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We consider the scattering of three nonrelativistic spinless particles interacting via two-body Yukawa
potentials. The on-energy-shell T-matrix element is studied as a function of the total center-of-mass kinetic
energy E for fixed physical values of the vectors y; =k;(2m;E) '~~, y =k (2m;E) '~'; i = 1, 2, 3, where k&,

k~, kg and h~', h~', k»' are the initial and final momenta of the particles, respectively, and m~, m2, m3 are
their masses. We show that T(E) t defined as a real analytic function: T(E)= T*(E*)g has no complex
singularities in the E plane. Along the real E axis, apart from the expected unitarity branch cuts and the
"potential" or left-hand cuts, we find three kinds of anomalous singularities. The first kind arises from the
kinematical possibility of the particles undergoing a finite number (depending on the mass ratios) of suc-
cessive binary collisions ("rescatterings") at arbitrarily large spatial separations. The other two kinds are
associated with the existence of two-particle bound states. We show that the discontinuities of T(E) across
the anomalous cuts can be explicitly expressed in terms of on-shell physical amplitudes. Accordingly, we
formulate N/D equations for the determination of the amplitude. The connection between the rescattering
singularities and the convergence of the partial-wave expansion of the amplitude is briefly discussed.

I. INTRODUCTION

"OST of the recent work on the quantum-mechani-
- c cal three-particle problem has dealt with integral

equations for the off-energy-shell amplitude (T matrix)
such as the Faddeev equations': A set of interparticle
potentials is given and the T matrix is obtained as the
solution of a system of coupled linear integral equations.
Insofar as phenomenological or empirical potentials can
be used to describe the interparticle forces, this approach
may be applied in principle to a large number of cases
of practical interest such as binding energies of light
nuclei, scattering and break up of nuclei, etc.

In the domain of high-energy particle reactions the
potential approach is not available. However one may
still hope for an extension of the 5-matrix methods
employed so far with some success for relativistic two-
particle amplitudes, In fact, according to current views,
the study of many-particle scattering amplitudes is
essential for the completion of the 5-matrix program
because they are coupled through unitarity relations to
the two-body amplitudes. A step in this direction has
been recently taken by Mandelstam' who formulated
lVD ' equations for the three-particle scattering ampli-
tude. He used the squared center-of-mass energy as the
dispersion variable and assumed that all the singularities
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and the corresponding discontinuities of the amplitude
are given except those in the physical region which are
directly related to unitarity. Clearly, for a realization
of such a program a knowledge of the analytic properties
of the amplitude in the dispersion variable is essential.
However, from what is known about the analytic prop-
erties of even the simplest Feynman integrals the prob-
lem cannot be expected to have a simple answer.
Specifically, the existence of the familiar anomalous
threshold singularities leads one to believe that the
analytic properties of many-particle scattering ampli-
tudes are far more complicated than those of the two-
particle amplitudes.

This paper was motivated by the thought that some
insight might be obtained from a study of analytic
properties in potential scattering. In particular, we have
studied the scattering of three scalar particles interact-
ing via two-particle potentials of the Yukawa type. We
considered the energy-shell T-matrix element (scatter-
ing amplitude) as a function of the total center-of-mass
kinetic energy E and the vectors y1, y2, ys, y&', y2', ya'
defined by

y, =k&(2m;E) "', y =k, '(2m, E) '"; i=1, 2, 3, (I.1)

where m1, m2, m3 are the particle masses and k; and k
the initial and 6nal momenta. Because of energy and
momentum conservation the y's and y"s are not inde-
pendent; they satisfy the relations (y;=

~ y, ~, etc.)
yi'+y2'+y3'= y1"+y2"+y3"=1,

y, (2m~)'I2+y2(2m~)'»+ye(2m )'& (f.2)
= y&'(2m&) '"+y2'(2m2) '~'+ y~'(2m3) 'I'= 0.
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THREE —PARTICLE SCATTERING AMPLITUDES. I

We have studied the analyticity properties of

(y,
'

~
T(E)

~ y,) in the comple~ E plane for 6xed physical
values of the y; and y,

' vectors. These analyticity prop-
erties are shared by all partial waves because the partial-
wave amplitudes as dehned, e.g. , by Omnes' are ob-
tained by multiplying (y ~

T(E)
~
y;) by some continuous

function of y, and y,
' (Jacobi polynomials, etc.) and

integrating over a compact domain.
Our proof of analyticity is carried out in several steps.

In Secs. II and III we examine the scattering amplitude
to all orders of perturbation theory for the case of three
particles of equal mass. The amplitude turns out to have
the expected unitarity cut from E=O to +~ as well as
left-hand branch cuts along the negative real E axis
which are associated with "pinching" singularities
among potentials, in complete analogy to the two-body
problem. In addition, however, in the three-body case,
we find branch cuts along the negative real axis associ-
ated with the fact that it is kinematically possible for
three point particles to undergo several [at most three
in the equal-mass case] successive binary contact col-
lisions. What is important for dynamical calculations
based on analyticity and unitarity is that the discon-
tinuity across these "rescattering" cuts can be explicitly
expressed in terms of the on-shell two-body T matrices.

In Sec. IV we discuss the general case of arbitrary
masses. We demonstrate the connection between the
"rescattering" singularities and the classical problem of
successive binary collisions of three particles. We estab-
lish an upper bound on the number of such collisions
which are kinematically possible for given mass ratios.

In Sec. V we consider the full amplitude as a solution
to the Faddeev equations in terms of the two-body T
matrices. We find that if two-body bound states are
present, then in addition to the expected unitarity
branch point at E= —(two-particle binding energy)
we have two kinds of "anomalous" thresholds accom-
panying each two-particle bound state. Again v e 6nd
that the associated discontinuities can be expressed in
terms of physical on-shell amplitudes for (i) two-body
scattering (ii) bound-state breakup and pickup reactions.

According to the results of Secs. II, III, IV, and V
the three-particle amplitude is free of singularities in the
upper half plane (ImE)0). By de6ning it in the lower
half plane (ImE(0) via the "reality" relation

T(E)= T*(E*),

we introduce discontinuities along the real E axis associ-
ated with various singularities. In Sec. VI we give a
complete list of these singularities and write down
formulas for the discontinuities [except for the "po-
tential" left-hand cuts which are not treated explicitlyj.
We then formulate .'V/D equations for the determination
of the amplitude in terms of the two-body on-shell
amplitudes and the discontinuity across the potential
cuts which represent the "forces." Finally we discuss

' R. Omnes, Phys. Rev. 134, B1358 (1964).

briefly the signi6cance of the "rescattering" cuts in

connection with the convergence of the partial-wave

series.

k 2+)'r 2+/ 2 p '2+/ ~2+/ ~2 i'22 (II.2)

We also introduce the vectors

y;=k~/k and y =k,'/k; i=1, 2, 3. (II.3)

We note that Eqs. (II.1), (II.2), and (II.3) imply the
inequalities4

y,'&-', and y;"&-,'. (II.4)

The on-the-energy-shell three-particle scattering am-
plitude' may be considered as a function of k' and a set
of independent y variables. In fact, the rotational in-
variance of the amplitude restricts the number of inde-
pendent y variables to seven, e.g., y&', y2, yi", y2",
(y~ —y~')2, (y2 —y2')', and (y2 —y2')'. In what follows,
however, we shall deliberately refrain from specifying
a particular set of independent y variables because we
shall only study the analytic properties of the amplitude
as a function of k' for fixed physical values of the y
variables. It appears that this choice of variables results
in simple analytic properties which, furthermore, are
shared by all partial-wave amplitudes as mentioned in
the Introduction.

Setting aside questions of convergence for the moment
we will discuss the analytic properties of the general
term in the perturbation expansion for the scattering
amplitude T. Symbolically, the expansion reads

T= V+ VGpV+ VGpUGpV+ ' ' '

where V is the sum of the three interparticle potentials

V= V~2+ V23+ V3). (II.5)

' Note that 3y1'+(y2 —y3)2=2, etc.
'See, for instance, M. L. Goldberger and K. M. KaSon,

Collision Theory {John Wiley Bz Sons, Inc., New York, j.964).

PERTURBATION THEORY: EQUAL MASSES,
NO ANOMALOUS SINGULARITIES

We begin our discussion by considering the scattering
of three spinless particles of equal mass m interacting
via two-particle Yukawa potentials of the form e &'r ',
where r is the interparticle distance. For simplicity of

exposition we prefer not to work with general super-

positions of Yukawa potentials. However, all our results
would still remain valid in that case. One would only
have to interpret p, wherever it appears as the smallest

inverse range of the superpositions.
I-et ki, k2, k3 and k~', k2', k3' be the initial and 6nal

center-of-mass momenta of the three particles and let
E= k2 be the total center-of-mass kinetic energy (we are
using units in which f2= 2rr2=1). Then

kr+k2+ k2 ——kr'+ k2'+ k2',

and



RU 8 I N, SUGAR, AND TI KTOPOU LOS

kp

ka

a«0) ks& Ae-k3&

qN ~N-I

)I
I)
It

-gq„ql)
F

q, -k

1&qll ql)

kqlp+ql)

))

){ql2 ql)

l
a«N-q~& ~«~a-q &

RqNI qN) ){qN2 qN)

II

)

)I

qN
- k)'

II{qN+I I kI)

PqNI, I I)

FxG. l. A diagram repre-
senting a general term of the
perturbation expansion of
the three-particle scattering
amp Htude.!

kg'

ks'

G2= (k'—H2 ji2) ' H =—V'12—IIr22 —V22. (IL6)
where

and Go is the free Green's function for outgoing waves the resulting denominator is of the form'

Q(q; k2,k1')—k' —i2,

The momentum space matrix elements of the po-
tentials and the Green's function are of the form (we
omit here numerical factors for simplicity):

(k1"Ik2"Iks"
l ~12 Ik1'Ik2'Iks') = [) 'j(k1"—k1')'7 '

X i)'(k2"—k2') {I'(k1"+k2"—kl' —k2') I

(k1",k2",k2"
~
G,

~
k1',k2', k, ')

= [k' k1" —k" —k, '2j—i27-1

X&'(k1"—k1') 82(k2"—k2') 82(k2"—k, ') .
A general term in the perturbation expansion in

momentum space is represented by the diagram in Fig. 2.
The wavy vertical lines correspond to two-particle
potentials. Each set of three horizontal lines between
potentials corresponds to a free Green's function. Con-
servation of momentum is manifest at each vertex, i.e.,
the diagram is associated with the integrand obtained
after performing the trivial delta-function integrations.
The remaining integration momenta are denoted' by
q~p or Q.

Our methods for studying the integral~ are elementary.
Ke 6rst apply the Feynman identity to the product of
all those Green's functions which are located between
potentials that act on dgferee/ pairs of particles. If we
denote the Feyxunan parameters by x~, x2, . . ., xN+~,

The choice of integration momenta is, of course, not unique.
For our purpose, however, it is convenient to make the choice
indicated in Fig. 1. Note that integration momenta occurring in
more than one Green's function are speeified by one index:
qI, gg, ~ ~ ., q~, whereas those occurring in only one Green's
function have boo indices.

~ In what follows it will be understood that the over-all delta
function factor expressing total momentum conservation is
dropped from the amplitude (and also from any perturbation
series term that we wjtll consider) according to the definition
Lsee Ref. Sj.

&f)S/i&=Sr' 2NiS{&(-4)S'{&y-&~)&—f) &)2}

q;=q +q;, (II.9)

we can eliminate the terms that are linear in the q's

Q(q jq;; k,k ') =P A;,q qjjg. (11.10)

Clearly, q&, q&,
. - is that set of values of the q's that

minimize Q(q;) and, therefore, the quantity g is the
minimum value of Q under variation of the q's. The
conditions BQ/Bq;=0 (i= 1, 2, , S) provide us with
a system of 1V linear vector equations for the g's. The
coeflicients are simple linear combinations of the Feyn-
man parameters. The solution to this system is unique
and of the form

q;= o;k2 jk;k1', (II.11)

where a; and b; are rational homogeneous functions of
the Feynman parameters of order zero.

~ With no loss of generality, we will often discuss a general class
of diajpams by making, for concreteness, a specific choice for
the pau of particles that interact first or last.

~ Bee Eqs. (V.l) and (V.3).

Q=*1[k2'+(k2—q1)'+q127
+*2[q1'+(q1—q2)'+q2'7 j
jz~[q~ 1 j(qW 1 qN) jgnr —7

jzs+1[q)I'j(qN kl ) jk1 '7. (118)

For reasons that will soon become clear we restrict the
discussion of this section to diagrams with E&2, A
moment's reaction will convince the reader that we
thus include all but the second (iV= 0) and third (1V= 1)
order terms of the iteration expansion of the Faddeev
equation. '

The expression Q is a non-negative quadratic form in
the variables q&, q&,

., qN. By performing a change
of variables
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In the following we shall need upper bounds on the
quantities Q;, b;, and g. We start by obtaining a bound
on g. In doing so we may regard the variables q and k
as real numbers. Since g is the minimum value of the
quadratic form Q under variation of the q's we note
that for $)2

g=minQ(q4qs, ' ' ',qar)(Q(sks, 0,0 '' ''k& )
= (ssxg+xsxs) kss+ ('sxsr+ssxsr+i)ks"

& s(xg+xs)ys'k'+$(xw+xsr+&)y& 'k'
&-,s(xg+xs)xsks+$(xsr+xsr+x)xks&k' (II.12)

and for S=2

g=minQ(qi, qs) &Q(sks, sks')
= ssxgkss+$xs[kss+kp+ (ks—ks') s)1gxsks's

& sxsys'k'+$xs[ys'+yi"+ys yi']k'+ssxsys"k'
&$(xs+xs+xs)xsks&ks. (II.13)

In order to obtain a bound on b; we set kg=0 and
take k &0. Then the g;= bgs' nnnimize the form

2xsqs'+xs[qx'+(qs —qs)'+qs']+"
+xnr[qsr s'+(qsr s qnr)'-+—qnr']

+xN+1[qN +(qlV kl ) +kl ]~

By mini~izing separately with respect to q&, qs, , qsr
we obtain the following inequalities for g&, gs, ., g&.

0&2gs(gs,
2qs &max(gs, gs),

2qs™X(qsÃ4)~

2qsr&max(qsr g,kg'),

which imply that
1 1 1

0&qg(ssqs& —gs«&sr& —ks'. (II.14)
2Q 2N—1 2N

We conclude that

we have the integral

I(k) = dsq&dsqs. d'qpr dxsdxs dxar+x

X&(xs+xs+ —1) . d'q. p
.

)(H(ks+is; qox, ,q p, '@+r~»' ' ')

X~ A;;(x)q; q; a—ks i—e] ~ ' (II 21)

According to the standard prescription of scattering
theory the limit of this integral as e —+ 0 is the contri-
bution to the physical amplitude. In the spirit of dis-
persion theory we now try to define an analytic function
of k, for fixed physical values of the y's, such that its
boundary value on approaching the positive real k axis
from above reproduces the physical amplitude originally
defined by the e ~0 process. For convenience, we shall
use in the following the variable k instead of k~ with the
understanding that the complex k' plane is mapped on
the upper half k plane.

We erst note that the Feynman denominator

Q A;,q; q,—aks (IL22)

—p& (Imk)2 max;( I r; I )(p
and, therefore, from (II.20), in the strip

IImkI &(x)'rsvp.

(II.23)

(II.24)

Those factors in H that come from Green's functions
are of two kinds:

does not vanish for k in the upper half plane since
P A;,q,"q; is non-negative. Also, approac»ng the posi-
tive real k axis gives the same limit as with e-+0
because a+0.

Looking next at the potential denominators in B, we
see that they cannot vanish in the strip

0(b.+2—%+i-1

Similar1y, by taking k&'=0 and k&&0 we Gnd

(II.15) (1) Those at the beginning and end of the diagram.
Their denominators are of the form

It then follows that
0&Q;&2 '. (II.16)

q;= rs(x; ys, y&')k, (11.18)

I.'I = Ia'l.+k'l. 'I &(l+S)(-') r k=(:v'6)k. (11.1n
If, for later convenience we introduce

and
—,
'

qp, p'+ sks' —k' —is,

rV~+j. .~'+~~ki"—k' —&& y

(II.25)

respectively. Since ya', y&"&-,', the same remarks apply
as for (II.22).

(2) The Green's functions in the middle of the dia-
gram. Their denominators are of the form

—g+k'= a(x; ys, ys')k'

the bounds imply that

(II.19) -'q ps+)(q +r k)' k' is, — —
which can be written as

(II.26)

Ir;I &~6 and a&0. (II.20)

We are now prepared to discuss the analyticity prop-
erties of an arbitrary diagram of the class )V&1. After
performing the change of variables indicated in (II.9)

—,'(q +zr k)'—ksa s+pq p' —is,

z=cos(q, r ) n '=1—ssr '(1—z').

(II.27)
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The corresponding poles in the q plane are given by

q~= —sr k~(2o. 'k' —tq~p'+ie)'I' (II.29)

We note that for Imk&0

Im[-,'o 'k' —-', q s']'~'
& (Imk)(-,')'I'cr. & (Imk)r.

~
s

~
. (II.30)

It then follows that the poles given by (II.29) are
never on the real q path for Imk&0.

The result of the above discussion is that I(k) is a,n
analytic function of k in the strip

0&Imk& (-')'I'p (II.31)

if the q variables are everywhere formally multiplied by
e'& I this follows, after some straightforward algebra, by
looking at the potential denominatorsj. It is evident
then that, starting with /=0 and k in the strip (II.31),
we can continue I(k) in the entire first quadrant of the
k plane by rotating the integration paths of the q vari-
ables in their respective complex planes so that (II.33)
is satisfied at every stage. The analyticity in the second
quadrant follows trivially from Eq. (II.32).

These analyticity properties may be expressed in the
form of a dispersion relation" for J(k') =I(k)

J(k') =—
—2p2/3 Imf(k")

dk" . (II.34)

111. PZRTUaS~TIOm THEORY: Eyer, M»SES,
ANOMALOUS SI5'GULAMTIES

A typical diagram for the case E= 1 is shown in Fig. 2.
Using the notation of the previous section we have

Q =xt(k, '+ (ka —q) '+q'j+ x2Lq'+ (q—ke') '+kz"j
Q —k =2'——,'(x,k,+x,k, ') je

+extx2%' —~ (xtk»'+xek»"), (III.1)
where

k12 k1 k2 )"12k )

k12' ——k1'—k, '= y12'k,

4, =ka —k3' ——yak.

(III.2)

'0If, as in the case of two-particle scattering by a Yukawa
potential, the amplitude tends to the Born approximation at large
energies, then no subtractions are required in writing down dis-
persion relations like (II.34).

In this strip, I(k) is a "real" analytic function in
the sense

(II.32)

In fact, it is easy to show that I(k) is unuiyiicil the
entire upper half k pl-une with the possible exception of the

imuginury uxis above iy(e)'~e We .simply note that the
integral (II.21) defines an analytic function of k in the
strip

0&Im(e '&k) & (-,')'~'p cosf, (0&it«tr/2), (II.33)

We now have

q= —,'(xtks+xeke'),

e(xlye+xeya )

2 xtxeye +g (x1$12 +x2$12 ) ~

(111.3)

As one can verify from the above expression the
quantity u can become negative for a certain range of
values of x1 and x2, if"

yrL &f»+$» (III.4)

In order to continue past the imaginary axis Lbelow
iN( ,')'J'j we —can simply add the contribution from the
pole at (q= ( q))

(III.S)g= —ik(—u/2) t~e

Thus, for Rek&0, the amplitude is given by the
integral

F(k,q)
ft(k) = dq

L2q'+ ( u( k'j'
(III.6)

whereas for Rek&0 the continuation will consistof

"We will frequently denote (it; ), )k;—lt, [, (y;], [y;—y, ), etc.
by simply k;, k;;, y;, y;;, ~ -, respectively.

This is, in fact, what makes the case E= 1 exceptional,
because here the argument given after Eq. (II.22) no
longer applies. Sy applying the Landau rules to the
denominator function Q k' —ie,—it is easy to see that
the amplitude has a branch point at yz'=(y»+y»')'
(in the physical region) corresponding to a "pinch"
between the two Green's functions. This singularity is
independent of k only because we have chosen to keep
the y's rather than the two-particle subenergies fixed.

If the amplitude were continued through the imagi-
nary k axis, this singularity would prevent it from being
real in the sense of Eq. (11.32). This suggests that the
proper definition of the amplitude in the second quad-
rant of the k plane is through Eq. (II.32). It will be
shown that with this definition the amplitude has a cut
in the k' plane from —~ to 0. If the amplitude were
continued through this cut, it would develop complex
singularities.

It is instructive to look first at what would happen if
we did continue through the imaginary k axis. Clearly,
if y&&y»+y»', then a&0 for all values of the x's and
the arguments and results of Sec. II are stiH valid.
However if yz&y»+y»', then u can be negative for
certain values of the x's.

The Feyronan denominator for a&0 can be written
as 2q'+

~
u

~

k' and needs no ie prescription for k physical.
In fact, it does not vanish in the entire half plane
Rek&0. For the remaining denominators the discussion
given for the case Ã&1 still holds, so we again have
analyticity in the first quadrant, i.e., for

Rek&0, Imk&0.



TH REE —PARTI CLE SCATTE RI N G AM PLI TUD ES. I

I

2(qo) ka 2(qo2 k

k)

—,'(q„-k,')
kt

Fxc. 2. A typical one-loop
{E=1) diagram.

2(qo(+kq) 2 (qo2+ky)
I /

q-k, ' —,(q„.k, )

two terms

f&(k) = F(k,q)
dq +h(k), (III.7)

[2q'+
I
o

I
k')'

that the pole term h(k) violates the "reality" of the
amplitude. In fact it is clear that

h(k) = fr(k) —fg*(—k*) . (III.12)

where the pole term h(k) is given by

id F.(k, q)
h(k) =—— . (III.S)

q q+ilalk/2 ='Iol&I2

The 6rst term on the right-hand side of Eq. (III.7)
has the same form as the integral in Eq. (III.6) and is
clearly analytic in the second quadrant.

The real difticulty arises from the pole term h(k). This
termis still anintegralover qo~, q02, -, q~~, and the
angles of q. Let us start by seeking a region of the k

plane in which none of denominators involved in the
integrand vanish. It is straightforward to show that
none of the potential denominators vanish in the region
where the following inequalities hold simultaneously:

I «klly~ —2(»y~+»ya') I+ IImkllo/g I
'"&~,

(III.9)
I
«klly~' —k(~a'3+»y~') I+ IImkllo/g I '"&&

or, for simplicity, in the smaller region

I
Rek I+-',

I
Imk

I
((-,')'~'p. (III.10)

A typical t reen's-function denominator in the middle
part of the diagram (the ones at the ends are similar to
those in Sec. II) is

2 qu'+-,' [2 (»ya+»ys') —in
I
a/2

I

'~')'k2 —k2

where n is the unit vector in the direction of q. To avoid
the zero of such denominators we may have to distort
the qu' contour in the strip IImqunl(-, 'lkl'. The
distortion modi6es (III.10) into

1 1
I
Rek I+ -+—

I
Imkl &(-;)~~2&. (III.11)

6 v2

Thus we have proven analyticity in a convex region
of the upper half k plane which includes the origin and
pieces of the real and imaginary axis. We cannot, how-
ever, use the method employed at the end of Sec. II to
extend this region into the entire second quadrant.

Thus we cannot eliminate the possibility of singu-
larities in the second quadrant. Furthermore, we note

In order to obtain an explicit expression for h(k) it is

convenient to follow a somewhat diferent approach and
not use the Feynman identity at all. %e note that any
perturbation term of the class E=1 can be represented
in the form

F(k+ie; q)
fg(k) =lim d'q

[q'—k12' —ie) [(q—4)'—k&u"—ie)

1
= lim-

e~0 2

Qo 1 2%

dg d cosg dp

q F(k+zEl q) cos8q p)
X . (III.14)

[q' ku'+i e—)[(q a) ' k—„"+i—e)

We see from Eq. (III.12) that we can obtain an
explicit expression for h(k) by continuing f&(k) and
f&(k) = f&*(—k*) onto the imaginary axis approaching
from their respective quadrants of analyticity.

The denominators q' k&P is and —(q—4—) '—k~2"—ie
that have been explicitly displayed in (III.13) have
zeros at

q~= &(kg2+ie),

q F(k+16; q, cos8, p)
(III.13)

[q'—ki2' —ie)[(q—a)'—k„"—ie)

Our choice of variables is indicated in Fig. 2. In
introducing spherical coordinates we have made use of
the invariance of the integral under the change q —+ —q
in the integrand, to extend the q integration from —~
to +~. %e take the s axis to lie along 4 so that
cos8= 4 q/Aq.

We have already seen that fz(k) is the boundary
value of a function which is analytic in the 6rst quadrant
of the k plane. It follows that fq(k) = f~*( k*) is a—n
analytic function of k in the second quadrant the bound-
ary value of which, on approaching the negative real
axis from above is given by

1 2x

fq(k) =lim — dq d cos8
e 02 —00 —1 0
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entire second quadrant. In order to see that k(k) does
indeed have singularities there (which are complex
singularities in the k' plane) let us consider the simple
third-order diagram shown in Fig. 5. In order to be
able to perform the integration in (III.20) explicitly
we will replace two of the potentials by constants. The
corresponding contribution to the amplitude is (apart
from unimportant factors)

kg

kp

—,(q-k, )

- $(q~ks) y(q ks)

FIG. 5. A simple one-loop (X=1) diagram.

kp'

kg

fi(k) = d'VLk(q —1~+~s)'+t '?' center-of-mass energy. Then a typical contribution to
he reseat tering discontinuity d& is given by

so that the pole term given by (III.20) is

X2 2

k(k) =— de
p

X(y'+-,'k»sL1 —s cosf—(1—s')"'sing cosy 1} ',

—(2~i)' d'c(k(&~ —1~) I t»(kk»') Ikq)h(q' —k»')

X (s~&3+x~q
I
tnt(k' ss(q—ks)—'j I

sks'+-,'(q a)—)
X hL(q —&)'—k»"1(-,'(q —&)

I t»( 2k»'s)
I 2(lr-,

' ir—,'))
(III.25)

where P is the angle between y& and y» and

s = (y»'+y~' —y»")/2y»ye.

Performing the q integration, we obtain

4 9 )s
k(k)=

I
1 «os/+, , I+("—1)»nV

yak 5 2yg2'k'&

00

fi(k') =-Since s& 1 for y»+y»'&y&, it is clear that h
therefore f~(k) has a branch point at a cornple
of k'.

These complex singularities occur only in those terms
of the perturbation expansion for which 1V= 1 (provided
the masses are equal). If we sum all these diagrams we
obtain the third-order terms in the iteration expansion
of the Faddeev equation. ' Since there are only nine
such terms one could in principle calculate the discon-
tinuities across the cuts associated with the complex
branch points just as one would have to do for the cuts
lying along the imaginary k axis which are associated
with "pinches" among potential denominators. How-
ever, it is not necessary to deal with complex singu-
larities at all. We have seen that f~(k) is analytic in the
hrst quadrant (i.e., upper half k' plane). We can define
it in the second quadrant (i.e., lower have k' plane) by
the relation

where Im f4 at least in the interval (—2p'/3, 0), is given
by the rescattering contributions dtt/2i of the type
(III.25).

Special consideration is also required for the six
second-order terms of the Faddeev expansion for the
following reason. In the typical term' t~26pt23, where t~2

and t» are two-body matrices, the free Green's function
Gp appears in the form

Go(k') =k '[yx"+ye'+(y&'+ye)' —1—iej '. (III.27)

The singularity in this Green's function which would
be expected to contribute to the unitarity relation is a
pole in the y variables rather than in k'. At the same
time this pole in the y variables, because of its delta
function contribution to the imaginary part, would
prevent this second-order term from being a "real"
analytic function of k'. Indeed, for k' real and negative
Go(k') has a nonvanishing imaginary part

fg(k) = fg~(—k*). (III.24)

Of course now there will be a cut on the imaginary
axis running from 0 to i~ (i.e., a cut along the entire
negative real k axis). However, the discontinuity across
this cut will be given explicitly by formula (III.21)
which involves only two-particle T matrices oe the energy
shel/ Let us den. ote by (p'I tg(E) I p) the T-matrix ele-
ment for the scattering of particles i and j, where p and
p' are the initial and final momentum of partide i with
respect to the center of mass of the pair and E their

ImGO(k') =sk 'bg'2+ys'+(yi'+y3)' —1j. (111.28)

In order to avoid the complications arising from these
formal difficulties we shall define t~2Gpt23 in the lower
half k' plane (i.e., second k quadrant) by the relation
(III.24). With this de6nition the second-order term will
have a "rescattering" cut along the negative k' axis

We note that after integrating over q and cos8 with
the aid of the delta functions, all three t matrices will
be on the energy shell. However, in order to perform the
q integration one needs the values of the t matrices for
unphysical values of the energy and momentum transfer
variables.

We may express these analyticity properties in a
(11123) dispersion relation for f&(k') = f&(k):

Im fg(k")dk", (III.26)
ir —co
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whose discontinuity is given by

discgts2Gotgs j
= 2m zk 428+q' +ya + (yq'+yq) —1jt2q. (111.29)

In this expression the delta function ensures that the
two-body matrices t» and t» are on the energy shell.
Furthermore, with this definition, the second-order
terms now have a right-hand cut in k' whose discon-
tinuity is just what is expected from unitarity.

A "kinematical" branch point of the square-root type
appears in the first-order Faddeev terms, namely, the
ones representing the sum of the "disconnected" dia-
grams. It simply arises from the delta function factors.
For example [in the notation of (V.2)j

t„=tomb(k3 ks ) t12(k )
—'&'8(1'3—3r, ') . (III.30)

We shall take the corresponding cut along the nega-
tive real axis in order to preserve (III.24). Its discon-
tinuity is proportional to t~2 on the energy shell.

We shall conclude this section by establishing the
connection of the )7= 1 "rescattering singularities" with
the familiar anomalous thresholds of relativistic scatter-
ing amplitudes and vertex functions. We consider the
one-loop Feynman diagram for scattering of three
particles of equal mass m shown in Fig. 6. Let p~, p2, pq,
and p~', p2', pq' be the initial and 6nal four-momenta
and introduce the Lorentz-invariant variables

s&2=(pi+pm)', sr'' ——(pi'+p2')', t=(p3' —p3) . (III.31)

The location t~ of the anomalous branch point in the
complex t plane is given by"

1—tg/2m' = (1—sr2/2m') (1—sq2'/2m')

+((1—s&2/2m') '(1—sgm'/2m') '—(1—sg2/2m') '
—(1—sg2/2m ) +1) ~2 (III.32)

Working out the nonrelativistic 1inut of Eq. (III.32)
we obtain

I
&~

I

=
Ikey

—kml+14' —k, 'I . (III.34)

This is indeed the relation characteristic for the ap-
pearance of the rescattering singularities in our non-
relativistic problem. In the following they will be
referred to as anomalous singularities of type R Our
discussion shows that they are manifestations of branch
cuts in the momentum transfer variables.

IV. ANOMALOUS SINGULARITIES AND CLAS-
SICAL COLLISIONS. GENERALIZATION

TO UNEQUAL MASSES

It has been known for a long time that the anomalous
thresholds associated with the triangle diagram in field
theory occur at values of the external invariants com-
patible with all three internal momenta being on the
mass shell, " namely, with the virtual particles being
"real" and undergoing the successive collisions indicated
by the Feynman diagram in real space-time. We shall
now see that we have essentially the same situation in
our nonrelativistic problem. In particular, the absence
of anomalous singularities of type E in Faddeev terms
of order higher than three corresponds to the fact
that three equal-mass point particles can have at most
three successive binary collisions. "For arbitrary masses
m&, m2, m3 a similar result holds. Namely, the nth order
term in the iteration expansion of the Faddeev equation
will have anomalous singularities of type E if and
only if three classical point particles of masses mi SE2,
and m3 can kinematically undergo n successive binary
contact collisions.

We shall study the classical collision problem by
using the action principle

If kg, k2 k3 and k~', k2', hs' are the initial and final
three-momenta of the particles, then in the nonrela-
tivistic limit

zdh=0. (IV.1)

k;~, k 2&&m2,

(III.33)

p
I

FM. 6. The nonrela-
tivistic limit of the
anomalous threshold of
this Feynman diagram
(in the momentum
transfer variable) is re-
lated to the "rescatter-
ing" singularities of the
nonrelativistic ampli-
tude.

sg2
——4m'+ (4—k2)',

$12 4m +(kl k2 )
t=—(k,—ka')'= —A'.

To be specific let us represent the entire process of
X+2 successive collisions by the diagram in Fig. 7. The
meaning of this diagram is that at time to the particles
have momenta kj., k2, and k3. The first collision occurs
at time t~ between particles 1 and 2, the second collision
occurs at time t2 between particles 2 and 3, and so on.
Finally, after iV+2 collisions the particles obtain their
final momenta k~', k2', and k3'. The correspondence of
this diagram with a term in the iteration expansion of
the Faddeev equation is obvious.

Since the forces are of zero range, the Langrangian is
merely the total kinetic energy expressed as a function
of the momenta of the three particles. However, we
must iinpose the constraint that momentum is conserved
at each collision. The intermediate momenta can then"A concise discussion of singularities of Feynman integrals and

the I andau-Sjorken methods is given in J. D. Bjorken and S. D.
Drell, Relativistic Qgaetum Fidds (McGraw-Hill Book Company,
Inc. , New York, 1965).

"The problem of the number of collisions of three classical
hard spheres of equal mass was solved by G. Sandri, R. D.
Sullivan, and P. Norem, Phys. Rev. Letters 13, 743 (1964).
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k)
(to) (t))

8
(t2) (ts)

q &

8 q

{tg) (t5)

k

k2'

FIG. 7. Graphical representation of a classical collision process con-
sisting of X+2 binary collisions at times t1, t2, , t~+2.

be expressed in terms of 3; "loop" momenta q&, q2,

qN, whose values are to be determined from the action
principle. The action integral is then given by

-I 2 h 2 1 2-
Zdt = (ii—ip) + +

2m~ 2m~ 2m3

—qii (qi —ki)' ki'
+(ti—ti) + + +

2m2 2m3

ki" (q~ —ki')' qN'
+(iN+i iN+1) + +

2m] 2m/ 2m3-

1 2 3

+ (&
—4+a) + + (IV.2)

2m~ 2m2 2m3

t;qi —t, = x;(tN+s ti) ) i—= 1, 2, , iV+ 1,

The action principle tells us that the values of q&,

q2, , q~ of a realizable physical collision process are
those for which the action integral is stationary for
6xed initial and 6nal momenta. We have also imposed
the constraint that there are %+2 binary collisions
occurring at times t&, t2, , t&+2. This constraint may
be incompatible with the equations of motion. If this is
the case, then the q s for which J'Zdh is an extremum
will not conserve energy for all intermediate states.
Setting

minimum. It follows that X+2 collisions are im possible if

minQ(E for all k;k, ', x;)0 (P x;= 1) .
(e)

This is exactly the condition for the absence of
anomalous singularities of type R. Conversely, if there
is a choice of values of k;, k and x; such that rninQ) E,
then it is easily seen that there will also be a choice of
x's that makes minQ equal to E so that %+2 classical
collisions are possible and the scattering amplitude will

have anomalous singularities.

It is also amusing to note that the Landau equations

8Q/Bq;=0; i = 1, 2, , &7

yield the necessary and sufhcient space-time relations
between classically realizable binary collisions. To see
this let us consider, as an example, the three-collision
process depicted in Fig. 8. We have

—q' (q+ka)' ki'-
Q=xi + +

i2m~ 2m2 2m3

q' (q+ka')' ks"-
+xi + +

2m& 2m2 2m3
so that

BQ/Bq= »[q/mi+ (q+4)/mi]+xs[q/mi+ (q+k3 )/m2j
= (xi+ xi)q/m i+xi(q+ kg)/ms+ xi(q+ ki')/mi.

Thus the condition BQ/Bq=0 is equivalent to the state-
ment that if particles 1 and 2 collide at time t&, they
will collide again at time t3,

Let us now turn to the analytic properties of the
quantum-mechanical amplitude for the case of unequal
masses. The y variables are now dered as

y, =k;(2m,E) "' y,'=k (2m,E) '" (IV.3)
so that

xi+xi+ ' ' ' +x++i—1 )

The inequalities (II.4) are now replaced by

we find that aj'ddt=0 is equivalent to bQ=O under
variation of the q's where

m1'
y.2 y. 2g 1

m1+ m2+ m3
(IV.4)

Q=xi
qii (qi —k,)' kg'-

+ +
2m] 2m2 2m3

+ 0 ~ ~

In analogy with Eq. (11.8) we introduce the function

ki" (qnr —ki')' qn"
+&++i + +

2m/ 2m2 2m3

On the other hand, conservation of energy implies

Q= (xi+xi+ +x~+i)E= E,

where E is the total kinetic energy. Since Q is a non-
negative quadratic form, it is stationary only at its

k) kl
(rn~)

-(q+k~) -(q W&)
2 k'

(m2)

k~
(le y)

FIG. 8. Graphical representation of a process of three suc-
cessive binary collisions between three particles of mass m1, m2,
and m3.
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Q(ql, «2,",q)r) =»

Q(q, ,«2. ..«~) which for a general diagram has the form

—h 2 (kl—ql)' ql''+
2m, 2(M —m;—m&'&)

1
max {minL1}=q

(~) (q)
+

2m'" " 2(M' —m" "—m ")-

bra(jrets in Eq. (IV.9) are equal. Therefore

)& (xl+x2+ +x„). (IV.12)ql (ql «2) «2
+x2 + + +'''

2(M —m(» —m(»)
— q~' (q~—its)'

+xX+1 + +
2m&» 2(M —m&» —m)) 2m;

Assuming that m1& A&2& m3, we can use the relations
(IV.12), (IV.11), (IV.4), and (IV.6) to obtain

~ ('V') max{mi~, }&(x,+x,+" +x„)
(~) (q)

In this expression m('), nz(2), ~ ~, es(~) are the masses
of the particles of intermediate momenta q1, q2, ., q~
and M=ml+m2+m3. We note the restrictions

F1~2 ~1~2
X

m3M (tnl+rÃ3)(m2+m3)-
E. (IV.13)

tg'Wm(')

gg(1) ~~(2)

m(") Mes;,

(IV.6)

In terms of the quantity

(ml+m3) (m2+m3)
b=

we have

(IV.14)

max{minL1} & (xl+x2+ ~ +x„) (IV 15)(~) (q) bn —2(b 1)

and similarly
(IV.7)

max{minL2} & (x„+,+ +x,„) (IV 16)(*) (2) bn 2(b 1)—
Let cV= 2n —1, where e is a positive integer. %e have

arising from our choice of the Green's functions which
where combined by the Feynman identity. %e seek an
upper bound on the quantity

g =minQ(q»«2, ,«)r) .
(q)

+&nQn —1 , (IV.9)
2m(n —1) 2(M m(n —1) m(n))

L 2 +as+1'Qn+1 + +2

2 m" ('+) 2(M—m'"' —nl'"+")-
—

q2. 1' («2--1—h))'
+x2. + + (IV 1o)

2m(2n —'& 2(M —m&'"—'& —m;) 2m;

Following a procedure analogous to that used to
derive (II.14), we find that lf ql, «2, , F2~1 are the
values of g1, q2, , g& which minimize I1, then

es("—') m("—" m("—')

~ ~ ~ Ik I (IV 11)

Maximization of min(, )I.1 with respect to x1, x2,
x„for fixed xl+x2+ +x„requires that the quantities

g&nunQ(ql «2 ' ' ' «N —1 O qÃ+1 ' ' «2)r—1)
(q)

minL1(ql «2 ' ' ' q —1)
(q)

+minL2(q„+1, ,«2„1), (IV.8)
(q)

where

- h 2 (k'+ql)2 ql'L=" '+ ' ', + +
2m; 2(M' —m;—m&'&) 2m&"

Combining (IV.15) and (IU.16) with (IV.8) we have
the bound

It follows that if

g&
bn —

2(b 1)
(IV.17)

b"-'(b —1)&1, (IV.18)
then 2n+ 1 successive binary collisions are tunematically
impossible.

In the case of 6ve collisions, i.e., n=2, an explicit
calculation shows that our bound (IV.18) is actually the
optimum one: Fi&)e collisions are possible if and only if
b&2. Also by construction of concrete examples it can
be show that if the masses are Nneqgal (no matter how
small the deviation from equal masses is) a fogrth
collision is alloays Possible In general, f.rom (IV.18) we
see that for given mass ratios only a Gnite number of
successive collisions are kinematically possible. This
number, however, may be made arbitrarily large by
varying the mass ratios. One need only visualize the
case of a light particle bouncing back and forth between
two other particles the masses of which are increased
inde6nitely.

The proof of analyticity now goes through just as in
the equal-mass case. For those diagrams in which
g&8=k2 the amplitude can be continued into the entire
upper-half k plane and the only singularities will be on
the imaginary axis (at some distance from the origin).
The diagrams with anomalous singularities will again
be analytic in the Grst quadrant of the k plane and one
can de6ne them in the second quadrant by the relation
f(h) =f*(-h*).
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k)

k3

Fro. 9. Diagram representing a typical term in the iteration
expansion of the Faddeev equation Lsee Kq. (V.3)j.

Finally, Eq. (III.21) suggests that even for X&1 the
discontinuity across the anomalous cut (drawn along the
imaginary axis as explained at the end of Sec. III) can
be obtained by replacing each Green's function in the
corresponding Faddeev terms by 2mi times a delta func-
tion. The special prescription for integrating over the
delta functions requires an individual study of the
integrals involved. However, the important point is,
again, that because of the delta functions, the discon-
tinuity across the anomalous cut is given explicitly in
terms of the energy-shell two-body 1matrices.

V. TWO-PARTICLE BOUND STATES AND
ANOMALOUS THRESHOLDS

Up to now we have assumed that both the two- and
three-particle scattering ™plitudescan be expanded in
a perturbation series and we have shown that each term
in the series for the three-particle amplitude satis6es a
dispersion relation in the total energy. In this section
we shall consider the possibility that the two-particle
amplitudes have bound-state or resonance poles, and
hence the Born series may not converge. As one might
expect by looking at the off-energy-shell T matrix, we
shall find that the amplitude has "unitarity" branch
points at O'= —8* where J3), 82 are the binding
energies of the two-body bound states. The branch cuts
starting at these points and running to the right (i.e.,
towards increasing ko) are associated with intermediate
states consisting of a bound state and a free particle.
In addition, however, for certain values of the y's, a
new kind of anomalous branch points will emerge from
the k'= —8; unitarity branch points, and will thus
extend the "right-hand cut" further to the left. Except
for this phenomenon all our previous results will con-
tinue to hold.

In order to simplify the kinematics we shall only con-

where

+~'(@ d'P"(p'I&(E) Ip"&~(p"—p), (V.4)

The expansions

D(E)=E D (E),
n~o

(V.S)

&p'l&(E) lp) = Z &p'I&.(@lp&,
n~o

are most convenient in the Smithies" form:

(V.6)

sider the case of equal-mass particles, but the generali-
zation will be obvious. Our starting point is the Faddeev
equation. ' Denoting by f;; that part of the three-body
amplitude f in which the ith and jth particles interact
last, we have in the usual operator notation

12» 81'

f;;=);;+t;,6'o(f;z+ f,k); i, j, k distinct.

Here t»(k'), which is an operator on the three-particle
Hilbert space, is related to the off-energy-shell two-
partide scattering amplitude (p'It»(E)

I p) by

(k1 yk2 yk3 It»(k )I klyk2&ko &

= (-,'(kg" —ko")lt»(k' ——,'ko")I —,'(kg' —ko')&

X5'(ko"—ko'). (V.2)

Similar expressions for t» and t» can be obtained by
cyclic permutation of the indices in Eq. (V.2).

Let us 6rst discuss the analyticity properties of the
individual terms in the series obtained by iterating
Eq. (V.1)

fag=tag+tag&o(tga+t'k)+ . (V.3)
A typical term in the series is represented by a dia-

gram in Fig. 9. The problem appears similar to the one
discussed in Secs. II and III except that the potentials
are now replaced by two-body t matrices and the free
Green's functions are now situated only between
matrices involving diferent pairs of particles.

We recall that the amplitudes for two-body scattering
by Yukawa potentials has a Fredholm solution'4 of
the form

&p'It(E) I
p&= ~(p' —p)

0 n —1 0 ~ ~ o 0 0 0

Do= 1;
( 1)a

D„=
n!

0 n —2 . 0

0 oiO 0

0 0

0 0

(V.7)

&n—1 &n—2 &n—3 ' ' &2

&n-i &n-2 ''' &3

"R.Jost and A. Pais, Phys. Rev. 82, 840 (1951).' F. Smithies, Integral Eg~kns (Cambridge University Press, Cambridge, England, 1958).
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0 0 0 0 0 0

0 0

0 0

VGp

( VGp) '

(VGp)'
( 1)n

0 n —1 0

~ ~ 0 0

(V.8)Ep= VGp,' ~ ~ ~ ~ ~ ~

nt

(VGp)" 0 1On —1 On —2
''' 02

(VG )n+1 an 0n—1 ' &3 02

(VG,)' . are the kernel V(p —p')

X (p'P —E—fp) ' and its iterates, and
the denominators appearing in the 0. s will be of the
same form as the Green's-function denominators in
Eqs. (II.25) and (II.26). On the other hand X„V is
just a sum of the 6rst n+2 terms in the Born series for
the two-particle amplitude, each term being multiplied
by an appropriate product of lr's Lsee Eq. (V.8)j.There-
fore the contribution to the Faddeev term (i.e., the
diagram of Fig. 9) will be a sum of terms the analytic
properties of which are those of the diagrams studied in
Secs. II and III. Since the series for Ev can be shown
to be uniformly convergent (even after the analytic
continuation of the individual terms in k'), it possesses
the analyticity properties of the individual terms.

Let us now consider the case in which there are two-
particle bound states. We shall 6rst discuss terms of
fourth order or higher, i.e., those terms which do not
have anomalous singularities of type R (rescattering
singularities). We follow the same procedure as in Sec.
II, but in the present case it is convenient to include in
the Feynman identity the denominators in the D;, "s
corresponding to bound-state poles D.e., terms like
C/(E+8) in Eq. (V.10)j as well as the Green's func-
tions. The resulting Feynman denominator will be
typically of the form

;=Tr(VG )'=
1'=1 PP—E—ip

X V(p1—p )V(p, —p ) . V(p;—p ) . (V.9)

Since 0.; depends on 8 only through the Green's
functions Lsee expression (V.9)), it is an analytic func-
tion of E with a cut on the real axis running from 0 to
~. The series for D is uniformly convergent, so D will

have the same analyticity properties as the 0. s. Further-
more, the only zeros of D in the physical sheet corre-
spond to bound states and lie on the negative real axis.
We can therefore write the following representation
for D '(E):

ImD '(E')
dE' (V.10)

jV~

C
D '(E)=1+ +-

E+B ~ p

Q(q;; kp, k1') fp' aB ip, — — —(V.13)
where

Q= xlLkp'+(kp —»1)'+»P]+ . .

+xN+1[QN +(»N kl )+kl j+xN+22»l
+xN~p-,'ql, '+ +xN+pr2»l„', (V.14)

$&M; 4r&41 x& . )lj,+1,
O' —&%+2+&%+3+ +&%+31~

Once again we diagonalize Q by making the change
of variables

q =q'+q' (V.15)
such that( ql »i+1~ &;1(&'—pal')

I p»1 —»1-1) (V 11)
Q(»''+»')=2 ~'»'' q'+g, (V.16)

The corresponding D function will satisfy
whe~~ g=g'k' is the minimum of Q under variation of
the q's. We note that the bounds on q; given in Kqs.
(II.15), (II.16), and (11.17) still hold.

For terms in which /~N1 and i~AX, i.e., for terms
in which there are no bound-state poles in the first or

1 " ImD," '(E')
D. —1(PP——,'~1P) =1+— dE' . (V.12)

E —k +gpss ZE

Ps a result the dispersion denominator in D;, ' and

because D(E) ~ 1 as
~

E~~pp. In order to simplify the
notation we have assumed that there is a single bound
state with binding energy B.

Let us now go back to our three-particle problem. We
erst note that if there are no tm'o-particle bound states„
the results of Secs. II and III can be carried over im-

mediately. In other words, the terms of fourth or higher
order of the Faddeev expansion (V.3) will be real
analytic functions of k2 with the "unitarity" cut running
from 0 to and a left-hand cut starting at some point
to the left of ——,p,2. The third-order terms will have the
same singularities and in addition the rescattering cut
running from —~ to 0 and the corresponding discon-
tinuities will be given by expressions like (III.25).

To see this we note that according to Eq. (V.2) a
typical t matrix in the diagram of Fig. 9 will be of the
f01m
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the last loop of the diagram, we have from (II.12)
and (II.13) that

g (xg+x2+ ' ' '+xN+$ 1 A
p

so that the right-hand cut starts ht k'= —B. However

for l~
——1 or l~ ——V we need a better bound on g. We

consider the case lj,=1, l~/N. Then

xgk3
g=~l~Q(a, e„,e )&g,oo, . . .

,kh)
2xg+7fx~+2

xgk3'
I
xl + (xI+ix%+2) +(2xl+sxN+2)'+2xrx2+ ,'x»N-+2 j+s (xX+x%+1)kr

(2xg+-,'x~+2) '
1 x3XN+2

& (xi+x2+xN+xnr+r)k'+ - k'. (V.17)
2 (2xr+23x~~, )

Inequality (V.17) yields g'&1, but the best bound on
n(1—g') ' that one can obtain is"

n/(1 —g') & (V.18)

—8&—p2 (V.21)

which implies that a "gap" exists in the k' plane between
the right-hand cuts and the left-hand ("potential" ) cuts.
In analogy with the discussion in Sec. II, by means of
successively overlapping strips like (V.20), the integral
can be analytically continued in the entire erst k
quadrant.

We now go back to the question of whether any
"anomalous" thresholds are indeed located between
k'= —(-,')8 and the normal threshold at k'= 8.In-
order to answer this question and to locate the anoma-
lous thresholds we shall employ the Landau-Bjorken'
LLBj methods. First, it is important to note that, as
follows from the previous discussion, no deformation of
the integration paths of the Feynman parameters is
necessary in order to continue analytically in the 6rst
quadrant of the k plane. Therefore, in looking for branch
points located anywhere on the imaginary axis, we need
consider only real positive values of the Feynman param-

"The same result (V.18) can be similarly derived for the cases
lg+1, /M =E and l1 = 1, l~ =E.

This means that the right-hand cut in the k' plane
begins at some point to the right of k'= —(-,')8. No
other singularities are found in the strip

0&imk&u/2 max(v~) & (3)'~2p. (V.19)

We can now proceed to prove analyticity in the entire
6rst quadrant of the k plane. Because of the 8 term in
Eq. (V.13) the argument used at the end of Sec. II is
slightly modihed. In the present case, by a rotation of
the integration paths of the q variables by an angle
$(0&/&m/2), our integral is well defined and analytic
in the strip

(-',8)"' cosf& im(e —'&k) & (-,')'~'u costP. (V.20)

In order to guarantee the existence of this strip we
make the natural assumption that

eters in the LB equations. This is important because it
means that for k=iE, E real, we can set q, =iy, and
thus realize the LB conditions in terms of dual diagrams
in reu1 Euclidean p space By an. alyzing these dual dia-
grams it is also possible to obtain all the branch points
on the imaginary axis that lie above ip(-, )'~'. These will

be considered in some detail in a future publication. The
anomalous thresholds that we are looking for here arise
from a "pinch" between the Green's-function denomi-
nators which were combined in (V.13).We must, there-
fore, consider the LB conditions in which all other
denominators are "reduced, "i.e., their Feynman param-
eters are set equal to zero, Accordingly, the dual of
diagram 9 is shown in Fig. 10.The LB equations require
that all vectors lie in a plane. The positivity of the
Feynman parameters implies that the polygonal line
CA~A2A3 A~D is convex and lies inde the triangle
OCD. The LB equations require in addition that

IArCI = IP&
—21ty3I =2'&2,

I
~~DI =

I p~ 2Eyr'—
I

= 2Itr»',

(V.22)

(V.23)

Fro. 10.The dual diagram corresponding to the diagram of Fig. 9.

I
o~

I
'+

I ~'~'+r I '+
I
o~'+r

I

'
=Pi+(Pi Pa+&) +Pa+r =It i

i=1, 2, , (V~'—1) . (V.24)

The possible "pinching" of a bound-state denomina-
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s

Ai C

, ,Xyj.

Pro. ii. The three possible
dual diagrams (for equal
masses) satisbjing the Landau-
Bjorken conchtions.

X =W» ——,y, &-,',
1—k(ys —y»)'

where Bss is the binding energy of the (3,2) bound state.
We note that for ye&%2'/2 (i.e., ys&yts) the point At is
not between 0 and C which means that one of the
Feynman parameters is negative. The branch point is
not on the imaginary axis yet. For ys

——VT/2 (i.e., ya=yts)
we have 332=8~~ and on further increase of y~, the
branch point Aeg moves along the imaginary axis ac-
cording to (V.27). This is the familiar case of an
anomalous threshold emerging out of another Riemann
sheet through a normal threshold. In fact, it is straight-
forward to show that Aga is the nonrelativistic limit of
the anomalous threshold of the 6eld-theoretic Feyrunan
diagram shown in Fig. 12(a).

In a completely analogous fashion, diagram 11(b)
corresponds to a "pinch" between the last (i.e., nearest
to the 6nal state) Green's function and a bound-state
pole term of the preceding ty2 matrix. The corresponding

tor of the form sap, s Es+8—would require in addition

lOA;l'=P s=xs(E' —8)&xsE'. (V 25)

Reduced diagrams corresponding to, e.g., x;=0 may
also be possible. In such a case the polygonal line breaks
in two. The points A~, A2, ., A; must now lie on the
segment OC and the points A;+I, , A~ must lie on
the segment OD.

Given all these geometrical constraints, it is a rela-
tively easy matter to verify that there are only three
possible kinds of dual diagrams shown in Figs. 11(a),
11(b), and 11(c). Of these, 11(c) is associated with
third-order Faddeev terms only.

Diagram 11(a) is the reduced diagram corresponding
to a "pinch" of only two denominators: those of the
first (i.e.„nearest to the initial state) Green's function
and a bound-state pole of the subsequent t23 matrix.
From the diagram 9(a), the pinching condition is

IOAtl+ IAt&l = IO&l (V 26)

From Eqs. (V.22), (V.25), and (V.26) we obtain the
position of the branch point at

f(k') =-
—2p&i3 Imf(k")

dk"
k"—k'

+(pole terms at k'= 28,;/y ') (V.2—9)

for every term of fourth order or higher in (V.3). In
Eq. (V.26), A is the anomalous threshold located
farthest to the left (A &xs maxB;, &2u'/3).

The imaginary part along the unitarity cut is deter-
mined by the unitarity relation in terms of on-the-
energy-shell amplitudes for three-particIe scattering and
bound-state breakup and pickup. On the other hand,
the discontinuity across one of the anomalous cuts is
formally given by a Cutkosky prescription, namely, by
replacing the relevant Green's function and the bound-

{o)

m~ (~m~-28&'~~

FIG. 12. In the nonrelativ-
istic limit the leading Landau
singularities of these Feyn-
man diagrams reduce to those
associated with the dual dia-
gram of Fig. 1i. The bound
state of binding energy B is
taken relativistically as a
particle of mass {4m'—2B)'f'.

(c)

branch point is at

Es=A„'=; yt's&-', I (V.28)
1—s(yt' —y»')'

where Bts is the binding energy of the (1,2) bound state.
This branch point emerges at the normal threshold

(at E'=Bts) and moves to the left as y~' increases from
the value V2/2. It is the nonrelativistic limit of the
anomalous threshold of the Feymnan diagram shown
in Fig. 12(b).

In the following we shall call the branch points associ-
ated with diagrams like 11(a) and 11(b) anomalous
threskolds of type B. Associated with each two-particle
bound state (of binding energy 8 say) there are two
such thresholds at k'= —A and k'= —A' present in
every order of the Faddeev expansion (V.3). From
(V.27) and (V.28) we obtain A, A'&z'8 as already
anticipated from Eq. (V.18).

Having located the anomalous thresholds, we note
that the discussion given in Sec. II and at the beginning
of this section for the case of no bound states still holds.
If ~,p'&34 maxB;; there will be a gap between the right-
and left-hand cuts in the k' plane. There will also be
poles at ks= —28;;/y;P arising from the two-particle
hound-state poles in the initial and 6nal two-particle
T matrices. Therefore we may write down a dispersion
relation of the form
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and

k'= —A ss ——— for yss& —,
' (V.30)

1—g(ys —rip)

B23
for y,»-'

1—k(rs' —r»')'

In addition, however, there will be a branch point
associated with the dual diagram 11(c)and arising from
a pinch between both of the Green's functions and the
pole term in t». From the LB equations we have

~OA, i
1=-'(Es—B„)

~A1C~ = ,'Ey10, -
[A1D( =sEy»'.

(V.31)

From the geometry of the dual diagram, it follows
that the necessary and sufhcient conditions for the
appearance of this branch point on the imaginary k axis
are the simultaneous inequalities.

y»'+ys' —y10" ys'+yss —ys")—1)
2y 12', y3y~

y12 +yah y12 y3 +yh
1& — ) &—1)

2y12 yh 2y3 y~

(V.32)

which ensure that the triangle A1CD is geometrically
possible and that the point A1 is inside the triangle OCD.

If inequalities (V.32) are satis6ed, then the branch
point is located at

k'= —A ss"———Bss/(1 —3x/8),
where x is the smaller root of the equation

(V.33)

state pole term by delta functions. The result appears
again expressible (because of the delta functions) in
terms of on-the-energy-shell amplitudes evaluated for
unphysical values of the energy. It is clear, therefore,
that a study of the analyticity properties of bound-state
breakup, etc. amplitudes is required in order to make
the prescription meaningful. We shall postpone the
study of these amplitudes to a future publication. Here,
we only state, without proof, that the required analytic
continuation is possible.

Finally, we consider the third-order terms in the
Faddeev expansion (V.3). To be speci6c we may, with-
out loss of generality, consider the term tssGptssopt»
represented by the diagram of Fig. 8.

Let us assume that there is a bound state of the pair
(2,3) of binding energy B». Then, according to the
previous discussion, tssGptssGptss will have two anomalous
thresholds at

IP - pLANE

FIG. 23. Anomalous thresholds associated with a bound state
«binding energy B~g. The Ggure shows the location and mutual
dependence of the various cuts.

'f10
f= fss

fpl

t= fss, E= fssGp.t31Gp

tl pep tlsGO

0 t23GP

t, G 0

It follows from Fig. 9(c) and Eqs. (V.28) that

xB»&A»"&A», Ass'&Bss (V 35)

and that, under variation of the y's, this branch point
can disappear in one of the following three ways:

(i) It can move to the left and disappear into another
Riemann sheet through the anomalous threshold of
type B at k2= —A23. This corresponds to the point A
crossing side OC of the triangle OCD.

(ii) Similarly it can disappear through the threshold
at O2= —A23' as A crosses side OD.

(iii) It can cross side CD. This happens when

y10+y10'=ys, which is exactly when the rescattering cut
appears (anomalous singularity of type ff) and our
branch point disappears through it. %e shall refer to
this branch cut (i.e., the one associated with the dual
diagram of Fig. 11(c) as an assomalogs singglarity of
type BR It is straightforward to show that it is the
nonrelativistic limit of the leading anomalous cut of the
Feymnan graph shown in 12(c).

The positions of the various thresholds in the k2 plane
associated with a bound state of binding energy B23 in
t23 are illustrated in Fig. 13. The discussion in Sec. III
can now be carried over to show that tsscpts&pt» is free
of singularities in the 6rst quadrant of the k plane. For
yg&y12+y12' we can continue through the imaginary
k axis faboee the anomalous threshold at i(Ass")'ts and
beloso i(s)'tstsj into the second quadrant which is also
free of singularities and we have f(k)= f"(—k*). For
yz&y»+y»', the rescattering cut appears and the
anomalous threshold of type BE. is no longer there.
There still remain, however, the anomalous cuts of
type B and the unitarity cuts.

Having studied the analyticity of the individual terms
in the iteration series (V.3), we would like to extend our
results to the full three-particle amplitude. %e shall
give here only a brief outline of the procedure. If the
Faddeev equation in matrix form,

f=l+Kf, (V.36)
where

ye'*'- L(rp'-rs'-rs")(rp'-r»'-r»")

—(r '—y' —y")(r'—r ')(r"—r ")=o (v34)
where

f'= Kt+K't+K'f',

f'=f t—is iterated once, one obtains

(V.37)

(V.38)
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For values of the energy k' oG the positive real axis,
E' is a Schmidt kernel. Therefore, the oG-the-energy-
shell quantity

&q~', q2', qs'I (1—It') 'I e, e, e& (V 39)

for k' o6 the positive real axis, is given by an absolutely
and uniformly convergent Fredholm formula. The oper-
ator f' can be written formally as

f'(P) = L1+Ig(1—E') 'E'1 Q It'f

these cuts at any point of the real axis equals
2i Im(y'~ T(E)

~
y&. We classify these cuts as follows.

(i) Unitarity cuts. They are associated with various
kinds of intermediate asymptotic states appearing in the
extended unitarity relations Lwhich are also valid for
the oE-shell amplitude). Thus we have

(a) A branch cut from E=O to +~ corresponding
to intermediate states of three free particles. The dis-
continuity across this cut is given by

=A+8(1—E') 'C.
(V'4O& 2' E—' Ldy" j&y" 12'(E&

I
y'&*&y"

I
2'(E)

I y& ~ (VI.2)

If one takes matrix elements of f' between plane wave
states, all of the dependence on the external momenta
will be in A, 8, and C so that only the off-the-energy-
shell matrix elements of (1—K') ' are required. By
applying the Feynman identity to the free Green's
functions and bound state poles in 8 and C and simul-
taneously rotating the paths of integration as described
in connection with Eq. (V.29), one can show that the
on-energy-shell matrix elements of f' are given by the
ratio of taro absolutely and uniformly convergent
series. '7

Having established a uniformly and absolutely con-
vergent expression for the three-particle amplitude we
see that the only singularities of the full three-particle
amplitude which are not present in the iteration ex-
pansion of the Faddeev equation (V.3) are poles corre-
sponding to zeros of the Fredholm denominator D. On
the physical sheet these poles will, of course, correspond
to the three-particle bound states. Any zeros lying on a
diGerent Riemann sheet reached through the three-
particle unitarity cut in D will correspond to three-
par ticle resonances.

VI. SUMMARY OF RESULTS AND DYNAMICAL
CONSIDERATIONS

We have shown that the energy-shell T matrix ele-
ment for three-particle scattering

&yi', y2', y~'I 2'(E)
I y~, y2, y~&

or, for brevity, (y'
~
T(E)

~ y& is analytic in the upper-half
E plane for 6xed physical values of the y variables
defined by Eq. (I.1). The physical region is reached on
approaching the positive real E axis from above. We
then dined (y'~ T(E) ~y& in the lower half plane by the
"reality" condition

&Y'I "(E&ls&=O'I 2'(E*& IX&* (VI I&

thereby introducing various cuts along the real E axis.
Because of (IV.1), the sum of the discontinuities across

"In a separate paper we will present a detailed proof of the
convergence of the Fredholm series for the energy-shell scattering
amplitude of 3 particles interacting via superpositions of Yukawa
potentials.

where

Ldy) = (8mim2mz) "'b(y&(2m&)+ y&(2m2)+ y3(2m&))

X&(yi'+y2'+ys' —1)d'ygd'y2d'ya. (VI.3)

(b) A cut from E= 8;, to +—~ for each bound state
of the pair (i,j) with binding energy 8;,. The discon-
tinuity across this cut is given by

mQ+ m2+ mg—2mz d'q 8 q' —8"—E
2m'(m;+m;)

X(kr', k2', kq'
( T&;,&'

~ q& (q ( T&;;&
~
kq, k2, k&), (VI 4)

where T(;;) and T(;;~' are the T matrices for the transi-
tions 1+2+3~ (i,j)+(k) and (i,j)+(k) ~ 1+2+3,
respectively. The vector q is the momentum of particle
(k) in the intermediate state.

(ii) Anomalogs cuts The asso.ciated discontinuities
are not related to physical amplitudes via unitarity
relations. However, as we have seen, they can still be
expressed in terms of energy-shell amplitudes evaluated
at unphysical values of their energy and momentum
transfer variables. We have investigated explicitly the
equal-mass case, but the extension to the general-mass
case is straightforward by the same methods. We have
distinguished three kinds of anomalous singularities.

(a) Type E. They arise essentially from singularities
in momentum transfer variables and are related to the
possibility of successive binary rescatterings of the three
particles. The cuts run from E=—~ to 0 and are
present only for values of the y variables within a proper
subdomain of their physical domain of variation. Only
those terms of the Faddeev iteration expansion (V.3)
of order n&n0= (number of kinematically possible suc-
cessive binary collisions) contribute to the discontinuity
across this cut. In the equal-mass case n0=3 and the
discontinuity is symbolically given by

(~; (&Go)&,~+&;,(&G,)t, (AG,))t;,+i;,]),(i,j,k distinct)

(VI.S)

where AG0 is a delta function times 2m which has
replaced a free Green's function according to a Cutkosky
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prescription (see Sec. III). Analogous formulas (with
no 1—terms) hold for no) 3

(b) Type B.To each bound state of the pair (i,j ) with
binding energy 8;; there correspond two anomalous
branch points at E= —2,, and E=—.4,,'' )see Eq.
(V.34) for the equal-mass case]. They emerge at certain
values of the y's and the y"s, respectively, into the physi-
cal sheet through the normal threshold at E= —8,, and
and move to the left. The associated cuts lie along the
intervals (—3;,, —B,,) and (—3;,'', B;,) an—d the dis-
continuities are symbolically"

(4+i; )(~G )(&4)G.(f. +f ), (VI.6)

(f; '+f '')Go(&4)(&Go)(t,'+&,') (». .~)

The explicit form of ir2(AGO)(hi2q)G, (F2+fra), for
example, is

~2~1 1~2—(2n-i) ' d'q
5$1+5$2

mz 1mg+m3 mz
X tzg E— k3' q+

2m'(mg+m2) mg+m2

q' (q+ka') ka'
x~»'~» + +

2mz 2m2 2m3

r mg+m2+mg
X &I E+B»- q' (q ~

T(&3)
~
kg, kp, ka),

2m'(mg+mg)
(VI.8)

where R» is the residue of the bound-state pole in (23.
In complete analogy to Eq. (III.21) a prescription for
evaluating expression (VI.8) is the following: (1) use
spherical coordinates

~ q ~, 0, p where 8 is the angle
between q and kq, (2) perform the

~ q~ integration via
the second delta function, and then (3) perform the
cos8 integration via the first delta function by ignoring
the restriction —1(cos8(1.

(c) Type BE.Associated with two-body bound states,
there is still another kind of anomalous thresholds
arising from two-dimensional dual diagrams like 11(c).
They are confined to the first few terms (2& n& no) of
the Faddeev expansion. In the equal-mass case, which
we have studied in detail, only one such diagram is
possible: the one shown in Fig. 9(c). The branch point,
at E= —A;;", is given by Eqs. (U.37) and (V.38) and
the branch cut, extending over the segment
max(A;, ,A; )] has the discontinuity

(i,„+i,,)(aG,)(ai,,)(aG,)(i, +i, )
(i, j, k distinct) . (VI.9)

Here At;; stands for the "discontinuity" of t;j at its bound-
state pole, i.e., Vsj Pij) (f&j Vzj times the delta function Q;j is the
bound-state wave function . The amplitudes f;j and f;,' represent
the sum of terms in which V;j acts last and fIrst, respectively.
Note that (fsj j Vsj 60(folic+ fjk) is just T(;,) .

and

(mz+ m2 1m3

-,+-,
(mZ+ W2+ 8$3

1—y~'~

~,+m;

(VI.11)

where i, j, k are distinct. These poles are simply due to
the existence of the corresponding bound-state poles in
the initial and final two-body t matrices in every term
of the Faddeev expansion. Their residues are propor-
tional to T~;; )

' and T(;,), respectively.
These analyticity properties of the amplitude can

now be combined with the extended unitarity relations
for the purpose of dynamical calculations by the sV/D
method. The basis for such a calculation is the knowledge
of the total discontinuity across the negative real axis
which we denote by

2i(y'
I ~(E)

I y& (VI.12)

Let us assume that there are no two-body bound
states. Then n(E) is the sum of (i) the rescattering dis-
continuity which is known in terms of the two-body
amplitudes, (ii) the kinematical discontinuity of the
disconnected parts, and (iii) the discontinuity across the
"potential" cut which, as in the two-body case, repre-
sents the "forces" and is assumed given. In practice, it
will be approximated by the discontinuity of only the

(iii) Eoteetial cuts. They lie along the negative real
axis. In the equal-mass case, for example, they lie to the
left of E= —2p'/3. In the language of perturbation
theory, we can say that the corresponding branch points
arise from "pinches" involving a number of potential
denominators. In the two-body problem, the analogous
left-hand cuts play the role of "forces" in dynamical
calculations based on dispersion relations. In the three-
body case, although we have not give the positions of
these branch points in detail, they can be found by a
straightforward application of the Landau-B jorken
method. In this connection it is important that the dual
diagrams can be constructed in a real three-dimensional
Euclidean space, as discussed in Sec. V.

(iv) Kinematical cuts These. are simply due to a
"kinematical" factor of E 'f in the "disconnected"
parts of the amplitude [first-order terms in (V.3)].
For example,

t12 $12(E)5 (kR k3)
= (2m~E) "'tr2(E)~'(y&' —ya) . (VI.10)

We take the cut of E 3f' to run from —~ to 0. The
associated discontinuity of t» is simply equal to
2s(—2m3E) '~'team.

Finally, aside from branch points, the three-particle
amplitude has poles on the negative real E axis corre-
sponding, first of all, to three-particle bound states. In
addition, for each bound state of the pair (i,j) with
binding energy 8;; there are two poles at
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In this formalism T, X, and D appear as E-dependent
integral operators on functions of the y's. The measure
of integration [&fy] is as specified by (VI.3).

Putting the unitarity cut in D and the cut across the
negative real E axis, in E we have the following coupled
equations for Ã and D:

0

b'IA'(E) IX)=- ,
E' &X'I (~D)(E') Ir&dE'—,(VI.14)

„&X'IA'(E')
I y)

&y'ID(E)
I y&=&y'Iy&+ dE'E", (VI 15)

0
E'—E

The factor E'/E on the right-+nd side of Eq. (VI.24)
was introduced to ensure conv'ergence of the integral
because o, E-'~' for E—+ 0. We have assumed that E
and D vanish sufBciently rapidly as E~~, so that no
subtractions are required. It should be emphasized that
if subtractions were necessary, the subtraction "con-
stants" would in principle be arbitrary functions of
the y's.

From Eqs. (VI.14) and (VL25) we obtain the follow-
ing integral equation for 1V(E):

L(E')—L(E)
E(E)=L(E)+ dE' E" 1V(E'), (VI.16)

E/

where
E' a(E')dE'—
E E'—E

(VI.27)

Equation (VI.16) is still a singular equation because
u(E) and therefore L(E) contains the delta function
terms corresponding to the disconnected parts. It can,
however, be reduced to a Fredholm equation in a
straightforward way /see Ref. 2j. Having obtained
E(E) we can calculate D(E) from (IV.15). The final
step is to invert D(E), which again amounts to calcu-
lating the resolvent of a kernel acting on a space of
functions of many variables. For instance, even if one is
working with states of definite total angular momentum,
two of the y variables and two of y' variables will be
independent, so one wjtll have to solve a two-dimensional
integral equation in order to invert D. It is perhaps
worth noting that even in the so-called "determinantal
approximation" in which

$(E)—L(E),

6rst few terms of the Faddeev expansion. In a more
ambitious, relativistic framework one would wish to
relate these forces to physical amplitudes for "crossed"
reactions.

We now write our amplitude as

&x'I &«) la& f=&x I«"&)lx &L~r'3&)"I))"«)'Ix)

(VI.13)

E/2

D(E)=I+ dE' — L(E'),
E

one will have to face the problem of inverting D.
If there are two-partide bound states, the unitarity

relations will involve the various amplitudes for scatter-
ing of one particle oG a bound state of the other two.
Therefore, if we wish to perform a pure 5-matrix calcu-
lation, we must treat the channels for bound-state scat-
tering, rearrangement, breakup and pickup on an equal
footing with the channel for the scattering of three free
particles. Thus we have to study the analyticity prop-
erties of the corresponding amplitudes in order to be
able to write down multichannel ED ' equations. We
plan to do so at a later time. However, if one is willing
to take the bound-state pickup and breakup amplitudes
as given (in their respective energy planes), then one
can formulate A'D ' equations analogous to Eqs. (VI.14)
and (VI.15) and solve for the three-particle amplitude
in terms of these given amplitudes.

Aside from the possibility of A/D calculations,
another point of physical signidcance is reQected in the
analytic structure of the three-particle amplitude and
specilcally in the existence of the rescattering singu-
larities which are essentially singularities in momentum
transfer variables in the physical region. They will not,
of course, prevent us from projecting states of de6nite
total angular momentum for the study, for example, of
three-particle bound states or resonances. On the other
hand, because of the rescattering singularities, the
partial-wave expansion is not expected to converge
uniformly. It is interesting to realize that in this respect
the case of two-body scattering Lvia short-range forces j
is unique: There the high angular momenta are sup-
pressed because they correspond to large impact param-
eters. In three-particle scattering (and in fact for scat-
tering of any number of particles greater than two) the
rescattering mechanism makes important contributions
to all partial waves even at low energies. If we denote
by Ts the contribution of the rescattering singularities
to the amplitude T, so that T Ta is free of singul—arities
in the physical region, we can expand T—T~ in partial
waves and write

T= Ta+ Q (T—Ta) g.
J'~0

We can then approximate T by truncating the series
for T—T~. This approximation scheme is feasible be-
cause, as we have seen, Tg is given in terms of the
two-body amplitudes.

In conclusion we would like to note that the ele-
mentary methods employed in this paper can be carried
over to the general case of X-particle scattering in a
straightforward way. However, the challenging question
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is whether similar ideas would still be fruitful in an

investigation of fully relativistic amplitudes fulfilling

the requirements of Lorentz invariance and crossing

symmetry.
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The proton must be heavier than the neutron according to any correct calculation treating them as pion-
nucleon bound states whose masses are shifted because of one-photon-exchange corrections to the binding
forces, and which takes into account no particles other than pions and nucleons. The reason is simply that
only the neutron can contain two charged constituents, p and ~, and that both the electric and the mag-
netic forces between these are attractive, thus binding the neutron more tightly. Dashen's previous cal-
culation of this effect was based on an unreliable variant of the Dashen-Frautschi method for eliminating
infrared divergences; the sources of the mistakes in that calculation are pointed out. On the basis of the
pion-nucleon bound-state picture, we give a simple and physically well-based estimate of the Coulomb con-
tribution to the mass splitting in terms of the pion and nucleon form factors; as compared with experiment
it has the right order of magnitude but necessarily the wrong sign. The magnetic energy is more di6icult
to estimate, apart from its sign; but it is probably much smaller. Ne conclude that a consistent calculation,
if it is to be successful, must include other baryons and mesons. As a by-product we obtain a simple dynamical
interpretation of the fact that the neutron's charge form factor is very small.

1. INTRODUCTION
' 'N a remarkable paper, Dashen and Frautschi' (DF
~ ~ in the following) have applied the Ã/D method to
calculate bound-state energy shifts due to small
changes in the binding forces. They consider the problem
of long-range perturbations, and in particular those due
to photon exchange; the latter are important because
it is universally presumed that in one form or another
they dominate deviations from charge independence.
The basic problem is that in an approximate calculation
of the energy shift there appear infrared-divergent con-
tributions which are known to be absent from the exact
answer. Such contributions will be called IR parts in
the following. DF develop several ways to eliminate
this difficulty, claiming that they are all at least
roughly equivalent to each other. In a second paper,
Dashen uses one of these methods (in fust approxima-
tion) to calculate the proton-neutron mass difference.
In the spirit of the X/D method he assumes that the
nucleon is a bound state of the pion-nucleon system,
i.e., a pole, due to a zero of the D function, of the I= 2,
P1]2 partial wave.

Schematically, the I3=&-,' states can be written as

I+/~)= —(~~) I Iplr )+(s~) I2IÃs+}y

I
—2&= —(-')'"I p &+(')'"I&~') (1.1}

'R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, 81190
(1964).

'R. F. Dashen, Phys. Rev. 135, B1196 (1964).

The proton (neutron) are poles in the
I
a-,'& scattering

amplitudes, respectively; they would be degenerate in
the absence of electromagnetic sects. Basically,
Dashen uses as his dominant perturbation the forces
due to photon exchange. For the purpose in hand the
anomalous Pauli moments of the nucleons can be
ignored' ~; then a photon can be exchanged only between
the particles in the

I
ps. ) component of the

I

—2) state,
so that only the neutron mass is shifted. The mass
splittings of the particles on the right of (1.1) must also
be taken into account; being an isotensor, the x+—m'

mass difference has no effect on the isovector quantity

(1.2)

but the neutron-proton mass difference itself evidently
provides a "damping term, "in the sense that by taking
it into account on the right of (1.1) we decrease by a
factor ~3 the result that would be obtained otherwise.
For simplicity we shall ignore the damping term to begin
with, though we shall allow for it in our 6nal estimate
in Sec. 4. Dashen's theoretical result for bM has the
experimentally correct magnitude and negative sign.

In the present paper we argue that his answer is a
mistake resulting from a method for eliminating IR
parts that may be plausible at Grst sight but is in-
adequate in these circumstances. If his basic assump-
tions and input, as outlined above, are handled cor-

'Only the isoscalar magnetic moments contribute to bM, and
the anomalous isoscalar moment is negligibly small.


