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We investigate how the finite range of strong interactions can be stated in terms of an experiment. It is
found that it is equivalent to the fact that the probability of any process generated by strong interactions
should decrease exponentially as a function of the impact parameter e. This impact parameter is defined

by a translation of the initial wave packet in a direction normal to its mean velocity in the center-of-mass
system. Because of the spreading of wave packets with time, it is necessary to consider wave-packets
whose width in configuration space increases like ga. It is then shown that this property is equivalent to
the analyticity of all absorptive parts due to different channels as functions of the momentum transfer inside
an ellipse. Such analyticity properties are also valid for the amplitude of a two-body channel. The ellipse does
not shrink to the physical region when the energy tends to infinity.

1. INTRODUCTION

HIS paper is part of a series in which we try to
investigate what properties of the S matrix can

be stated from considerations of measurement theory.
In a preceding paper, we have shown that the S matrix
exists, at least below the threshold for three-particle
production. ' In the present paper we want to concen-
trate upon a most fundamental property of strong inter-
actions, namely, their 6nite-range character.

As long as one considers the Born approximation for
the scattering of a particle by a potential of 6nite range,
there is a very simple way of stating this property of
finite range as the result of a measurement. Let us
consider a wave packet which decreases more rapidly
than any exponential in configuration space at time 0
(for instance a Gaussian wave packet), and let us
translate it by a distance a (the impact parameter) in a
direction normal to its mean velocity. The Born approxi-
rnation to the probability of scattering decreases ex-
ponentially with u, more precisely like e '& if p, is the
range of the potential. It could then be suggested that
it is equivalent in nonrelativistic theory to assume a
potential of finite range or to assume that the proba-
bility of scattering decreases like an exponential with
the impact parameter.

Unfortunately, this proposition is not tenable. In
Sec. 2, we show that the spreading of wave packets is
such that as long as one considers a wave packet of fixed
size, the probability cannot decrease exponentially. The
situation in this respect is essentially the same for a
relativistic or a nonrelativistic wave packet. However,
the analysis of the spreading suggests that, by taking a
wave packet the width of which in configuration space
increases like Qa, the probability decreases exponen-
tially. Furthermore, this is the only possible form of a
wavepacket which can allow such a strong decrease.

In Sec. 3, we transform the suggestion into a theorem
for the nonrelativistic Schrodinger equation. In other
words, we show that there is a statement of rneasure-
ment theory, which we call property P, which is equiva-

let to the finiteness of the potential range. This property
is that the probability of any reaction decreases expo-
nentially with the impact parameter u defined by a
translation of the wave packet normally to its mean
velocity, if the width of the packet in configuration
space increases like ga. This statement corresponds to
a gedanken experiment (or, if necessary, an actual
experiment) where one shoots bunches of particles with
an energy of increasing precision farther and farther
from the target.

It is then natural to take property P as a starting
hypothesis in the relativistic case. This we do in Sec. 4
where we recall also some refinements in the notion of
the position of a particle which are needed in the rela-
tivistic problem.

A few sections are then devoted to a very straight-
forward proof of the fact that property P is strictly
equivalent to the analyticity of the absorptive parts as
a function of momentum transfer inside an ellipse. This
ellipse does not shrink when the energy tends to infinity.

In the last section, a comparison is made of this
result with a recent paper by Martin where the same
conclusions are obtained from quantum 6eld theory.
This leads to interesting consequences concerning the
respective roles of spectral conditions and causality in
the analyticity properties of the scattering amplitude.
It is also pointed out that, as a result of Martin's work
and the present one, property P is satis6ed by axiomatic
quantum 6eld theory. In this framework, it appears as
a very strong property of the cluster type.

2. FINITE RANGE AND THE SPREADING
OF VIVE PACKETS

A nonrelativistic Gaussian wave packet is given by

1 x—x(&(t)- '
q(x, t)= exp (2.1)

L(v' )&(t)j"' — 2b'(t)—
where xo(t), the center of the wave packet, is related to
its position a at time zero and to the mean momentum
kby

' R. Omnes, Phys. Rev. 140, 81474 (1965).
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(m being the reduced mass). The spreading of the wave
packet with time is given by

3. FAST DECREASE OF THE PROBABILITY
FOR A FINITE-RANGE POTENTIAL

b'(t) =b'+t2/m2b2. (2 3) Ke shall now prove that if a potential is everywhere
6nite and decreases exponentially, with the distance, i.e.,

In nonrelativistic physics, an interaction is said to be
of a finite range when the potential vanishes at least
exponentially with the distance. The overlapping of the
potential and the wave packet (2.1),

V(x) q (x,t) d'x, (2.4)

decreases exponentially with the impact parameter a,
which is chosen normal to k, at any 6nite time t. How-
ever, when t tends to infinity, the value of 22(x, t) at the
origin of space is given by

I
V(r)le~"(C, (3.1)

where C is a constant, then the probability for scattering
decreases exponentially with the impact parameter.
This result will be obtained by using a Gaussian wave
packet, the width of which increases with the impact
parameter like ga. Our method will be a slight adap-
tation of a method 6rst given by Brenig and Haag for
the case of a square-well potential. '

Denoting the scattering matrix by T, as usual, we
shall start from an inequality given by Brenig and Haag:

lim Lb(t) j2"p(0, t) =expL —(b'k'/2) j,
t ~on

(2.5) llv2 (t)II « (3.2)

(2.6)

the overlapping integral (2.4) will decrease exponentially
with a uniformly for any value of t. Note that b' has
to be linear in a, otherwise there would not be an expo-
nential decrease of (2.4), either at finite or infinite time.

It is therefore suggested that the 6nite-range character
of the interaction can be exhibited by using wave
packets the sizes of which increase with the impact
parameter as in Eq. (2.6). The criterion for finite range
would be that the probability decreases exponentially
with the impact parameter. That this suggestion is
correct will be proved in the next section.

The essential properties of the wave packets remain
true for relativistic particles. A Gaussian wave packet
will then behave like

&(~ t3 — ~
—

&y—&)'&'/&~sp (*—a)&—s~t d3~) (2.7)

and therefore the 6niteness of the range will not result
in any simple behavior of the scattering probability as a
function of the impact parameter, due to the spreading
of wave packets.

Let us now consider a wave packet which is farther
and farther from the origin, i.e., let a increase. Further-
more, let the width b vary with a. According to Eq.
(2.5), if we let b' increase linearly with a,

In order to 6nd a bound for the right-hand side of this
inequality, we shall split the potential into two parts
which are essentially a square-well potential of radius p
smaller than a and the tail of an exponential potential:

V(r) = Vi(r)+ V2(r),

Vi(r) =0 for r(p,
V2(r) =0 for r) p,

I
v, (r)l &U„

lv2(r)l«ie "",

(3 3)

(3.4)

(3 5)

(3.6)

where Uo and Ui are constants.
The contribution of V2 to the integral in Eq. (3.2)

is easily majorized to give

II V22 (t)ll «(const»t e-». (3.7)

On the other hand, according to Brenig and Haag, the
contribution of V& is majorized by

—3/2p
If vi~(t) II & Uo

-b(t)-

)(exp — a~+ —p . 3.8
2b'(t) m'i

(3.9)
2 7.2+P2

lim t2~2p(0, t) =expL —(k'b /2) j)&constant, (2.8)
t ~ec where

In order to majorize the integral of II Vip(t) II upon t, we
introduce the functionwhere a&2= p2+m2. A straightforward computation of

the asymptotic behavior shows that, when t tends to 1 -t' k't' 't2 -' k'b2(r —p)2
in6nity f(t)=, I

o'+
2b'(t) k m'

just as in the nonrelativistic case. It shows that, when
k is large, the effect of the spreading of wave packets is
small and P can be taken small.

r2= u2yk2t2/m (3.10)

P2 —b2 g2/k2b2 (3.11)
' W. Brenig and R. Haag, Fortschr. Physik 17, 183 (1959).
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One haS f(0) = (a p—)2/27/ and f( ai)) =k 2b /2 SO that,
once more, we shall find an exponential bound only if
b' is of the order of u, i.e.,

We shall work with Gaussian wave packets

d'p
C(p) I p), (4.4)

or
b'= Au, (3.12)

P2= a(X—1/Xk2) . (3.13)

According to Eq. (3.13) two cases have to be
distinguished:

(1) k9.2)1. In this case P2 is positive and f(t) in-
creases from /=0 to t= ~, so that f(0) is a lower
bound of f(t).

(2) k9,2& 1. In this case P2 is negative and f(r) has
a minimum at r = —P2/p. This minimum will be outside
the range of variation of r if

—P2/p&a, i.e., p) (1—k9')/k9, (3.14)

and, once again, f(0) will be a lower bound of f(t).
Finally, for p satisfying (3.14) we have obtained a

bound
(a /)'-

Ilppll(C exp( — +C, e*pL—jap)). (&.)5)
2Xg

The best bound will be obtained when both exponentials
have the same argument, i.e., we shall have

II T4pll &c3 exp( —/4p), (3.16)
with

(a—p) 2 = 2X/4 pa. (3.17)

It is clear that for A p small, p will diGer very little from
a so that we shall have

(3.18)
with e small.

4. THE BASIC HYPOTHESIS

We want to investigate the conditions under which
the following property holds:

Property P. When the impact parameter a tends to
infinity together with the width of the wave packet in
x space:

b2= Xu, (4.1)

then the probability of any physical process generated
by strong interactions decreases exponentially with the
impact parameter.

We shall consider this property as a precise formula-
tion of the finite-range character of strong interactions.

A few comments about definitions and notations are
in order.

In relativistic physics, the states of a free particle lie
within a Hilbert space. We shall, for simplicity, consider
the particles to be spinless. Then we can introduce
eigenstates of the momentum together with their scalar
products:

P.
I
p)= p. l p& (4.2)

&p I
p'&= p'~(p —p') p'=(~'+p')"'.

=L(/2r)A 'j "'expL —(A'x'/2)]e'k'* (4.6)

if we define the operator x by

&xlp&=e"*p'(2 ) "' (4.7)

In fact, such an operator has no simple meaning. On
the other hand, the Newton-Wigner position operator
$ defined by'

&(lp&=e*"po"'(2~) "' (4.g)

characterizes the position of the particle at time zero.
The relation of the wave packets in x space and in g space
is given quite generally by

233 y
"4

B(x)= d'&A($)I
I

H3/4("(i2/2lx —(I). (4.9)
Klx —all

Let us now consider a collision experiment between
two particles which we shall take to be of the same mass
for simplicity. We shall call p&, p2, P, and p, respectively,
the momenta of the two particles, the total momentum,
and the relative momentum

P=pi+p2, p=-,'(pi —p2). (4.10)

A translation of space by a vector a acts upon a state as

es~ a (4.11)

Therefore a state of two particles with mean relative
momentum k, translated relatively by a vector a normal
to k will be given by

p(p. p) e—P /2A e
—(p k)232/2sip a(+2b —2)—3/2 (4 12)

This last expression gives a precise meaning to the
width b' and the impact parameter a mentioned in
property E. In practice, we shall let 3 be very large so
that the expression (4.12) is in fact a delta function of
the total momentum P.

Let us now make a few remarks:

(1) Our de6nition of the impact parameter coincides
with the usual meaning of that term only for large
values. This cannot lead to any ambiguity since we are
precisely interested only in large values of this parameter.

(2) We shall make property P more precise by assum-
ing that the total probability for two particles giving

' R. Newton and E. P. signer, Rev. Mod. Phys. 21, 400 (1949).

C(p) =L(v'~)~'j '" exp{—I:(p—k)'/2~ j) (4 3)

Such a wave packet corresponds to a Gaussian wave
packet in configuration space

d3p
Il(x) = G(p) &xl p&
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p&m, (4.14)

if we specify position by means of the Newton-signer
operator.

5. PROBABILITY AND ABSORPTIVE PART

In this section, we shall express the probability P (a)
as an integral upon the contribution of a given channel o.

to the absorptive part of the scattering amplitude. For
a two-body collision we shall use the conventional
notation s, 7, zc for the invariants.

Let us consider a reaction initiated by two particles:

ai+a2 ~ ai'+a2'+. +a.', (5.1)

where the set of final particles is in a channel n. The
collision matrix element T; (p~,p2, p~', ,p„') relates
the initial wave packet )p, (ps, p2) and the final wave
packet in the channel a, )P (Pr', . ,P ') by

rise to a channel 0, behaves for large values of u like

P (a)(constantXe '+". (4.13)

(3) Generally p could depend upon l), k, and n. We
shall assume that it does not depend upon k because in
fact all values of the relative momentum y are always
present in Eq. (4.12), whatever the value of k be.
Furthermore, we shall assume that there exists an
absolute lower bound p independent of the channel o..

(4) Property P can be expressed as a statement about
measurements: If we compare the results of experiments
made by accelerators which are increasingly far from a
target and increasingly precise in energy as in Eq. (4.18),
then the probability of any process induced by strong
interactions vanishes exponentially.

(5) According to Eq. (4.9) and the fact that
Hf)4&"(imx) decreases like e "*, the preceding inter-
pretation as a gedanken experiment will only be mean-
ingful if

by

P = A (s,P P')dQdQ')P, *(s,P))P;(s,P') dW , (5.5)8"
where we have used the Jacobian

d'psd'p2= d4PWpdQ, (5.6)

calling W=gs and dQ a solid-angle element in the
center-of-mass system. The integration upon P has been
made by assuming that the wave packet depended upon
P as in Eq. (4.12). In practice, we shall take for the
initial wave packet the Gaussian form

)p (s p) e
—(p k)~/A—

&
i p a— (5.7)

Ke are now going to choose a more convenient vari-
able for the angular integrations in Eq. (5.5). To that
end we de6ne two-coordinate systems (Zo) and (Z). The
system (Zo) has its zo axis along the direction of the
mean momentum h. Ke take the impact parameter a
to be along its xo axis. The system (Z) is linked to the
vectors y and p', the s axis being normal to the plane
which contains y and p', the x and y axes being directed
along the bisecting lines of the angle defined by p and
y'. We shall call (n,P,y) and 8 the Euler angles of the
rotation which brings (Zo) upon (Z) and the scattering
angle between p and p'.

By straightforward calculations, one gets

(y+y') k = —2 sin)8 cosy cos(8/2) pk
= 2(e e.,)pk cos(8/2),

(y—y') a= —2pa(cosa cosp sing+sinn cosy) sin(8/2)
= 2(e„.e„)pa sin(8/2), (5.8)

dQdQ'= sinP sin8dnd)8dyd8.

In Eqs. (S.S) we have called, for instance, e, the unit
vector along the s axis.

The expression (5.5) for the probability becomes
finally

pdd'sp 2

X&"'(ps+p2 —ps' —p.'))k;(yi, y2) . (5.2)
Pl P2

We can compute the norm of )p, i.e., the total proba-
bility for reaction (5.8) as

(5.3)

P depends only upon the absorptive part A (s,t)

A (s,t)= T, (pg, p2, ps', ,p ')

X+fu*( pe, p4j p& ~' ' ~pa )

P (a)= A (s, cos8)e '"+~""

XexpL —2(e e„)I)'pk cos(8/2) j
XexpL2ipa sin(8/2)(e„e„) j

X(P'/W')dWdnd cosPdyd cos8. (5.10)

6. LAPLACE TRANSFORM OF THE
PROBABILITY

In this section, we shall replace property P by analytic
properties of the Laplace transform of the probability
P.(a).

If we introduce the Laplace transform of P (a)

~Pl ~Pm
X&'"(ps'+ p2'+ +p-' pi p2), , (5 4)— —

p" p" e—"P (a)da,
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property P is equivalent to the statement that I. (v) to get
is an analytic function of v inside the domain de6ned
by I. (v)= I (vp')p'W 'dW, (6.3)

—2@&Rev. (6 2) where

When Re) 0, we can replace P (a) in Eq. (6.1) by its
I (v,p')=

expression (5.10) and invert the order of the integrations and

d cos8 A (s, cos8)F(v, p, X,8), (6.4)

dad cosPdy
F(v,p, X,8) =

v+(p'+k')X+2(e e.,)Xpk cos(8/2) 2i—p(ev e.,) sin(8/2)
(6.5)

t9F—(v,p, k, 8) = (v+(p'+k')X+2t pkX cos(8/2) BI (v,p') 1 +'

aV Plt2
a~+l, e'~+1 (7.1)A (s,x)

+2ic'P sin(8/2) j '~s, (6.6)

Although F by itself is rather intractable, it needs geometric discussion of the strip 6, and its image under
only a little algebra to compute BF/Bv which, for our some changes of variables.
purposes, will be just as good. One has Under the conditions where Eq. (6.9) holds, the

integral (6.4) for I (v,p') reads

or
8F The singularity y of the square root is related to v more

(v,p, X,8) = (A cos'8 —28 cos8+C) '", (6.7) easily through the expressions
BV

where

ap
( , vs, )8=P 't'(y cos8)—

BV
(6.9)

p= 16p4+ Lv+(p'+k')/k]4 (6.10)

yp =8p'Lv+ (p'+ k')/k j'. (6.11)

In the present paper, we shall restrict our attention to
this special case. It will make our considerations much
simpler. On the other hand, if k is too small, the restric-
tion to kA. = 1 will give too large values of X. Accordingly,
we shall also restrict our considerations to the case
where p and k are restricted by

P&p) k)p.

V. GEOMETMC CON'SIDERATIONS

(6.12)

Before entering into the discussion of the relation
between the analyticity properties of I (v) and of
A (s,x) as a function of x= cos8, we need to make some

where

A =4p'(k'0 —1)',
8=4ps(v+(ps+ks)Xjs(k9s+1) —8p4(k4X4 —1) (6.8)

Q —Lv+ (p2+k2)) ]4 4psfv+ (ps+k2)) j2(k2) 2 1)
+4p'(k9. '+1)'.

It is clear from Eq. (6.1) that I. (v) is well-defined
and analytic for Rev&0. In order to extend v into the
strip —2p&Rev&0, we shall need to consider the
possible singularities of the integral in Eq. (6.3).

The case where H, = 1 is particularly simple and gives

y =5(k+ P')
h= (v/2p+s )'
p= (p'+k')/2pk.

(7.2)

(7.3)

(7.4)

V= Vo+Zg ) (7.5)

where vo is axed and g varies from —~ to +~, there
corresponds in the ( plane a parabola 7r(vo):

ps= Re)(vo/2p+p)' —g',

b Imp= 2——(vo/2p+p)g.
(7.6)

This parabola goes to infinity in the negative
direction. Its axis is along the real axis and its apex at
g~ ——L(v,/2p)+p)'. All the parabolas corresponding to
different values of vo are equal and translate.

When v varies inside 6„, $ varies inside h~ which is
bounded by two equal parabolas x& and x2 with their
apexes respectively at )=p' and $=(p —p/p)'. Let us
note that, since the correspondance between $ and v is
not one-to-one, m.l and m.2 would be in two diferent
Riemann sheets if p —p/p were negative. However, since
p is larger than 1 and p restricted by (6.12), this possi-
bility will not arise.

The correspondence (7.2) between i' and y applies a
circle

~ $ ~

= r onto an ellipse with its foci at y= &1 and
semi-axes —,'(r+r '), —,'(r —r '), if r) 1. To a given value
of y correspond two values of $ which are the inverse

When v varies inside the strip 5„, $ varies inside a
domain d~ and y inside a domain 6„.These domains
depend upon p and p and we are now going to discuss
them.

To a line parallel to the imaginary axis
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FIG. 1. The do-
main 6 image of
the strip d ~. (a)
Case (i), p —p/p&1.
(b) Case (ii),
u —I/p &1

= Ray

(b)

of each other. The unit circle in the $ plane which
separates these two values of $ is applied upon the
segment y=i to +1 and the y Riemann surface is
two-sheeted.

The topological structure of h„can be diferent if m~

and x2 cross or do not cross the unit circle. It is easily
checked that the parabola s(vo) crosses the unit circle
if and only if (p+vo/2p)' is smaller than 1. Accordingly
mI never crosses the unit circle and only two cases have
to be distinguished

Case (i): p —p/p& 1, (7 7)

Case (ii): p —p/p(1. (7.8)

Let us call Ci and Cm the images of s.i and ir2. In case (i)
C~ and C2 are in the same Riemann sheet and C2 encloses
the segment y= —1 to +1. In case (ii), Cm crosses the
segment y= —1 to +1 and it consists of two parts
C2"' and C2~'i (see Fig. 1), where C2~'i is in the same
Riemann sheet as C~ whereas C~&'& is in another sheet.
b,„consists then of two parts: 6„& ~ bounded by C& and
C2&" and d„~'& bounded by C2&'& in another sheet.

Let us note that vr2 does not cross the circle, with its
center at the origin, which touches ~2 at its apex. Accord-
ingly, d„&'& is completely contained inside an ellipse,
with its foci at y++1, which is tangent to Cs&" at its
apex on the real axis. This remark will prove to be
important in the future.

f(y)= A(x)(y —x)
—'"dx. (8.1)

The determination of the square root is 6xed from values
of v with Rev&0, i.e., from the right of C~ where it is
taken to be positive-de6nite.

The difference 2F(y) between the two determinations
of f(y) in the two Riemann sheets is given by

' A(x) dx
(8 2)

which shows immediately that, if A(x) is analytic in

Z„F(y) is analytic in 6v&'&.

To prove the necessity part of the theorem, we solve
Eq. (8.2) which is an Abel equation:

In fact it will be shown below that the integration over

p in the expression of I (v) can be restricted to a finite

range of values of p around k.
We shall call Zv(p, k) the domain 5v &" without the cut

along the real axis. Ke have indicated explicitely its
dependence upon p for a given value of k. For the values
of p which satisfy Eq. (7.7), the domain is empty. We
shall also call it Z, (p) when the notation x replaces the
notation y. Ke are now ready to prove the following
theorem:

Theorem&: A necessary and sufhcient condition for
I.(v,p, k) to be analytic inside the strip 6„ is that the
absorptive part A (s,x) be an analytic function of x
inside the domain Zv(p, k).

When one continues the expression (7.1) for I (v, p')
along a path F which starts from a point with Rev=0
inside the strip 6„, the singularity at x=y of F(v,p', x)
will vary along a path y inside A„which starts from a
point of C~. As long as y does not cross the integration
segment from x= —1 to +1, the integral (7.1) will

remain an analytic function of v. This is always so when
condition (7.7) is satis6ed, i.e., when the domain

Zv(p, k) is empty.
Under the conditions (7.8) and (6.12) we shall 6rst

note that g is an analytic function of v inside h„so that
it is equivalent to discuss the analyticity properties of
I (v, p') as a function of v inside 6, or as a function of

p 1nslde Ap.
Dropping all unnecessary parameters and calling f(y)

the function (BI (v, p')/Bv)p'~', Eq. (7.1) takes the form

S. ANALYTIC PROPERTIES OF THE
ABSORPTIVE PART

' F'(y) 6
A(x) =-

x „(x—y)'~'
(8.3)

Since the absorptive part A (s, cosa) is not an
analytic function of s, the analyticity domain of I. (v)
is the intersection of the analyticity domains of I (v,p )
as a function of v. Therefore I (v,p') must be analytic
inside the strip d„de6ned by

—2p, &Rev&0.

If F(y) is analytic, F'(y) exists and the integral is well
de6ned. It shows that A(x) is an analytic function of
x in 6 &'). In order to show that it is analytic in 6„
i.e., that it has no singularity at x= 1, we note that f(y)
is an analytic function of $. It can therefore be written
as a uniformly converging series in a neighborhood of
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y=j. as

f(y)= Z &-(y—1)"+Z a-(y —1)"" (84)
n 0 n 0

from which

F(y) = Q a.(y—1)"+&.
n~P

(8.5)

From Eq. (8.3) we then get

r(~+-;)
A(x)= g a„y"," ' I'(n+1)

(8 6)

(p —k)'(2pk .

9. CONCLUSIONS

(8.10)

We have obtained that the contribution of any
channel a to the absorptive part A (s,t) is an analytic
function of t inside an ellipse. This ellipse contains
positive values of t up to t=4p' when the energy tends
to in6nity. Since the total absorptive part A(s, t) is a
sum of A (s,l) over the 6nite number of channels open
at energy s, it is also analytic in the same region.

which has the same circle convergence as the series (8.5).
This then proves the theorem.

VVe can increase the analyticity domain by noticing
that in the Legendre expansion (8.3) of A (s,x), all the
coeKcients a (s) are positive. Accordingly, if A (s,x) is
analytic for x real between j. and x~& I, it has to be
analytic inside the ellipse with its foci at x= ~1 and
semi-axis x~. Taking into account the remark at the
beginning of Sec. 8 about the analyticity domains of
I (v, p') and l. (v). we get the following new theorem:

Theorem&'. A necessary and sufhcient condition for
property P to be satisfied is that A (s,x) be an analytic
function of x inside the smallest ellipse with its foci at
x= +1 which contains 6,&'~.

This smallest ellipse has for major semi-axis

a=o(h+ko '),
Po+ko p o (8.7)

ho= )o(1.
2pk p

For a given value of p, the largest value of a will be
obtained for the smallest value of $o, i.e., for k= p, or

a- = oL(1—p/p)'+(1 —p/p) 'j. (8 8)

The corresponding value of the momentum transfer is

fo ——2P'(a. —1)=p'(2P —p)'/(P —p)' (8.9)

it is a decreasing function of p and tends to 4p' when

p tends to in6nity.
As a final remark, let us note that the case (i) where

p —p/p is larger than 1 does not lead to any condition
on the absorptive part so that the discussion is not
modi6ed if we cut o6 the wave packet to values of p
which satisfy

When o. is a two-particle channel, unitarity tells us
that the amplitude for the two initial particles going
to channel n is also an analytic function of t.

It has to be emphasized that these results depend
only upon the Gnite-range hypothesis as expressed in
an experimental way by property P. They do not
involve any reference to quantum field theory.

The same results have been obtained in a recent work
by Martin as a consequence of quantum Geld theory. 4

This is a beautiful achievement; however, we feel that
it involves going a very long way from the axioms of
field theory as compared to the very simple arguments
given here. Since our results are in the form of a neces-
sary and sufBcient condition, the result of Martin
together with ours gives a proof that property P is
satisfied in quantum Geld theory. This is marked progress
with respect to the cluster properties of this type which
have been obtained up to now. ') It also shows that
Martin's result in fact does not depend upon causality
but only upon the spectral properties.

Not all the consequences of our technique have been
drawn. In particular, we shall have to examine the
analytic properties of A (s,t) in the low-energy region.

In our considerations, the mass y appears as a param-
eter. In the case of pion-pion scattering, using a dis-
persion relation in s and crossing, it is easy to show
that p, =m.

It is of foremost importance to investigate the deriva-
tion of dispersion relations along the same lines of
measurement theory as we have done here. It is well
known that it has been impossible up to now to derive
analyticity properties in s directly from causality (i.e.,
the observed signal does not precede the initial signal
in time) because the spectrum of energy has a gap for
systems of particles with a Gnite mass. It is our opinion
that this difBculty is spurious. Indeed, in order to
produce a signal which is zero for negative times, one
must take into account explicitly the generation of
particles, i.e., for instance the accelerator. This breaks
up the invariance of the subsystem made up by the
particles with respect to translation of time and there-
fore suppresses the gap in energy. We intend to investi-
gate whether a careful analysis of the production of
particles, together with the down-to-earth notion of
causality, does not in fact imply dispersion relations. A
preliminary analysis of the Schrodinger equation sup-
ports this view.
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