzel, Phys. Rev. 108, 1593 (1957); R. Brout, ibid.
108, 515 (1957).

B(x)&+&C(x) &+&+B(x)' 'C(x) & '

with the terms B(x)'+'C(x)' ' and B(x)' &C(x) &+' neg-
lected. In this approximation the 8 and C particles
remain undressed but the (unrenormalized) A-particle
propagator is given by

is the mass equation.
The coupling constant is given by the

2 dT' d
=—LTo '(s)+B(s)].=.

g dS s=p2 dS

gp2 Z 2

= [B(& )l' +I(& ') =—+I(& 2).
(6~2)2 g

2

(3.18)
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Since in Eq. (3.12)

Zp/Z~= Zg +go I(p, ), (3.19)

The self-consistency condition can finally be written

g=qT„(0)L—B(0)]. (3.30)
we have

This condition admits of normal symmetry-preserving
g go Z3/Z1 ~

solutions (g=O ma=mao, and mc m=co), and of ab-
Using Eqs. (3.14) and (3.20), the mass equation (3.17) normal symmetry-breaking solutions (&&0) given by
can also be rewritten the solutions of

C. Broken S~~etrjr in the Zachariasen Model

The broken symmetry we consider is that the
physical vacuum ~0) is such that BC pairs can dis-
appear into it, in violation of charge conservation, i.e.,
that there is a nonvanishing amplitude

q=(OiB(x)C(x) i0)

for the mixing of B and C particles of diferent charge.
We write

(3.22)
w'ith

Z, '= Z, ~*B(x)C(x) qBt(x)Ct(x—), (3.23)

&i'= (BC)t(goA+XOBC+g)+H. c., (3.24)

and calculate p self-consistently by requiriag that 2'
produce no BC mixing additional to that contained in
Zo, i.e., that the physical vacuum be stable with re-
spect to the disappearance of any further charge. Intro-

B
ducing a two-component charge spinor qb= Ct, a mass

matrix

(3.25)

and Feynman propagator

a(p2) = 1/p' —m2+i. , (3.26)

gp'= —(go'/Zi) B(p')
= —g'(Zg/Z, )B(p') .

These two forms show that in a divergent theory
LB(p')= ~] the self-energy hp' can be finite only if
go'=0 and Z~=0.

Note that Zs ——1—g'I(p'), so that g' is bounded by

g'&g'- ~=—Ilf (p'), (3.21)

and that as go' —+ 0) Za —+ 1) and g' ~ 0.

1+Ta(0)B(0)=0. (3.31)

This condition for broken symmetry determines B(0)
in terms of 1/To(0). It also determines g through B(0),
which depends on p through the masses for the physical
B and C particles that result from the BC mixing. We
have

D. Discussion of Special Cases

1. In the case of pure quadrilinear coupling, go
——0,

the scattering proceeds through a sum of BC chain
diagrams,

T(s) =30/L1+XOB(s)].

The broken-symmetry condition

1+LOB(0)=0 (3.35)

asserts the existence of a pole in the vertex I' (s) at
s= 0:The BC scattering proceeds through the exchange
of a massless neutral bound state. This massless scalar
meson is the precise analog of the massless pion in the
Nambu —Jona-Lasinio theory, or of the phonon-like
collective excitation in superconductivity.

2. In the case of pure Yukawa coupling

p(s) = (1/16nrs)Ls' —2(mao'+mcp')s

+ (mao'+mco')'+4 [g [']'", (3.32)
and

(ma+me)' ma=0'+mco'+2 (mao'mco'
~ g ~')'". (3.33)

Note that a certain minimum strength of coupling Tp (0)
is necessary in order that Eq. (3.31) have any solution,
and that q depends nonanalytically on the bare
coupling.

Comparing Eqs. (3.17) and (3.31), we see that the
abnormal (g/0) self-consistent solution demands zero-
mass A particles or bound states. This is the Goldstone
theorem for our model.

w'e have, in our approximation,

~—= (Old'r 4lO)=T«'p To(0)r ~(p), (327)

or

T(s) =go'~. (s),
w'here the A propagator

~ (s) = I/O —po'+go'B(s)]

has a pole at p,'. After renormalization,

(3.36)

(3.37)

,= T, (O) d p (—&), (3.2g)
p' ma'+i a p'—mc'+i e—

where where
T(s) =g'~(s) (3.38)

(3.39)ma ~(ma0+mcO)+(++~0~ ) ~

mc'=-,' (mao'+mco') —(CV+ ] q f

')"'
6= -', (mao' —mean) .

(3.29)

g —Zygo ~

The self-consistency condition

1—(ga'/»')B(o) =o (3.40)
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3. In the combined theory, we obtain

T'(s) =g,oi „A„r„+X,r„. (3.41)

In this expression the first term refers to scattering
through the exchange of A particles, while the second
term is one-particle irreducible. In terms of renormalized

quantities

h(s) =Zo '5 (s), I'(s) =Zii'„(s),
2'(s) = goi Sr+ (X/Z, )r, (3.42)

now makes the physical A particle be of zero mass.
Something interesting happens as we now consider the
eGect of varying the bare mass p0 keeping the order
parameter g or B(0) fixed:

(i) If pp —+ ~, then gp must ~ oo so that goo/goo stays
fixed. This elementary-particle theory is practically
indistinguishable from the preceding bound-state theory.
This is to be expected since as g0'~ ~, Z3 —+0, and
g'~&/&(0), a number determined by the B and C
particle masses.

(ii) More interesting is the limit pp' —+0, which
makes gg —+ 0. Then, although the p'=0 pole remains
in 6„,Zo —+ 1, g -+ 0, and T(s) vanishes. In this limit
the mesons demanded by the Goldstone theorem de-
couple: The broken symmetry leads to a pole in the
propagator, but for p,0' ——0 this pole is unphysical since
it disappears from the scattering. In fact, the left side
of Eq. (2.12) is independent of gp. This example already
illustrates the way in which Goldstone mesons may be
unphysical.

was allowed to become of infinite range. There was still
a nontrivial S matrix. This result should not be too
surprising, since it parallels a similar result in the non-
relativistic many-body problem: In a superconductor,
because of the infinite-range Coulomb interaction,
phonon modes need not be present.

The role of the Goldstone theorem, if it were appli-
cable, would have been to associate synnnetry break-
down with the existence of massless particles with
certain quantum numbers. Our counter-example shows,
however, that physical particles of zero mass need not
emerge simply as a direct consequence of broken sym-
metry. Whether massless particles occur or not in a
particular theory can be determined only after a detailed
dynamical calculation. Despite its heuristic value, the
G-S-W condition cannot lead directly to physical
conclusions.

APPENDIX

A. Lagrangian Formulation of the
Zachariasen Model

In this Appendix we generalize Thirring's treatment
of the Zachariasen model" by including ) 0 as well as g0
coupling and by giving 8 and. C particles diferent
charges and diferent masses. Since 8 and C particles
are always created and annihilated together, Thirring
(following a suggestion by T. D. Lee) introduces,
alongside of the field A(x)=g(x, sp), a continuum of
fields p(x, s) which will destroy at x BC pairs of energy
squared s= (pz+ pc)'. The Lagrangian density

where X is defined so that Xp/Zi ——X/Zp. Recall that
g = (Zo/Zi )gp vaillshes as gp ~ 0. 0 0

ds ds' pt(x, s)([8„8"+sp(s)jb(s s')—
+OrP (s,s'))y(x,s'), (A1)

Broken symmetry requires, for a fixed g, that Tp(0)
=&o—go'/po' remain fixed at —1/B(0). If we choose to
hold X0 fixed at some value X0', then as p,0' —+ Op g0~ 0
so that the elementary-particle term disappears from
T(s), leaving scattering only through the term Xo'I'„.
It may even happen that X0' is sufliciently strong to
produce a bound state at some p"/0. In that case, we
might speak of a bootstrap theory in which the inter-
action proceeds through the exchange of BC bound
states whose existence itself depends on the interaction
they produce. In any case, whether or not such a bound
state at p' is possible, the Goldstone theorem is satisfied
by a propagator pole which disappears from the scatter-
ing amplitude when p0

——0 and leaves nontrivial
scattering.

IV. CONCLUSIONS

While broken symmetry demands some states
~ g) of

zero mass, these states need not appear in amplitudes of
physical, interest. In the preceding example, the Gold-
stone meson decoupled when the bare A-particle force

where

p(s) =5(s—sp)+8(s —si), sp ——p', s& ——(mB+me)',
5Ko (s,s') =

golub

(s sp)f(s')+—8 (s'—so)f(s)]
+'A f(s)f($'), (A2)

f'(s) = (1/or)p(s)8(s —s&),

will reproduce all the results of the diagrammatic for-
mulation of the Zachariasen model. Note that in this
Lagrangian the threshold s& and phase-space factor p(s)
have been chosen to depend on m~ and mq rather than
on any m~, and fs&p This means that any BC mixing
has to be already included in our Lagrangian rather than
in a choice of abnormal over normal solutions. For this
reason, besides the Lagrangian, the relation (3.29) con-
necting the 8, C masses with the mixing parameter has
to be assumed.

The quadratic Lagrangian (A1) leads to the linear
equations of motion

(Q —s)p(s)p(x, s) — 5K'(s, s')p(x, s') ds'=0, (A3)
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which can be diagonalized by the transformation

Q(x, s) = E(s,s')4 (x,s') ds'

which is unitary,

(A4)

Although we have assumed the spectrum of 3P(s) to
contain one discrete point M'(sp), solutions can also be
easily obtained when Eq. (A15) has two solutions or
none.

That

P(x,s) = a(s)4+(x,sp)+ G+(s,s')Ci+(»s') ds' (A16)
sg

with wright function p(s). The real symmetric matrix
01P(s,s') will be diagonalized

(0—$)4~(x,s) =0, (A17)

Et(s",$)p(s)E(s, s') ds'=8($" —s')p(s'), (A5)
is a solution of Eq. (A3) can be confirmed directly using
Eq. (A15) and

K'(s,u))up(u)8(u u')—+SP(u,u')]E (u', t)dudu'

=3P(s)8(s f) (A—6)
with

gof(")/D+(s'),
(s' —s)G~(s, s') =

To(s')f ($)f(s')/D+(s'), s&s,

f(s')G+(s', s) ds'= f(s)/D+(s) .

(A18)

3P (s) = 8 (s sp)a'+—8 (s s~)s— (A7)

4'+(»so) =a*(sp)4(x,so)+ a*(s )4'(xis ) ds i

sgE=E (s,s') =8(s' sp)a(s)+8(—s' s,)G (s,s'),—(A8)

where, for s=so, 4 (x,s) =G (s,so)C (so)+ G (s,s')y(x, s') ds',

representing a partirie of discrete mass y' and a con- The formulas inverse to Eq. (A16) are
tinuum beginning at s&. The secular equation (A6) has
indeed two solutions, In one solution,

(A19)

goa(sp) f(s)
a(s) = $)sg~

1+XoB(a') u' —s
(A10)

E (Sp,s ) =5($ —sp)a(sp)

+8(s $~)gpf(s')/(s —so)D (s ) (—A9)—
and, for s&s&,

s&sg.

The eigensolutions 4+ and C are, respectively, the
out and in fields to which i'(x, s) weakly converges, in
the sense that

lim (; '"'BC~ i'(x, s) ~0&=(; '"'BC~4'+(x,s) (0&, (A20)

To(s')f (s)f(s')
G (s s') —8(s s')+ s&s, (A11) where BC out and in states are defined by

(s' —s+io)D (s')
4,(x,s) lo&= lBC;,- &.

D (s)=1+To(s)B(s),
(A21)

f'(s') ds'
Tp(s)=ho+go/(s —sp), B(s)= . (A12)

(s'—s—ip)

The second solution of the secular equation, E=E+, is
obtained from E by replacing ie everywhere by —ie.

Here a(so) is a normalization constant to be deter-
mined from the orthogonality relations

Since asymptotic states for individual 8 and C par-
ticles are not even contemplated, and since even when
in the continuum the BC pairs are in s states only,
there is no question of this theory satisfying asymptotic
completeness. This leads to the failure of crossing
symmetry.

The asymptotic 6elds obey the commutation relations

i[C t(x s) 4 (y s)]= LL(x—y, s)b(s $)p (s), (A22)—

ia(s) i'p(s) ds=1, (A13) from which we obtain for the interpolating fields

i[y'(x, s),y(y, t)]
Gt(s"$)p(s)G(s, s')ds =h(s"—s'), s', s"& s& (A14)

D(x—y, u)p(u)E~(t, u)E~" (s,u) du. (A23)

that issue from Eq. {AS). The eigenvalue condition
that E~ be solutions is the vanishing of the denominator
function

D+(u') =1+L~o+go'/(~' uo')]B(u') =o —(A15)

The C 6elds are called "6elds w'ith a parameter" by
Licht."The p 6elds that are linearly related to the C
6elds are in their equivalence class. These 6elds with a
parameter are interesting because 4+ diGers from C,
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i.e., unlike ordinary generalized free fields, a nontrivial
S matrix can be de6ned, at least in some formal sense.

B. Green's Functions

From Eq. (A23) we can now calculate the various
vacuum expectation values

(A24)

T(s), X(s)—=r(+g'/(s —p'), and because

go goZ/Zo

l(/l(o ——Zo/Zg,

we have
T()(s) Z( s Io'—

X(s) Zo s—sp

(A31)

(A32)

(A33)

(A34)

for various choices of s and t. For s=t=so, we 6nd

i(OI(t)t(x, sp)@(y,sp) I0)=d,„(x—y), (A25)

so that
i 1 Zgs p,

D(s) D (s) Zps —so
(A35)

the unrenormalized propagator for the A Geld. For
s=f&s&, we Gnd

lim (OI(t)t(xs)(t (ys) IO)=(BCoutIBCin)=S, (A26)

Hence, in Eq. (A30),
p(s) F(s) '

0'ss=g Z3
s—p

(A36)

(I
+0~+ (O

the BC scattering matrix. For s&sg, we 6nd

lim (OIy'(x, s)s) (y,sp) I 0)

= (BCout If(sp)
I
0)=6 (s)F (s)gpf (s) (A27)

which is the correct form for the Lehmann-Kallen
weight in case of two-particle unitarity.

In terms of renormalized quantities, we can write

f(s')4 +(x,s') ds'
o) (x,sp) =Zo'" C~(x,sp)+g

(s' p') D (s')—

where I' (s) is the unrenormalized vertex function.
These identi6cations are to be expected if we recall
that, for s&s&, (f)(x,s) was to replace the product
B(x)C (x).

For Xp =0, Eq. (A25) has been established already by
Thirring. "Directly from Eq. (A23) we obtain

g4y(xssp)
4 (x,s) =f(s)

p —s

T(s')f(s')4 p(x, s') ds')
$)$& r

s —size

i&014'(x,s,)4 (y,s,) IO)

=
I o(sp) I'~(x—y, p')+

I G+("I) I'

f(s')y(x, s') ds'
4 ~ (x,s) =Zo))'()I) (x,sp)+g

2 s

Xh( ) d (A28)
4(x,s) = G+ (sss')4 (xss') ds',

where the d (x,l) on the right-hand side is the causal
propagator for mass squared I, if the T product is
understood on the left-hand side. From the sum rule
(A13), the residue of the pole at p' is

gp' ds f'(s)
Zp= Ia(so) I'=1—

I a(sp) I'
L1+l(pB(p') j' (s—p')'

or, in terms of the quantities defined in Kqs. (3.13),
(3.14),

G (s,s') =G+*(s,s') =g(s—s')

+T(s')f(s)f(s')/(s' s+i p), s&s(.—

The vacuum expectation value in Kq. (A26) is, before
we take the double limit, the U matrix between 6nite
times yo and $0. After taking the limit, we have

S=(Q(pssS (0) fos(s s)P(s )G '(ss )',d=s', '(A37)'

Zp
—' ——1+ (gp'/Zg')I ()((') .

For the unrenormalized weight function in Eq. (A28),
we have

the last equality following from Eq. (A19). Now

G+(s',s) = LD+(s)/D-(s) jG-(s',s),
so that, using Eq. (A14),

(A38)

~-(s) =
I G+(»,s) I'= go'f'(s)/(s —so)'ID+(s) I' (A3o)

Now the normalized form factor F(s) is defined to be
Thus

equal to 1/D(s), the denominator function in T(s)= Tp(s)/D (s) = /(/(s)/D(s) . In this second form for

S(s)= 1—2ip(s)T(s) =D+(s)/D (s) . (A39)

D (s)—D+(s) Tp(s)
T(s) = (A40)

2ip(s)D (s) 1+T,(s)B(s)
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C. Broken S~~etry
The Lagrangian (A1) admits the phase transforma-

tions
y(x,s) ~ e' y(x,s),

yt (x,s) ~ e ' qV(x, s)

associated with the conservation of the current

(A45)

j„(x)=i yi'(x, s)a„P(s)y(x,s) ds. (A46)

in agreement with the result (3.16) obtained by sum-

ming BC bubble diagrams.
We finally have from Eq. (A19), using the ortho-

normality of the p(x,s) and Eq. (AS),

»m (014'(x,s)4 (y, so) I o)
gp-++ ao

=G (so,s) =gof(s)/(s so)D—(s). (A41)

From Eqs. (A35) and (A31), this equals

goZ3/Zif (s)/(s —p')D(s) =gZ 3~i'f (s)F(s)/(s —p'), (A42)

which establishes Eq. (A27).
The renormalized quantities are

6„=Z3 '6„) I'„=ZyF „)
where

D,I',=F(s)/(s —si') . (A44)

From theLagrangian (A1) and the interpretation (A21),
we have thus obtained the A propagator, BC scattering
amplitude, form factor and vertex function of the
Zachariasen model, in agreement with the results of the
dispersion-relation' and diagram-summing formula-
tions. These last two formulations can, however, bc
envisaged as parts of or approximations to a complete
field theory. The Lagrangian formulation, on the other
hand, cannot directly be extended to include higher
sectors or other partial waves.

Ke now impose the symmetry-breaking condition

(y(s)) =(OI4(*,s) IO) =~(s)~o,
QP(s))=(o~qV(x, s) ~0)—=q*(s)&0,

(A47)

and obtain in the equation of motion (A3)

sp(s) (p (s))+ ÃP (s,s') (p(s') ) ds'= 0.

The condition for a solution with (g(s))WO is, using
(A2),

f'(s) ds
1+(4—go'/s o') (A48)=0.

Comparing with Eq. (A15), we see that symmetry
breaking demands a solution with p,'= 0.

Equations (A48) and (A15) are precisely Eqs. (3.31)
and (3.17), so that the discussion of the Goldstone
theorem and of the decoupling of Goldstone mesons
when pp'~ 0 proceeds as in the main text. From the
current (A46) and the commutation relations (A23),
the G-S-% condition is directly confirmed in the form
(2.18). In fact, (0~ Lj„(x),P(y,s)] ~ 0) is linear in p and
independent of go or g, so that Eq. (2.12) is satisfied
whether or not the massless particles it calls forth are
coupled. In the Lagrangian formulation, the condition
(A48) for a symmetry-breaking (&No) solution does
not explicitly contain p. Instead, Eq. (A48) imposes
only a relation between the bare parameters Xp, gp, pp
and the masses m& and est. already put into the La-
grangian (A1). Only in a more complete theory con-
templating individual 8 and C particles can these
masses be themselves referred to the order parameter g,
as in Eq. (3.29). This is another reminder that the
diagram-summing formulation can be extended to a
more complete theory than the Lagrangian formulation
of the Zachariasen model can be.


