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because of the conservation of isospin. Transforming
the T product by tt ' and using 'll '~0)= ~0), we get

(T$—
2 q o(1)+x2VFrp„o(1),jq(2), j„(3)])0——0. (A11)

This immediately leads to the well-known relation for
the decay amplitudes~.

(7ro —+ 2y) =v3~(qo ~ 2y) . (A12)
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A direct evaluation of the M1 amplitude for the photo-excitation p ~¹+is made from the H photo-
production cross section at resonance, with result (1.28+0.02} times the SU(6) prediction 2+2@~/3. It is
shown that the N electro-excitation data also lead to the same value, within larger errors. There is pointed
out a strong kinematic form-factor correction to this SU(6) prediction, which occurs in consequence of theN-¹mass difference arising from SU(6) symmetry-breaking interactions. The most direct phenomeno-
logical evaluation (based on the three-quark model for the baryonic states) for this correction would reduce
the predicted M1 amplitude to 0.79X (2&pj,/3).

1. IHTRODUCTIOH

w ITH the assumption of SU(6) symmetry, "the
baryon octet 8 and the (-,'+) baryonic decuplet

8* are assigned to the same supermultiplet, the 56-
dimensional representation. As a result, their electro-
magnetic properties are directly related. The amplitude
for Mi photo-excitation yE ~S*is then expressible in
terms of the proton magnetic moment, as 6rst given by
Beg eI, al. ,

'

where @~=2.79 eh j2Mc denotes the total proton mag-
netic moment. The same result also holds in the rela-
tivistic U(12) symmetry scheme. ' In the limit of exact
U(12) symmetry, when the states 8 and 8~ have the
same mass, the relation (1.1) holds also for arbitrary
momentum transfer k', so that the same form factor is
appropriate for both the transitions yB —+ 8 and
yB —+ 8*.The transitions yB ~8* are also permitted
through E2 and 1.2 (longitudinal) electromagnetic
interactions. Using SU(6)s syrmnetry, a relativistic
generalization of SU(6) symmetry for collinear proc-
esses, which is also a subgroup symmetry of U(12)
symmetry, Harari and Lipkin' have shown that the
E2 and I.2 transitions are forbidden.

The same results, the relation (1.1) and the vanishing
of the E2 and I.2 amplitudes, have also been obtained

'F. Gursey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964).' B. Sakita, Phys. Rev. 136, B1756 (1964).' M. A. Bdg, B. VV. Lee, and A. Pais, Phys. Rev. Letters 13,
514 (1964).

'A. Salam, R. Delbourgo, and J. Strathdee, Proc. Roy. Soc.
(London) A284, 146 (1965).' H. Harari and H. J. Lipkin, Phys. Rev. 140, 31617 (1965).

from the three-quark model for these baryonic states, "
assuming that the (~~+) baryon octet and the (-,'+)
baryonic decuplet both correspond to an I.=0 configu-
ration. Schematically, the three-quark wave functions
for these states take the form

f=y(1,2,3)Xs(1,2,3)g(1,2,3), (1.2)

where p, &8, g denote the space wave function, the spin
wave function for spin S, and the unitary spin wave
function, respectively. For the 8~ states, S=-,', and
X3~2 and g are both symmetric functions; for the 8
states, S=-,', and X~~2 and g are both functions of mixed
symmetry, their product being taken to give a sym-
metric function. In the approximation that the quark-
quark forces are invariant with respect to the simul-
taneous spin and unitary-spin transformations of SU(6)
symmetry, the space wave functions g(1,2,3) are the
same for both 8 and 8* states (antisymmetric if the
Pauli principle holds for quarks) and correspond to
I.=0 for the total orbital angular momentum.

The comparison of the prediction (1.1) with experi-
ment is one of the signilcant tests of SU(6) symmetry,
or of its relativistic extensions. The status of this corn-
parison has recently appeared rather obscure. Beg et al.'
have indicated a rather substantial discrepancy between
(1.1) and the data. From the detailed analysis of pion
photoproduction data which has been carried out by
Gourdin and Salin, ' they deduced the result

DR= (1.6) &&-',@2'„. (1.3)

This amplitude corresponds to an experimental cross
section more than 2.5 times that predicted with the

' C. Becchi and G. Morpurgo, Phys. Letters 17, 352 (1965).
7 R. H. Dalitz, in High Energy Physics (Gordon and Breach,

Science Publishers, Inc. , New York, 1965), p. 251.
M. Gourdin and Ph. Salin, Nuovo Cimento 27, 193 (1963).
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amplitude (1.1). On the other hand, Geshkenbein' has
compared the pion electroproduction cross section cal-
culated with the SU(6) amplitude (1.1) with the S*
excitation data of Hand" and has found excellent agree-
ment (to about 10%% accuracy in cross section) for mo-
mentum transfers from k'=4m ' to 32 m ', using the
same form factor for the X—+ X~ amplitude as known
for proton and neutron magnetic moments, as required
by the relativistic version of (1.1).

Our purpose in this note is to re-examine the question
of an empirical estimate for the M1 amplitude 5K, to
clarify the relationship between the comparisons men-
tioned above, and to illustrate some of the uncertainties
which arise from the approximate nature of the SU(6)
symmetry.

2. THE M1 AMPLITUDE FOR N —+ N*
AT RESONANCE

The cleanest situation for an estimate of the M1
amplitude (1.1) is that provided by data on the so

photoproduction reaction

From the x' angular distribution for unpolarized
photons, McDonald et al." obtained the ratio
C/A= —0.6&0.06 in the neighborhood of the reso-
nance energy. This ratio corresponds to the value

b/5K= 0.0+0.06. (2.5)

b/M =0.02&0.01. (2 6)

These estimates for b/OR neglect the small contribu-
tions possible from the excitation of nonresonant mE
states; however, they are sufhcient to indicate that the
contribution of E2 transitions to the excitation of the
resonant state is exceedingly small, probably not more
than 0.1% at the resonant energy.

At resonance, the total cross section for x' photo-
production is given by the expression

For the polarization term, Drickey and Mozley" and
Barbiellini eI, a/. '4 obtained the values 0.9+0.1 and
0.9&0.06, respectively, for the ratio a/C in the neigh-
bourhood of the resonance. These values correspond to
the estimate

v+p~ p+~' (2 1) (vp p o) =-,'(4 /u*')(r, /r), (2.7)

y+p ~ Xgi2*(1236)~ p+s
is proportional to

(2.2)

A+C cos'8+o. sin'8 cos2& (2 3)

for incident photons with plane polarization (electric
vector lying in the plane p= 0), where

A = 5
i
5K ''+3

i
Si'+24$5K*B, (2.4a)

C= —3
i
SK i'+3

i
6 ['—6V3SK*8, (2.4b)

(2.4c)~= —3 [~]'+3[8['+2~3~*a.
' B.V. Geshkenbein, Phys. Letters 11, 323 (1965)."L.Hand, Phys. Rev. 129, 1834 (1963)."A. Donnachie and G. Shaw (private communication, 1965l.

in the neighborhood of the resonance S"(1236), since
this reaction is known to be dominated by Mi resonance
excitation.

The very low values observed for the total cross
section near threshold are already indicative that the
s-wave photoproduction interaction (2.1) is rather
weak. From analysis of the x and x+ photoproduction
angular distributions, this s-wave amplitude can be de-
duced as function of the photon energy and it is rather
small over the X*(1236)resonance. For example, from
a semiphenomenological analysis of all the available
data (based on the dispersion-theoretic calculations for
photoproduction), Donnachie and Shaw" have ob-
tained a value about (1.5+2.8i) X 10 ' h/m c for the
s-wave amplitude at the resonance energy; this ampli-
tude would only contribute 2.5 pb to the total cross
section observed (267 pb at the resonance energy).

With the M1 and E2 amplitudes for excitation of the
resonance denoted by BR and 8, respectively, the m'

angular distribution for the resonance process

where k* denotes the c.m. photon momentum at reso-
nance, F~ denotes the partial width for the decay
%Bing (1236)+~ Py, and F denotes the total 1V3i2*(1236)
width, de6ned by the phase-shift expression

cotb = 2 (E*—E)/I'(E) (2 g)

o, (y,x )=260&6 pb. (2.9)

~ W. S. McDonald, V. Z. Peterson, and D. R. Corson, Phys.
Rev. 107, 597 {1959).

"D.J. Drickey and R. F. Mozley, Phys. Rev. Letters 8, 291
(1962)."G. Barbiellini, G. Bologna, J. deWire, G. Diambrini,
G. Murtas, and G. Sette, in Proceedings of the Sienna International
Conference on Elementary Partkles, edited by G. Bernardini and
G. P. Puppi (Italian Physical Society, Bologna, 1963), Vol. I,
p. 516.

"K. Berkelman and J. A. Waggoner, Phys. Rev. 117, 1364
(1960).

"A. Donnachie and G. Shaw, Ann. Phys. (N, Y.) {to be
published).

and evaluated at the resonance energy E*.Berkelman
and Waggoner" have tabulated the x' total cross
sections available across the resonance energy, including
the values 244&3 p,b at k~ ——295 MeV, 281&3 p,b at
320 MeV, 226&2 pb at 360 MeV, and 138+2 pb at 400
MeV. For the resonance energy kL, ——345 MeV, inter-
polation between these values leads to the estimate
267&5 pb for o„,(yp ), where the error includes the
uncertainty in the interpolation. Including the P», p»
and ptt excitations, the total cross section for non-
resonant e.X excitations may be estimated (for example
from the analysis of Donnachie and Shaw" ") as
between 5 and 10pb; for definiteness, we adopt the esti-
mate 7+3 pb for the nonresonant background, and the
estimate
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A convenient form for the resonant phase shift (2.8)
is that used by Gell-Mann and Watson, ' for which

p (E)=7 (va)'/Ll+ (H)'3 (2 1o)

with the parameter values'~" y=i27. 5 MeV and
a =0.85/m .The width I' at resonance is then 119MeV.
Inserting these values in Eq. (2.7) leads to the result

I'~=0.65(&0.02) MeV. (2.11)

The radiative width may be expressed directly in
terms of the magnetic moment (1.1). The matrix
element is

V»= (1/2k)'"(p m'l M lEgm*+, m) k&(e. (2.12)

Since F~ is the same for every value of the E* mag-
netic quantum number es, we consider m= 2, for which
there is only the one transition, to m'=-,'; for this the
matrix-element of M has the value (4-,')OK. The width
is then given by

4mk'dk M
(l l~l')(lk') &(k+E.—E*), (2.13)

2k (2s)'Ek,.

where E~ denotes the total proton energy, and the factor
3 results from the sum over photon polarizations and
the average over photon directions. This expression
reduces to

I', = (ak*'/2ME*) y~' (2.14)

where we have written DR= p~(eh/2MG). Equating
(2.14) with the result (2.11) leads to the estimate"

p*= (1.28&0.02)-',v2p„. (2.15)

"M. Gell-Mann and K. M. Watson, Ann. Rev. Nucl. Sci. 4,
219 (1954)."These parameter values were obtained with the choice
E*=1236 MeV by fitting the phase shifts appropriate to the high-
est {kL,=450 MeV) and lowest (k1.=270 MeV) energies considered
in Fig. 3. These phase shifts were obtained from the interpolation
formulas provided by Donnachie and Shaw (cf. Appendix 1,
Ref. 16). Olsson (Ref. 19) has recently given an analysis of all
the pion-nucleon total-cross-section data available in terms of a
resonance formula of this form, which led to the value F = 120+2
MeV for the width at resonance. This uncertainty in 1 has been
included in the error quoted in Eq. (2.11) for F~."M. G. Olsson, Phys. Rev. Letters 14, 118 (1965).~ This estimate is significantly less than that given by the ex-
pressions of Gourdin and Salin (Ref. 8), as evaluated by Bdg
et al. {Ref. 3), despite the fact that their isobar model for the
phenomenological analysis of pion photoproduction is parallel in
spirit with the treatment adopted here, although apparently more
complicated owing to their adoption of a covariant notation.
Due to the lack of detail given in their paper, it is dificult to be
sure about the reasons for this discrepancy. The M1 amplitude
for x photoproduction is {Q-',) MI+, in consequence, we believe
that the first factor in their expression (13) for the total cross
section at resonance should be —,

' rather than 4/9. Also this equation
implies that their fit gives a .(y, 7I ) =0.23 mb, whereas the best
experimental estimate is 0.26 mb. Their estimate for ) 1 depends
on the total width j. adopted for E*(1236);with the value F = 119
MeV, we find the estimate XI=2.16, rather than their value
XI =2.07. An increase in XI would require a corresponding decrease
in their estimates for the parameters CI and C2 occurring in the
M1 transition amplitude. There is some uncertainty about the
value to be used for their parameter F~. Q"ith the cross sectiona, (y, 7I- ) =0.23 mb, a coefIicient 1.60 is obtained in Eq. (2.15);
the increase in cr~, (yp-'), the factor Q ~3 and the decreases in C1, C~

alt (k') =SING„IkI*(k'), (2.17)

as assumed by Geshkenbein, ' with G„~* equal to the
nucleon magnetic form factors observed empirically,
given by~

G. ,Ik') G .Ik') i k'
=l 1+p„( 36m, '

(2.18)

The expression (2.16) differs from that used by
Geshkenbein in two respects. His expression (2) has an
additional factor (M+»—e')/E. This is equal to the
quantity M/Ekc, where E& is the total energy of the
proton before the interaction, in the c.m. frame of
the final strongly interacting particles; K denotes the
momentum transferred by the virtual photon, measured
in this c.m. frame. This is the relativistic normalization
factor for the initial proton wavefunction; it was not
given explicitly in the formula (4.11)of Ref. 21, but was
tacitly assumed to be contained in the matrix element
J. For consistency, and to be in accord with our defini-
tion of 5R in the A* rest frame, Eq. (2.16) should be
multiplied by this factor, to give a corrected expression,

lm, (k ) l2r/2 p'

dp'dQ' ~ L(E*—E)'+I'/4j p

p(p+p )'+k')(iV)'Ikk+k',
)

This equation still difFers from Geshkenbein s expres-
sion by the kinematic factors (M/E)', where M is the

due to changes in ) I lead to correction of this coeKcient by the
factors (1.07) )& (0.81) )& (0.95) which will lead to a final value of
1.31 for this coeKcient, essentially in agreement with our estimate
(2.15), within the uncertainties."R.H. Dalitz and D. R. lennie, Phys. Rev. 105, 1598 (1957).~ See F. M. Pipkin, in Proceedings of the Oxford International
Conference on Elementary Particles (Rutherford Hjtgh-Energy
Laboratory, Harwell, England, 1966), p. 61.

For the case of electroproduction, cross-section
formulas have been given by Dalitz and lennie. 2i For
Mi excitation of the X3~~* resonance, the formulas
(4.11), (4.9), (4.10) of their paper, together with the
expression for X given after their Eq. (3.6), and sinG.

given by their Eq. (3.7), lead to the cross-section ex-
pression (laboratory system)

I
m(k') I'I'/2 p' (p+ p')'+"'

dp'dQ' GrDE E)'+I—'/4 j p k' —kIk2 E
(2.16)

where 9R(k') is the magnetic-moment amplitude appro-
priate to the four-momentum transfer k', and ko, k
denote the energy and momentum transfers from the
electron in the laboratory system. With relativistic
SU(6) symmetry, 5R(k') should have the same form
factor as the nucleon magnetic moments, and so it
appears natural to write
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proton mass and. E is the total energy for the strongly
interacting particles in their c.m. system; for the
nuclear case, whence Geshkenbein obtains his expres-
sion, this factor is essentially unity, since the nuclear
excitation energies of interest are small relative to the
total nuclear mass.

Geshkenbein compared his cross-section expression
(2) with the differential cross-sections observed for
X3I2 excitation in inelastic electron-proton scattering
by Hand. '0 For five momentum transfer values in the
range k'=4m ' to 32m ', he finds that there is excellent
agreement (within the experimental error of about
&10% for each determination) with his expression,
assuming the form factor (2.18) and the SU(6) value
(1.1) for 5K. This comparison shows that the form factor
G„//" (0') is in agreement with the nucleon form factor
(2.18), as required by relativistic generalization of SU (6)
symmetry. Assuming this form factor, and extrapolating
to 02=0, it also appears to indicate that the Mi photo-
excitation amplitude is in accord with the SU(6) ex-
pectation (1.1).

With our corrected expression (2.16'), the additions. l
factor M/E has the value 1/(1.31) for N3/s* resonance
excitation at the resonance energy 8*=1236 MeV.
Assuming the form factor G»* to be given by the
SU(6) expectation (2.18), as verified by Geshkenbein's
comparison, agreement with the data of Hand now
requires the amplitude BR to be taken 1.31(&0.1) times
the SU(6) prediction (1.1).This result from the electro-
production data is in good accord with the estimate
(2.15) for OR obtained directly from the photoproduc-
tion data. Of course, this agreement merely indicates
that the electroproduction cross sections are in accord
w'ith the photoproduction cross sections in the limit
02~0, as must necessarily be the case. Since these
latter cross sections are known with greater accuracy
and in far greater detail, the comparison with the elec-
troproduction data does not really add significantly to
the accuracy of our knowledge of 5K, but it is important
to be clear that these data do require a value for BR sig-
ni6cantly larger than the SU(6) prediction.

3. FORM FACTORS AND SYMMETRY-
BREA~ING EFFECTS

With the three-quark wave functions (1.2), the form
factors for the Mi interactions E~g and cV —+ Ã*
are given by the expressions

G(K') =
~ P(1,2,3)

~

e'* "d'rid'rg'ra. (3.1)'
This expression is essentially nonrelativistic, since the
space wave function p is given only in the X or E*rest
frame and we do not know how to transform it to
another Loren tz frame. However, we may confine our
attention to small momentum transfers. Since the
proton form factor G corresponds to r.m.s. radius

Fto. 1. Definition of the
brick-@&all frame for the
transition yS ~ X*.

I

I

I

-K/2

I

+KI2

I

For a real photon, E2=0 and we have

K2= (ma —ma ) /2(m// +ma ) (3 4)

For the transition E~X, the energy transfer is
always Eo——0 in this frame, and the three-momentum
transfer has the magnitude 4K'. The form factor
G(K') is then given by the functional form (3.1);
empirically its value is given by Eq. (2.18).

For the transition E~E*, the mass difference
generated by the SU(6)-breaking interaction leads to
significant kinematic differences from the E~ Ã
situation. It is quite possible that these SU(6)-breaking
interactions may produce relatively weak distortions in
the wave functions @ for the states iV and A'*; indeed,
with the quark model, this appears rather likely to be
the case, since the symmetry-breaking interactions
appear rather weak (generating mass splittings of order
300 MeV) compared with the strong symmetric forces
which give rise to the binding energy (whose magnitude
is of order 3M@&15 GeV). Neglecting these distortions,
we would then expect the Mi form factor to be given by

G,~*(K')=G(K') . (3.5)

This expectation still neglects the possibility of further
modifications to the form factor arising from the rela-
tivistic transformation of the wave functions p for the
S and X~ states in this situation. For the case of a real
photon, expression (3.4) leads to

~

K
~

= 294 MeV/c for
the X~E*transition. Hence, for this case, the X and
N* velocities are only of order a/c=0. 15, and these
corrections would be expected to be only of order
(%)'=0.02; we shall not consider them further here.
However, this momentum 294 MeV/c is substantial in

0.58/m, the extent of the spatial distribution asso-
ciated with P2 is presumably of this order of magnitude.

The form factor for a magnetic transition y+A ~ 8
is a function of the four-momentum magnitudes k',
pa', and pa'. It is most convenient to consider the
form factor in the brick-wall frame for this interaction,
as shown in Fig. i. When A and 8 are real physical
particles, we have pa'= m~' and pa' ——ma'. The energy
and momentum transfer are then connected by the
relation

—(ma2+ i. K2)1/2 (m 2+1K2)1/2 (3 2)

In this frame, the relation between K and the covariant
momentum transfer K' is given explicitly by

PK'+(m, +m, )')t K'+ (m, —m, ) )K2= (3.3)
2(ma2+ma2)+K2
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N (-k)

Fzo. 2. Typical graph corresponding to the process yE —+ S*,
showing the anal state 7' scattering. The vertex V~ corresponds
to the Nj interaction yX —+ E*, and the cross-hatched vertices
V correspond to the interaction mX ~ S*.The lines marked E*
denote the X*propagator (E—Ep) '.

relation to the r.m. s. radius associated with G(E'). For
this momentum transfer, the form factor G„~* falls
from the value G„~*(0)=1 appropriate to the case of
exact symmetry (Mo=M) to the value G,~*(0)=0.79,
as given by (3.5) with the form factor (2.15).

This reduction from the SU(6) prediction for OR is a
kinematic effect arising ultimately from the existence
of SU(6) symmetry-breaking interactions. Our esti-
mate for this reduction is to be regarded only as a first
approximation, since it neglects unknown relativistic
effects (certainly small for X'=0, but of increasing im-
portance with increasing E'). This effect introduces
some uncertainty in our comparison of the phenomeno-
logical value for OR with the SU(6) prediction, in Sec. 2
above. With this symmetry-breaking correction to the
SU(6) prediction, the empirical estimate (2.15) for OR

is better expressed as follows:

OR. ,= (1.28/G (K'))(oV2p+(K') )
= (1.62) (0.79X-',Vapo),

this ratio between OR o& and the corrected SU(6) pre-
diction being coincidentally close to the value estimated
by Beg el c/. ' for the ratio between 5R, „& and the exact
SU(6) prediction. We should emphasize that this correc-
tion represents only one particular contribution from
the SU(6) symmetry-breaking interactions. However,
it is rather plausible that it may represent the dominant
effect, since it is large and has a clear kinematic origin
associated with the observed mass-splitting between the
iV and X~ members of the 56 representation of the
SU(6) group and its estimation is based on phenomeno-
logica1. considerations; this effect necessarily exists even
if the SU-(6)-breaking interactions produce rather weak
distortion of the internal wave functions for the mem-
bers of this supermultiplet.

For E'&0, the relation between K' and E' is given
by Eq. (3.3). Over the range of K' values of physical
interest at present, from E'=0 up to 32 m ~, the ratio
K'/fKo+ (3f*—iV)oj falls only from 0.9815 to 0.983.
With the identification of the E~E*form factor with
G(Ko), where G(K') denotes the nuclear magnetic
moment form factor, this relation between K' and E'
would lead to some differences from the form factors
G»(= Ga„) assumed by Geshkenbein for this transition.
However, these differences are small relative to the
empirical uncertainties at present; for example, nor-

where Vo~ denotes the vertex for the interaction
yX~Ã*, Vo denotes the vertex orÃ~So, and Z(E)
denotes the value of the self-energy graph included in
this series. The denominator may be rewritten in the
form

{E—Eo—ReZ(E*)—(E—Eo) ReZ'(E*)
—ReZa(E) —i fmZ(E)) ' (3.7)

where the remainder Za(E) vanishes quadratically at
E=E~, and the resonance energy E* is defined by the
equation

E*=Eo+ReZ(E*) . (3.8)

The coefficient Z= f1—ReZ'(E*)] of (E—E*) in this
denominator is then absorbed by the renormalizations
V&(&)= Vo~/Z"' and V(q) = Vo/Z"' of the vertex
functions, in the usual way. Then, by definition,
ImZ(E)/2= r(E)/2 where r(E) is given explicitly by
the expression

r(E) = (q/2 )(m/E) I v(q) I
(3.9)

in terms of the renormalized vertex V(q) for the
interaction alV ~X*. The remainder term h(E)
=ReZa(E)/Z represents an E-dependent level shift
vanishing quadratically at E=E*, which we shall
neglect here. This leads finally to the simple Breit-
Wigner form for the amplitude,

V, (k) (E—E*—or (E)/2) —' V (q), (3.10)

and thence to the Breit-Wigner expression for x' pro-
duction cross-section in the (oo, oo) state,

r„(k)r(E)
~so(V ') =-— 3.11)

3 e (E—E')o+ fr(E)/2j

A careful discussion of the spin factors appropriate in
going from a photo-amplitude such as (3.10) to a, cross-
section expression such as (3.11) has been given by
Goldberger and Watson. 23 We have discussed this

~ M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc. , New York, 1964), p. 477.

malizing G„~* to be unity at E'=0, this identificatio
then leads to the expectation G„~*——0.65 for E'= 10m ',
compared with G»= 0.61, and G„~*——0.32 for
E'=32m ', compared with G»=0.28. This identifica-
tion already neglects relativistic effects of order (o/c)',
anyway; for Ão=32m ', we have (o/c)o=0. 16, so that
the relativistic corrections could well exceed these un-
certainties in the expectations appropriate to the form
factor G„~*.

The amplitude for x' photoproduction associated
with the resonance in the I= o, po~o afq state is given by
the sum of the series of graphs of the type shown in
Fig. 2, with the result

Vo (&)(E Eo Z(E)) 'Vo(q) (3 6)
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graphical derivation of the Breit-Wigner cross-section
formula here in order to emphasize that its use does not
depend on the assumptions normally made in its deri-
vation from the nonrelativistic nuclear reaction for-
malism of Wigner and others.

Comparison of expression (3.9) with the phenomeno-
logical expression (2.10) suggests that V(q) should be
proportional to lt/L1+(q44)'j"', i.e. that V(q) should
include a factor of the form appropriate for p-wave
centrifugal barrier penetration to radius 8; this is the
interpretation given to this form by Gell-Mann and
Watson. ' This is not the only interpretation possible;
the eGect of distant resonances or of nonresonant back-
ground can also contribute to the energy dependence
of P/q'. In fact, Donnachie et at."have obtained a dis-
persion-theoretic solution for the phase shift 833 whose
energy dependence is quite closely in agreement with
Eqs. (2.8) and (2.10). The radius u in Eq. (2.10) is not
necessarily to be interpreted literally as the interaction
radius for the E* system.

For the width F~, on the other hand, it does appear
natural to expect a form factor dependent on the c.m.
photon momentum k, associated directly with the 6nite
size of the system. Using the expression (2.8) to elimi-
nate P(E) we obtained from (3.11) the empirical
estimate

r, (k)/t4=3t't(E* —E)~„(qp~ p~')/2~ sin25„, (3.12)

which has been plotted as function of k' in Fig. 3. We
note that I'„/k is not proportional to k', as would be
expected with expression (2.4) for a point magnetic-
moment interaction but appears to be a slowly varying
function of k' over the resonance region.

From the remarks made above, the form factor ex-
pected for 5R would lead to the form

P, (0)/k = t'4'/(1+E'k'/18nt~'(E'+M') )4 (3.13)

since the momentum K in the brick-wall frame is re-
lated with k by the relation K'= 2k'E'/(M'+E'). The
expression (3.13) has been plotted on Fig. 3; although
the denominator does lead to an appreciable damping
of the increase in Pl/k with increasing k, this prediction

~ A. Donnachie, J. Hamilton, and A. T. I.ea, Phys. Rev. 135,
B515 (1964).
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FIG. 3. The quantities I'~(k)/k deduced from the experimental
total cross sections ~(yp —+ pH) and the empirical phase shifts
533 are plotted as function of k', where k is the c.m. photon energy.
The solid line shows the k'-dependence expected for this quantity,
according to the form factor (3.13) deduced from the nucleon mag-
netic moment form factors. The dashed line shows the k'-depend-
ence for a p-wave barrier penetration factor k'/(1+(ku)~), with
a=0.85/m as for the pion-nucleon phase shift 533.

does not provide a suKciently strong eGect to give
agreement with the experimental data over the reso-
nance region. Of course, the wave function (1.2) de-
scribes only the internal wave function for the %*state.
The coupling of this state with the xX deca, y channel
has been neglected; since the S*decay rate varies with
E, the distortion of the internal wavefunction by this
coupling will vary with energy, and these additional
energy-dependent e8ects will also have to be included
in a more realistic calculation of the k dependence of the
M1 amplitude 5R for this transition.
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