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is whether similar ideas would still be fruitful in an

investigation of fully relativistic amplitudes fulfilling

the requirements of Lorentz invariance and crossing

symmetry.

ACKNOWLEDGMENT

Two of us (R.S. and G.T.) would like to thank
Professor K. %. McVoy for his hospitality at the
Wisconsin Summer Institute where this work was begun.

P H YSI CAL REVIEW VOLUME 146, NUMBER 4 24 JUNE 1966

Neutron-Proton Mass Difference According to the Bound-State Model

G. SARToz

University of SNsses, Brightoe, England
(Received 21 January 1966)

The proton must be heavier than the neutron according to any correct calculation treating them as pion-
nucleon bound states whose masses are shifted because of one-photon-exchange corrections to the binding
forces, and which takes into account no particles other than pions and nucleons. The reason is simply that
only the neutron can contain two charged constituents, p and ~, and that both the electric and the mag-
netic forces between these are attractive, thus binding the neutron more tightly. Dashen's previous cal-
culation of this effect was based on an unreliable variant of the Dashen-Frautschi method for eliminating
infrared divergences; the sources of the mistakes in that calculation are pointed out. On the basis of the
pion-nucleon bound-state picture, we give a simple and physically well-based estimate of the Coulomb con-
tribution to the mass splitting in terms of the pion and nucleon form factors; as compared with experiment
it has the right order of magnitude but necessarily the wrong sign. The magnetic energy is more di6icult
to estimate, apart from its sign; but it is probably much smaller. Ne conclude that a consistent calculation,
if it is to be successful, must include other baryons and mesons. As a by-product we obtain a simple dynamical
interpretation of the fact that the neutron's charge form factor is very small.

1. INTRODUCTION
' 'N a remarkable paper, Dashen and Frautschi' (DF
~ ~ in the following) have applied the Ã/D method to
calculate bound-state energy shifts due to small
changes in the binding forces. They consider the problem
of long-range perturbations, and in particular those due
to photon exchange; the latter are important because
it is universally presumed that in one form or another
they dominate deviations from charge independence.
The basic problem is that in an approximate calculation
of the energy shift there appear infrared-divergent con-
tributions which are known to be absent from the exact
answer. Such contributions will be called IR parts in
the following. DF develop several ways to eliminate
this difficulty, claiming that they are all at least
roughly equivalent to each other. In a second paper,
Dashen uses one of these methods (in fust approxima-
tion) to calculate the proton-neutron mass difference.
In the spirit of the X/D method he assumes that the
nucleon is a bound state of the pion-nucleon system,
i.e., a pole, due to a zero of the D function, of the I= 2,
P1]2 partial wave.

Schematically, the I3=&-,' states can be written as

I+/~)= —(~~) I Iplr )+(s~) I2IÃs+}y

I
—2&= —(-')'"I p &+(')'"I&~') (1.1}

'R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, 81190
(1964).

'R. F. Dashen, Phys. Rev. 135, B1196 (1964).

The proton (neutron) are poles in the
I
a-,'& scattering

amplitudes, respectively; they would be degenerate in
the absence of electromagnetic sects. Basically,
Dashen uses as his dominant perturbation the forces
due to photon exchange. For the purpose in hand the
anomalous Pauli moments of the nucleons can be
ignored' ~; then a photon can be exchanged only between
the particles in the

I
ps. ) component of the

I

—2) state,
so that only the neutron mass is shifted. The mass
splittings of the particles on the right of (1.1) must also
be taken into account; being an isotensor, the x+—m'

mass difference has no effect on the isovector quantity

(1.2)

but the neutron-proton mass difference itself evidently
provides a "damping term, "in the sense that by taking
it into account on the right of (1.1) we decrease by a
factor ~3 the result that would be obtained otherwise.
For simplicity we shall ignore the damping term to begin
with, though we shall allow for it in our 6nal estimate
in Sec. 4. Dashen's theoretical result for bM has the
experimentally correct magnitude and negative sign.

In the present paper we argue that his answer is a
mistake resulting from a method for eliminating IR
parts that may be plausible at Grst sight but is in-
adequate in these circumstances. If his basic assump-
tions and input, as outlined above, are handled cor-

'Only the isoscalar magnetic moments contribute to bM, and
the anomalous isoscalar moment is negligibly small.
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rectly, then the calculation yields a positive value for
bM. In other words, to obtain the observed negative
result correctly one must introduce as input physical
sects not considered by Dashen.

In the remainder of this introduction we shall dispose
of the erroneous a posteriori arguments given by
Dashen' to make his result qualitatively plausible on
physical grounds. In Sec. 2 we shall consider the various
methods of eliminating IR parts from approximate cal-
culations such as are likely to be performed in practice.
In particular we shall use potential scattering as a
model in order to 6nd out how the adequacy and
reliability of such methods is limited by the approxima-
tions adopted for the unperturbed iV and D functions
(it is only in principle that they are known exactly).
It will emerge that, at a given level of approximation,
the adequacy of the formulas for P states is quite
diferent from that of the corresponding ones for 5
states. We shall also give an example where a combina-
tion of approximations like Dashen's leads to an answer
with the wrong sign. In Sec. 3, we consider the pion-
nucleon system with a static nucleon, and estimate (the
Coulomb contribution to) RV using a somewhat better
authenticated approach to the IR parts, though still
working with a very crude parametrization of .V and D.
The result of this calculation is positive. For a (hypo-
thetical) 5 bound state it has a form not unlike what one
would expect all along on a simple but basically correct
physical picture. For the physically relevant case of a
P bound state, the result has a wrong dependence on the
range of the perturbation, and is adequate only for
very long range; but the sign of the shift is of course
unambiguously positive. All these features are common
to the nonrelativistic and to the relativistic calculation.
The rough method employed could be improved in
detail only at the expense of great elaboration; the
labor involved would not be justified, because both the
general argument and the leading approximation show
that the input does not include whatever physical
e8ects are responsible for the observed sign of Wf. We
shall conclude with some general comments in Sec. 4.

We return now to the preliminary qualitative argu-
ments. The dominant part of Dashen's expression for
Bf, deduced from photon exchange, is

(1.3)

Here, a=i/137 is the 6ne-structure constant, f the
pion-nucleon coupling constant, (f'=0.08), p the pion
mass, 3f the nucleon mass, e the base of natural
logarithms; the mass m enters through the pion and the
isoscalar nucleon Dirac form factor, both of which for
simplicity we have taken as

(1.4)

with m roughly equal to the p-meson mass, say ps= 5.5p.

At least two features of (1.3) call for comment: the
over-all sign and the appearance of M in the denominator.

By the basic assumption, the nucleons are bound
states; the binding energy must increase if the binding
forces become more attractive. As explained above,
photon-exchange a6ects only (one component of) the
neutron. The resultant Coulomb force between p and
m is attractive; on its own it would lead to a tighter
binding of the neutron, i.e., to a neutron less massive
than the proton. Hence (1.3) could be correct only if
photon exchange were to result in another force as well,
which would need to be repulsive and to overcompensate
the attractive Coulomb force. Dashen argues that the
Coulomb forces are suppressed by some supposed rela-
tivistic e6ects, and that the magnetic interaction
dominates; and that this also explains the factor 1/M,
which enters, supposedly, through the (Dirac) moment
a''2/2M of the proton. This magnetic force, analogous
to the atomic hyperhne-structure interaction, ' results
from the coupling of the proton's magnetic moment
to the magnetic field of the orbiting w—.

But in fact the magnetic interaction is also attrac-
tive, so that photon exchange leads to nothing but
attractive forces and, on its own, if treated correctly,
must lead to a neutron lighter than the proton. To see
that the magnetic force is attractive, note 6rst that in
the Pi/2 state the orbital angular momentum L is
antiparallel to the proton spin and therefore to the
proton-magnetic moment m. Now for a positively
charged orbiting particle, the magnetic Geld 8 near
the center of the orbit is parallel to L; for a negatively
charged orbiting particle, as here, 8 is antiparallel to L
and therefore parallel to m. Finally, the magnetic in-
teraction Hamiltonian is (—H m). Therefore, in the
I'»&(~ ,p) state it is ne—gative, i.e., attractive This.
result, in a similar context, was stated some time ago by
Holladay. '

Hence, the result (1.3), which is supposed to represent
the effects of photon exchange, has the wrong sign ir-
respective of whether or not the magnetic eGects out-
weigh the Coulomb ones. In fact, not only is there no
reason to think that the latter are suppressed, but the
relativistic calculation in Sec. 3 shows explicitly that
they are not.

As regards the magnetic effects, they do of course
involve the factor 1/3f, but need not be small purely on
this account. The estimate in Appendix B suggests
that their order of magnitude relative to the Coulomb
eGects is measured by nz'/33EV, , where Vo is an average
value of the strong short-range binding potential. We
shall not consider them further in the body of this paper,
but shall try to allow for them in Sec. 4 in reaching
our 6nal estimate of the e8ect of one-photon exchange
on BM.

4 See, for instance, H. A. Bethe and E. E. Salpeter, QuanAcm
Mechanics of One- and Theo-E/ectron Afoms {Springer-Verlag,
Berlin, 1957), paragraph 22. See also Appendix B.

'W. G. Holladay, Phys. Rev. 101, 1202 {1956}.
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Ke proceed to indicate the mistake in Dashen's
argument which was intended to show that the Coulomb
effects should vanish for a pion obeying the Klein-
Gordon equation, a static nucleon, a very short-range
strong (binding) interaction between them, and in the
limit where the total-pion energy E vanishes as it does
here.

On this picture, the Coulomb contribution —bM, to
8M is given by

If m/p«1, i.e., if 8V varies slowly within one pion
Compton wavelength of the origin, then (1.10) reduces
to

RV,= —,'n-m/2 = —-', a8V(0),

as expected in view of the fact that such a 6V(r) may
be replaced by 8,U(0) and taken outside the integral
in (1.5). By contrast, if m/p))1 (but still subject to the
range a being small enough for am«1), (1.10) yields

Mf, =+(neutron mass shift) bM, = —x3np 1n(m'/4p'e) . (1.12)

= ——',a d'r p(r) 8 V(r), (1.5)
On the other hand, if the strong potential Vo is the

time component of a vector, (1.7) must be replaced by

where 8 V is the electrostatic potential due to the proton
(in units of n'~ )2, and p the charge density of the n. (in
units of —a"'); —, is the isotopic factor stemming from
(1.1). Notice that with these conventions p and 8U are
positive. For comparison with later work, we take

n)U=a(L(e ""—e ~")/r7 —L(m —X2)/2m7e ~") . (1.6)

As was pointed out by DF, ebV corresponds to the
photon-exchange diagram in the usual sense that in the
static limit for the nucleon the diagram by itself leads
to the same scattering amplitude as does o.bV in 6rst
Born approximation. (See also Appendix B.) X is a
photon mass which in this section we take at once to be
zero. For simplicity, we discuss first the Coulomb shift
not of a P but of an S state.

The expression for p in terms of the wave function P
of the pion depends on whether the strong potential is
a Lorentz scalar or (the time component of) a four
vector. In the scalar case,

p= (~/2p)(4*(~4I») —(~4*/»)4) (1 7)

As E tends to zero, we have

Q=iVe 'e'e ~"/r,

where sV is a normalization constant 6xed by

p(r)d'r = 1. (1 9)

8Jf.= lim ——,'n d'r (e '&"/r') 6 V(E/p)—
E~O

&&(e '~~/r')(E/p)

= —-3a(2p) (lnL(m+2p)/2@7 —Pm/(2m+4') 7) .
(1.10)

The range d' of the binding potential is assumed small
enough for the region r(u to contribute negligibly to
the integrals in (1.5) and (1.9). Then,

p = (i/2 p) (4'*L(8/») &V—o74

-LL(&/»)+ U.7~'3). (1»)
The wave function again has the form (1.8) in the
asymptotic region r) a; but now, as E~ 0, the domi-
nant contribution to the integrals in (1.5) and (1.9)
comes from the interior region r(a. In other words the
charge (though not the wave function) is contracted
into the strong interaction range; in general Wf, can-
not be calculated exactly without some model for this
region. But as long as a is small enough to satisfy
am«1, we can still take bV outside the integral and
recover the estimate (1.11).

Thus, neither in the scalar nor in the vector case does
6M, vanish, or show any peculiar behavior, in the limit
E—+ 0. Dashen's argument that it does seems to stem
from his failure to impose the normalization condition
(1.9). Again, the correct qualitative result is implicit
in the work of Holladay. '

The same general arguments can be applied to P
states bound by a strong potential of such short-range
a that em«1; the depth must be correspondingly
large. It is an amusing exercise in elementary mechanics
to show that the wave function is e6ectively trapped
into the inner attractive region by the angular-momen-
tum barrier, which pulls the bound-state wave function
in just as it would push a (low-energy) scattering wave
function out. Appendix C gives a sketch of the argu-
ment. In fact, the same situation obtains for P states
both in the relativistic and the nonrelativistic case; we
shall refer to it several times, and it should not be con-
fused with the quite diferent pulling in of the charge
density, in any angular momentum state, by a short-
range four-vector potential. The central consequence is
that for P states bound by either kind of strong poten-
tial of sufficiently small range, the wave function itself
is essentially con6ned to r(u.

2. SEARCH FOR A WORKABLE FIRST
APPROXIMATION

Consider S-wave potential scattering 6rst. Let the
unperturbed partial-wave amplitude be written in the
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usual X/D manners' as

t,'» sing = A(E) =X(E)/D(E),

5=e"'= (2ikX/D+1),
(2.1)

where k is the wave number and E=k'/2y. A is sup-
posed to have a pole at E=Eo,

(2.2)Ep =—q'/2p &0,

due to a zero of D there; the residue E is given by

E=E(E)/D'(E), (2.3)

where D'=dD/dE. Note that E is negative; (see
Appendix A). Let bA be the change in A resulting from a
small change in the potential. In particular, we shaH
consider the change to a potential more attractive by

ah V, wh—ere bV is given by (1.6); it can be written as
a superposition of exponentials:

—abV= at — dve " Dmp —0)/2—ntje ~~1 (2.4)i'
The resulting change in Eo is bEO, and must be negative;
note that the bEO of this section is analogous to the
2831,/3 of Sec. 1. Since we work to first order in a,
it is possible to begin with exponential perturbations

bV„(r)= —ae-"" (2.5)

and to construct a linear superposition at the end. IR
parts, which behave like Ink, after ta~~ng such a super-
position according to (2.4), can be identified beforehand
through their proportionality to 1/v.

DF show that the function

J(E)=D'(E) bA (E) (2.6)

has no right-hand cut, and that it is 6nite at Eo' in
other words bA has a double pole there. The shift bEO is
given by

(2 7)bEp= J(Ep)/Et D'(Ep)1'

where for J(E) one writes the Cauchy integral

J(Ep) = (1/2si) (dE//(E —Ep)7DP(E)bA(E). (2.8)

An alternative proof of (2.7) is outlined in Appendix A.
Cr, is a counterclockwise (positive-direction) contour
avoiding the left-hand cuts of bA and closed along the
circle at in6nity; it includes the pole at Eo. In realistic
cases the circle at in6nity makes no contribution.
If Eo lies on the left-hand cut, then the latter must be
deformed away from Eo to allow it to fa11 within Cl..

The expressions (2.7), (2.8) are exact, and in con-

6 See, for instance, S. C. Frautschi, Eegge I'ok' and S-j/Iatric
Theory {W.A. Benjamin, Inc., New York, 1963), Chap. II.

sequence free of IR parts if evaluated exactly. However,
in practice one would invariably like to reformulate the
equations so that in 6rst approximation the input bA,
which is di%cult to ascertain, can be replaced by W&,
the 6rst Born approximation to scattering by the
perturbation acting alone. The spirit of the method is
to devise approximations to the integrand of (2.7)
which will aHow one to neglect the contributions from
aH distant parts of CL, and then to evaluate the re-
maining integral by the best means available. Provided
that the approximations fn&6H these conditions there
is no reason why the resulting approximate integrand
should retain the analytic properties of the exact
integrand.

For the simple exponential perturbation (2.4) one has

bA gp = (4ya/v)/(4k'+ v') . (2 9)

Of course it would be nonsense simply to substitute
bAs" for bA" in (2.8); that would lead to'

1 (—8p'u/v) ( v' )bEp=, D'i ——i.
ECD'(E,)]P (qP —vP/4) & gp)

'

But E is negative; therefore this expression is not only
IR divergent as v-+0, but is positive (seeming to
loosen the binding) as long as v'/4&q', in spite of the
fact that a purely attractive perturbation like (2.5)
must tighten the binding, whatever the value of v/2q.

The whole question of successively higher order
approximations has been illustrated very lucidly by
Paton, ' who uses exponentials of various ranges both
for the strong potential and for bV. Here we are con-
cerned only with the more modest problem of how to
get at least qualitatively reliable results from W.~
as input, coupled with some rough parametrizations for
S and D.

DF make the crucial observation that Rf in the
exact expression (2.8) may be replaced by

SA. = W —&A~S;

the additional integrand has no singularities within CI.
and contributes not»~g to J(Ep). To see this note that
neither O'S nor bA~ have right-hand cuts, and that the
double pole of (E—Ep)-'S(E) at Ep is cancelled by the
double zero of D', while bA~ of course "knows" nothing
of the unperturbed problem and has no pole at Eo.
DF point out that as a basis for approximations bA.

has several advantages over W. . First, if bA —+ 8~A
as E-+~, then bA ~ bAs(1 S); since S~ 1, t—he new
integrand vanishes faster at i~~rlity and the result be-
comes less sensitive to distant singularities. Second, at
least some of the IR parts are contributed by those

'With BA replaced by BAg, the integrand has no left-hand
singularities other than the ("pseudo" ) pole of BAg". Hence the
integral is best done by closing the contour around —2/8p, ,
malvng it into a clockwise (negative-direction} loop around the
pseud opole.

J. E. Paton, Oxford University (to be published).
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portions of CI. which approach the right-hand branch
point (i.e., k'=0) arbitrarily closely as X -+ 0. But near
k'=0, the left-hand discontinuities of bA and bA~
coincide, so that again we have a factor (1—S) which
vanishes at threshold and helps to eliminate some of the
IR parts. We shall see this illustrated presently.

Accepting the erst lead of DF, we adopt, provision-
ally, the following approximate three-step method for
getting IR-6nite answers. First, replace bA by bA. ;
second, ignore the far-left-hand singularities of bA. ,
retaining only those which coincide with the left-hand
singularities of W.~. In particular, we never accept
any contributions from the contour at infinity. )Here
it is crucial to observe that 8V as given by (2.4) leads
to a W~ whose left-hand singularities extend no further
from the origin than —ms/4. 1 This amounts to re-
placing J(EO) by

Z(EO) = (1/2si) (dE/(E —Eo)]JAs(1—5)D'

of Swere to be admitted (in a departure from the ZRA),
then it would be necessary to use a better approximation
to W." than is provided by bA&" in order to eliminate
all IR parts. This is illustrated in detail by the work of
Paton. '

One can now construct the superposition analogous
to (2.4) for 8EO" to find the shift 8Eos induced by the
perturbation —nb V; we let X —+ 0 and get

2q+m m
8Eps ———2nq

I

in
2q 2m+ q

(2.13)

The super6x S identi6es the S-state shift. As was
pointed out by DF, this exactly equals the expression—nJ'd'v~f~9V if the asymptotic form of f, valid
outside the range a of the binding forces, is used for all
r. In particular, it is satisfactory that bEO~ reduces to
—nm/2= —abV(0) for small m, as it must by the
general arguments of Sec. 1, and that

(2.10) ibE, s( & iaaV(O)
/

(2.14)

J(Ep) = (1/2xi) (dE/(E Eo)jbAs(—2ikXD) .—

The contour can now conveniently be closed in the
clockwise (negative) sense at a finite distance from the
origin; we shall denote by Pr, the contour closed in
this way.

Third, we confine ourselves to such parametrizations
of 5 (i.e., of .V and D) as will keep 2 free of IR parts
when A, —+0. We shall see presently that this last
requirement restricts us to what we call the zero-range
approximation (ZRA) in which X is allowed to have no
singularities at all within CL,.

Consider accordingly the perturbation (2.5), leading
to the input function (2.9), and parametrize S and D
as follows:

D= ( q ik), ——
D'(Eo) = —~/q

E=1,
R= —q/p.

(2.11)

bEo"= —~Lq/(q+v/2) j, (2.12)

whose sign moreover is correct independently of v/2q.
Ke have given the argument in detail because it

shows that the ZRA is not only convenient, but is
essential to the adequacy of the prescription. For if the
integrand of j had additional singularities, due to X,
within 2'r, , then these would make extra contributions
to 7, in which the IR-divergent factor 1/v in the
numerator of bAB" would not be cancelled by the
phase-space factor (—2ik), and the resultant 2 would
itself be IR divergent. If such additional singularities

This will be referred to as the "unitary ZRA. "The only
singularity within Cl, is the pole of bAs" at k'= —v'/4.
Hence the factor (—2ik) = v of the integrand of (2.10)
cancels the factor 1/v in the numerator of SAN", leading
to an IR-Gnite answer

8Eos= n~/4— (2.16)

This has the right sign and order of magnitude, but
has lost all dependence on m/2q, and in the limit m -+ 0
is too small by a factor of ~, since in that limit the cor-
rect answer is —abV(0)= —um/2. By contrast, it
provides an overestimate for large m/2q, since (2.13)
shows that

~
8Eos

~
in fact increases only logarithmically

with m.
Now we come to a central point. Near the end of their

paper, DF claim that the above method, which though
crude is workable at least as to sign and order of magni-
tude, is roughly equivalent to another one, which is
then actually used by Dashen' in his calculation of bM.
This second method bypasses the use of R4 altogether.
One begins by writing down' bA& with a Gnite photon

9In principle, DF distinguish between Lf~ and a function
bAf f, the latter to contain all IR parts. In a calculation at the
level of approximation of this or Dashen's (Ref. 2) paper the
distinction ss immateriaL

for any m. Thus (2.13) is an adequate result as long as
am&&j. .

Naturally one can obtain (2.13) by substituting
directly into (2.10) the 8A& which corresponds to
—ebV. The technical details of the integrations are
the same for S and P states and for both nonrelativistic
and relativistic cases; for them we refer to Sec. 3. In
the remainder of this section we shall merely quote
the nonrelativistic (potential theory) results for the
full perturbation —ab V.

As the next step we try out an even cruder parametri-
zation for A, replacing (2.11) by

D= (E—Ep) X=X. (2.15)

we shall refer to this as the "nonunitary ZRA". It is
analogous to that ultimately adoped by Dashen. '
It leads straightforwardly to the estimate (with X -+ 0):
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mass ), and letting X ~ 0 puts W.~ in the form

BAe(E) =f(E) in[1~'/g(E)]
+[IR-finite parts], (2.17)

where f and g are some functions of E. Next, one
replaces J(Ep) by

E(Ep) = (1/2vri) [dE/(E —Ep)]D'(E) BAe(E); (2.18)

evaluating the integral one 6nds an expression con-
taining ink'. In the hnal step all such ink' are replaced
by ln(~ g(Ep) ~), resulting in

e'" sinit/k'=A =1V/D,

5= e"&= (2ikslV/D+1),
(2.25)

so that. mp)4eq'; then the logarithm in (2.24) is posi-
tive, and since E is negative, bEO itself not only can but
does have the wrong sign.

8'e conclude that, contrary to the claim made by DF,
their second method is not equivalent to their first; and
that, unlike the f'irst, it cari easily give the wrong sign
Dashen's result for BM was obtained' by using the second
method (in a relativistic version), wtuch explains how it
couM yield the physically impossible answer that it does.

Finally, we record the results of the analogous P-state
calculations. Here we write

E'(Ep) ~ E'(Ep) . (2.19)
and in the "unitary ZRA" parametrize by

Finally, BEp is obtained by. substituting K (Ep) for
J(Ep) in (2.7).

Paton' has already given reasons to doubt that this
last procedure is indeed equivalent to the 6rst, or that
it is correct in its own right. We shall show now that it
can give the wrong sign for 5EO when used together
with a parametrization of the type (2.15).

To find g(E) we need only the IR-divergent part of
BAe corresponding to —nBV as given by (1.6) or (2.4);
this is determined by the component —ee "'/r alone,
and leads to

BAB {(cpti/2kp) ln[(g2+4k2)/g2]

+[IR—finite parts]} . (2.20)

Letting 'A —+ 0, we identify

g(E) =4ks,
~
g(E,) ~

=4qP. (2.21)

Now with the nonunitary ZRA the full perturbation—nbV leads to

dE
BEp~ —— BAe(—2ik')D,

3qp, 2xi c~ E—Eo

BEo = —m{-',x+-,'[1/(1+x))

(2.27)

+(1/3x) ln(1+x)}, (2.28)

where x=(m/2q). This has the correct limit —nm/2
= —aBV(0) for small m, but increases too fast (quad-
ratically) with increasing m, whereas the true shift is
limited by ~nBV(0)

~

. Thus the calculated expression is
is much less reliable for the I' than for the S wave.

With the "nonunitary" ZRA (2.15) for a E state, one
finds (in the limit X ~ 0),

D= ( ik'+—q'), %=1, D'(Ep) =3qti. (2.26)

(Because of the kinematic factor k ', the residue of A
is now positive. ) The input function BAe is obtainable
from (3.2) below by substituting ti for ip. With it, one
finds the I analog of (2.13):

IC(Ep) = dE(E—Ep)BAe(E)
2' Z

bEp = —3am/2 . (2.29)

= —(aqP/gii) {in[ms/X'] —1}
= —(nq'/8ii) ln[mP/eX']. (2.22)

The input BAe(E) is obtainable from (3.11) below.
Replacing lnX' by ln4q', according to the prescription,
we get

(2.23)E'(Ep) = —(aq'/8ti) ln[m'/4eq']
and"

BEpe —(aq'/gtiE) ln[m'/4eq'——]. (2.24)

In general, (2.24) stands condemned by the circum-
stance that its sign depends on m/2q, whereas in
truth BEp must be negative for all values of m/2q.
Hence it is almost superQuous to point out that with
the numbers actually of interest in the pion-nucleon
system, one would have m=(p mass), q=(pion mass),

This exceeds the limit —nBV(0) by a factor of 3, but
does again have at least the right sign.

We have gone into some detail in assessing the results
of the DF method in hrst approximation, because their
limitations show up clearly in the potential case; thus
we are alerted as to their misleading features, and are
in a position to identify and ignore the same features
when they turn up in a relativistic or dispersion-
theory calculation.

3. CALCULATION FOR STATIC NUCLEONS
AND RELATIVISTIC PIONS

In this section we use the (first) DF method to
estimate the photon-exchange contribution, 6M„ to the
mass splitting BM defined by (1.2). For later conveni-
ences we call bee~ the shift which would result in a
bound state containing only (p, pr ); then (apart from
the damping factor of p)' The formula {2.24) is closely akin to Dashen's Eq. (10), which

we quoted in our Eq. (1.3). Qf, =+38(o„, (3.1)
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where we have dropped terms which vanish as X —+ 0.
bA~ is so normalized as to be an approximation to
the function e'" sing/k', where q is the Pi~2 phase shift.
In (3.2), a& and k are the pion energy and wave number,

(o'= k'+p, ' .
, (3 3)

X is the photon mass, and the mass m has entered
through our use of approximate pion and nucleon
electromagnetic form factors, as explained above (1.4).
Since we have taken M —+~, the nucleon pole in this
amplitude occurs at co=re„=0. However, it is incon-
venient for kinematical reasons to work with an
amplitude having a pole at co=0; hence we shall
consider a finite co„,

2 p2 q2 (3.4)

and let co„~0, i.e., q
—+ p, at the end of the calculation;

as we shall see, there is no ambiguity in taking the limit.
We chose co as our dispersion variable, and adopt the

"unitary ZRA":

as explained in the introduction. Following Dashen' we
construct the photon-exchange amplitude between p
and 7r (see also Appendix 8); project it on the Ei~~
partial wave; and finally we take the limit" M —+.
This yields

n(o 1 (2k'+m')
bAg~= ———

k' k' (4k'+m')

1 -(4k'+m')X'
ln (3.2)

2k' (4k'+X')m'

dv'/(4k'+ v'),

the contour integral being done first, since it now con-
tains noting but poles, and the v' integral afterwards.
In this way, (3.6) yields

bop = (—nm)(i3x+6L1/(1+x)$+Li/3x) 1n(1+x)), (3.7)

where
x= m/2q. (3.8)

Not surprisingly, this is formally the same expression
as the nonrelativistic (2.28), the difference between
them stemming only from the different definitions of
q. Just because (3.7) depends on q alone there is no
difhculty in taking the limit co„~0, q ~ p, . The
convenience of the slight detour via finite co„seems to be
analogous to the convenience of dealing with the ratio
of the two integrals in (1.10).

Of course (3.7) is suspect for the same reason as
was (2.28), namely that for large m/2p it exceeds
—nm/2. Putting in m=750 MeV, p=140 MeV, we
find from (3.7)

bee„= —10.6 MeV, (3.9)

and the 1/k' part is dropped, because having no
singularities within Cl. it contributes nothing to bco~.

For the same reason, the (apparently IR-divergent)
component

(1/2k') ln (X'/m')

can be dropped from (3.2). Finally, the remaining
logarithm is written as

A ((o) =$(co)/D((o), D((a) = ik'+q', —iV = 1,
R '= D'((uv) =3qco, (3.5).

to be compared to

—am/2 =—2.74 MeV. (3.10)

Then the shift is given by the analog of (2.27):

1 1 Io)
8M y

3qco„2m i g~ co—u„
(—2ik')(q' —ik') 8Aiiv. (3.6)

"Our W g is thus (—-'} ' times Dashen's 52~.

As a function of k, Ri& has the same singularity
structure as in the nonrelativistic case; in the ao plane
it has cuts running between &(p2—X /4)"' along the
real axis, and between ~i (m'/4 p') "' alon—g the
ima, ginary axis; we have taken the realistic case m/2) p.
Cl, is a clockwise loop around these cuts, as explained
in Sec. 2.

The first term on the right on (3.2) evidently con-
tributes two poles to the integrand of (3.6) whose
residues are picked up trivially. In fact, this term is
decomposed as follows:

1 2k'+m' 1 2

k' 4k'+m' k' 4k'+m'

For completeness, we mention that the relativistic
P-state calculation using the "nonunitary ZRA" with
D=(c0—cov), S=R, yields the same as the nonrela-
tivistic result (2.29), and that the result for the shift
in a (hypothetical) S bound state also coincides ex-
actly with (2.13), but with q dehned by ru, '=Ii' q'—
The input function in this case is

= —CXM

-(4k2+~2) ~'-
+ ln (3.11)

m'+4k' 2k' (4k'+X') m'

To obtain the nonrelativistic input functions from (3.2)
and (3.11) one merely replaces the leading ra by y and
re-interprets k as (2pE)"2. In fact, (3.2) and (3.11)
coincide precisely with the first Born approximation to
the scattering of a Klein-Gordon particle by the elec-
trostatic potential —ab V.

4. COMMENTS AND CONCLUSIONS

We have seen that Dashen's immediate program,
when implemented correctly, cannot yield the observed
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8M.=—ab V(0) = ate/2, — (4 1)

as discussed in Secs. 2 and 3. On the same basis,
Appendix B estimates the magnetic energy as

&M- = —(~~'/6MI Vol) =&M.(~'/3M [ Vol), (4.2)

where
~ Vo~, de6ned by (B9), is an average magnitude

of the strong-binding potential. Since the latter must
continue to hold a bound state, ~70~ must diverge
as c—+0; in that limit 8M ~ will become negligible.
Even if given the bene6t of every doubt,

~

$'0~ could

'~ J.H. %'ojtaszek, R. E. Marshak, and Riazuddin, Phys. Rev.
136, 81053 (1964).I G. L. Shaw and D. Y. %'one, Phys. Rev. (to be published).

sign of the neutron-proton mass di8erence; rather
naturally it gives a result of the correct order of magni-
tude but with the wrong sign. Of course, this does not
rule out the possibility of calculating electromagnetic
mass splittings on the assumption that the baryons are
baryon-meson bound states. Ke have shown only that
in order to have a chance of success such a calculation
wouM need to include other particles in addition to
nucleons and pions, Essentially the same conclusion is
reached by %ojtaszek, Marshak, and Riazuddin, "
though their approach to the dynamics is quite different.

Other particles might need to be included either in
the direct channel, i.e., on the same footing as the pions
and nucleons on the right of (1.1), or in the crossed
channel, or in both. For instance, if the strong binding
forces are partly due to the exchange of isornultiplets
whose masses, (or whose couplings to pions and nu-

cleons), are themselves split, then there will be cor-
responding contributions to 8M. The fact that we have
not considered such effects in this paper does not mean
that we t»~& them unimportant, but merely that they
present problems which technically are quite diBerent
from those of photon exchange. The dMerences emerge
clearly if one remembers that the exchange of massive
particles corresponds to short-range forces; hence, to
allow for the mass splittings here, one needs informa-
tion equivalent to detailed knowledge of the bound-
state wave function at small distances. By contrast,
we have found above that one can make a good estimate
of photon-exchange e6'ects without such information.
The difhculties in dealing realistically with short-range
perturbations are evident from the work of Paton'
in potential theory, and from the work of Shaw and
%ong" in dispersion theory.

Perhaps it is worth summarizing what we regard as
the best present estimates, on this simple bound-state
picture, of the effects on QI of one-photon-exchange
forces. Since the strong binding force is presumably of
short range a, the pion wave function will be con-
tracted into the interaction region r&u, as discussed
in Sec. 1 and Appendix C. Then the Coulomb energy
8M, in the (pn ) state will be close to

bM=(M~ —M„)=(—g)(g)(—am/2),

(8M)g,~~=+am/4=1. 4 MeV.
(4 3)

The experimental value is —1.3 MeV.
Finally we point out that the result —am/2 for the

Coulomb energy between x and p has a very simple
and fundamental physical interpretation, once we ac-
cept that the basic input of the calculation is the one-
photon exchange diagram with the form factor (1.4)
for both w and p. Insofar as these form factors can be
interpreted in con6guration space, they imply that the
charge of each is distributed in a Yukawa cloud whose
density p(r) at a distance r from the center is given by

p(r) = Wm'e '/47rr, (44)

where p is normalized to Wi. Now in the neutron, by
our argument about P states, the centers of the two
charge distributions are practically superimposed; this
is compatible with the observation that the neutron's
charge form factor is either zero or very small. But
the mutual electrostatic energy of two such coincident
charge distributions is (—am/2). This interpretation
also shows that our theoretical value is an upper
limit; it would be decreased either if the strong inter-
action range were to be appreciable compared to m ',
or if the form factors were to lead to a charge density
more diifuse than (4.4). The actual form factors can
be used in the way indicated by Eq. (B4), namely by
replacing (4.1) with

bM, = U(0) = —(a/s) dx F'( x)/Qx, (4.5)—

or, allowing the charge form factors of the pion and the
proton to be di8erent,

bM.= —(a/~) ux F.(—*)F~(—x)/gx. (4.6)

To indicate how a change in Ii aGects bM„we note
that with

F(t) = Pa'/(a'+
i ti)j',

(4.5) yields
3f clK~6
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hardly fall below m, in which case

8M ~/bM, =m/3M=0. 27.

Therefore, with a realistic attitude to the present level
of accuracy, the magnetic eBect can be ignored. Then
our best estimate for Mlf is reached by multiplying
RV, with the isotopic factor (—s~) and the damping
factor (g):
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We outline a direct proof, applicable to potential
scattering, of the formula

BEp—— lim LDP(E)BA(E)j,
RLD'(Ep)]P e so

(A1)

(A2)

which is clearly equivalent to (2.6) and (2./). Various
standard expressions of formal scattering theory will

be quoted; for their justi6cation we refer to Goldberger
and %atson. '4

Let Ifs+) be the projection on the appropriate
angular momentum state of the exact state vectors for
scattering by the unperturbed potential V, with
outgoing and incoming scattered-wave boundary con-
ditions, respectively; E denotes the energy. Let

I E) be
the corresponding projections of free states. %e recall
the standard results

APPENDIX B

oFP(t) t8= — t2(a (k—+k') KXe
t—XP l 2M

(B2)

Our object is to extract a magnetic potential from
the one-photon-exchange diagram, and to use it to
estimate the magnetic energy bM ~ of the bound
(s p) system in the F&tp state.

The diagram contributes to the 8-matrix the
element"

i(2pr) 45(P+ k —P'—k') (—4pra)F'(t)/(t —XP)

X(k+k') "l(P')vugg(P)Lilf'p/PpPp'j"'I:1/4

where p(p') and k(k') are the initial (final) proton and
momenta, respectively, and ao=kp. %e go to the

center-of-mass frame, and let M —+; then I'ypN ~ 1,
and pter N~(i/2M)KXe, where K=(k—k'), so that
t= —K'. In this limit (B1) leads to the following
scattering amplitude 8:

Hp+ V—E&ie U„= (U, U) (B3)

The first Born approximation to the scattering of a
Klein-Gordon particle in a static external four-vector

(A4) potential

~E.=-LD(E.»* (E-E.) &EI V
Hp+ V—E—ip

X V
I E)

Hp+ V—E—i~ e s, RID'(Ep)j'

Next, we insert into the matrix element two sums over
the complete sets of eigenstates of the unperturbed
Hamiltonian H. Evidently only the bound state IB)
contributes, giving

»o= —E 'I &El V
I B)I'&Bl t'V

I B)
(A5)

which is indeed the correct first-order result. In the
last step we have used (A2).

where IB) is the vector for the bound state, and Hp
the free Hamiltonian:

H=Ho+V HI4e')=EISA+)
Hp

I E)=El E), H
I B)=Epl B).

In formulas like (A2) it is understood that (E I Vl B) is
to be evaluated as a function of E for physical E,
and then continued to E=Ep. Since D2 has a double
zero at Ep, the only part of 8A which contributes to
(A1) is that with a double pole. Substituting (A4)
into (A3), retaining only the double pole, and inserting
the result into (A1), we find

is given by

ge o dPr e~x ~U
I
(k+k')/4p. ] dsr e~*'U

2Ã

equating 8 and I& we get

U= (—4pa)/&2pr)' dPE e
—~*'FP(t)/(t —XP), (B4)

which leads to U= —abV, with bV given by (1.6);
we also get

$ d
U= —(2u/231)sXr- —b V,

r dr
(B5)

ZQ
pr U ~*V&

2p

= —(2a/2M')s L d'r (1/r)(d8V/dr)&PP, (B6)

where p is the pion wave function and I the orbital
angular momentum. In the Fqtp state, s L= —1. By
our standard argument for the I' state, we can replace

where s=e/2. In turn, U leads to a magnetic energy
of the bound state:

'~ See, for instance, S.S.Schweber, Ae Ietrodectioe to Rdativistic
"M.L. Goldberger and K. M. %'atson, Collision Theory (John QuaeAcns Fidd Theory (Row, Peterson, & Company, Evanston,

Wiley & Sons, Inc. , New York, 1964), Chaps. 3-5. Illinois, 1961),pp. 478, 483, and 262.
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