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In a current&(current theory of weak interactions, the use of a Cabibbo-type current endows parity-
violating nonleptonic decay with certain specific properties. These properties do not include octet dominance,
but they are sufhcient to forbid all K ~ 2m decays in the limit of SU(3)-conserving strong interactions.
%hen electromagnetic corrections are taken into account, the decay modes K1' —+ 7i-+x and K+ —+ x+m are
allowed, but K10 —+ 2H is still forbidden. Consequently the smallness of the rate for K+ —+ m+~ relative to
both modes of E1' decay can be explained only by an appeal to medium-strong, SU(3)-breaking inter-
actions. In the case of nonleptonic hyperon decay, the Cabibbo current)(current interaction predicts two
sum rules for parity-violating amplitudes. The recent results obtained by Sugawara and Suzuki from current
commutation relations can be understood in terms of these sum rules, together with one simple constraint
upon the effective Hamiltonian.

~=(J+J)(+). (2)

Within the framework of SU(3), the hadronic current
is taken to be a charged member of an octet with tensor
properties

1. INTRODUCTION
' ~VER since the discovery of the V—A interaction'

~ for the beta decay of nonstrange particles, it has
been attractive to postulate that all weak interactions
are obtained by the coupling of a charged current with
itself'; to allow for parity nonconservation, the weak
current must contain both vector and axial-vector
parts. The construction of a truly universal theory from
this hypothesis has, until recently, met with several
obstacles. One, the suppression of strangeness-violating
beta decays relative to strangeness-conserving ones, has
been removed by Cabibbo'; and another, the calcula-
tion of the ratio of axial-vector to vector coupling con-
stants, has been successfully completed by Adler and
Keisberger. In view of these achievements, it is
natural to apply the currentXcurrent hypothesis to
nonleptonic decay.

Neglecting a small violation of CP, we consider an
interaction of the form

2o= ((J++L+), (J+L))(, (1)

which generates nonleptonic decay by means of a term

where 8 is the Cabibbo angle. ' This choice of the inter-
action and current endows the strangeness-violating
part of g,

2,„=(sin8 cos8)L(JP J,') ~+&+(J,' JP) &+&] (4)

with the following properties:

(a) 2, is an admixture of the SU(3) representations
(g) and (27)

(b) Z,„has U spin equal to unity,
(c) Z.„ is symmetric under the Weyl reflection that

interchanges the indices 2 and 3.' t T-L(1) invariance. ~]

Although these properties are valid for both the parity-
conserving (pc) and parity-violating (pv) parts of 2,„,
their most interesting consequences apply only to parity-
violating decays.

%hen combined with the additional hypothesis that
Z. transforms like an octet, the current Xcurrent inter-
action forbids all E —+2m decays" and predicts the
Lee-Sugawara triangle'

v3(Z+~ per') —(Alps
—)=2(--~An.—)

for the pv amplitudes of nonleptonic hyperon decay. '
The 6rst result provides an interesting qualitative ex-
planation for the observed rate of E+~ 2m relative to
E10~ 2m, and the second is in very good agreement with

J= (cos8)JP+ (sin8) JP, (3)
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experiment. " However, the assignment of 2, to an
octet also requires the introduction of neutral hadron
currents —a feature for which there is neither experi-
mental evidence nor justi6cation elsewhere. " It is
therefore necessary to determine to what extent the
desirable consequences of the octet hypothesis remain
valid when octet transformation properties are given up.

Here we wish to show that, in the limit of exact
SU(3), the currentXcurrent theory forbids K ~ 2&r

even when the 27-piet part of 2, is retained. This re-
sult enables us to account for the decay E+—+ m++m'
without appealing to electromagnetic interactions. If
we assume that all E~ 2m decays are induced by a
charge-independent strong interaction which breaks
both SU(3) and the 3 ~ 2 symmetry, then the smallness
of the ratio

R&r
——r(K+ —+ s+&r')/I'(K&' ~ &r+&r ) (6)

can be attributed to an initial suppression of the 27-
component of 2, relative to the octet. The actual
magnitude of R& provides a measure of the amount by
which the 27-piet is suppressed and bears no relation
to the electromagnetic interactions.

Ke shall also show that, without the octet hypothesis
for Z,„, the pv amplitudes of nonleptonic hyperon decay
satisfy two sum rules. One of them has already been
derived by Suzuki, " and correlates the hT= ~ ampli-
tudes in and A. decay. The other expresses the devia-
tion from the Lee-Sugawara triangle in terms of the
deviation from hT= 2 in A and Z decay. The results re-
cently obtained by Sugawara" and Suzuki" from
current-commutation relations are special cases of
these two sum rules and can be explained in a very
simple way.

Meson decays are examined in the next section and
hyperon decays in the third. The theory of Sugawara
and Suzuki is analyzed in the fourth section. Through-
out our discussion, we start with the most general
CP-invariant Hamiltonian and introduce the restric-
tions introduced by the currents current hypothesis one
by one.

"N. P. Samios, in Proceedings of the Argonne International
Conference on Weak Interactions, 1965 (to be published).

"W. Willis, in Proceedings of the Argonne International Con-
ference on Weak Interactions, 1965 (to be published).

"M. Suzuki, Phys. Rev. 137, 81602 (1965). See also D. Bailin,
Xuovo Cimento 38, 1342 (1965).

"H. Sugawara, Phys. Rev. Letters 15, 870 (1965); 15, 997 (E)
(1965).

"M. Suzuki, Phys. Rev. Letters 15, 986 (1965).

2. THE K—+ 2m DECAY INTERACTION

Because E and x mesons are members of the same
octet, the effective Hamiltonian for E~ 2~ must be
symmetric under the exchange of any two of the three
octets L, M, and E, which represent the mesons. ' With
nonderivative coupling, the most general form of the

In the context of the currentXcurrent hypothesis and
SU(3) conserving strong interactions, only the octet and
27-piet can appear in (IC ~ 2&r). The other representa-
tions must be regarded as corrections due to the break-
ing of SU(3) by medium-strong and electromagnetic
interactions.

The specM. c forms of Z(8) and Z, (27) are:

2(8&= (5/4)L "(M)V)+(6/5)[(L'D) "+(O'L) ]
+-,'[27]„"L,

(8)
&&»& = (1+p"')(I+p~.)(2[27]» "'L.

+-,'[27]„," L '+(l4/5)L„"D, '—trace terms),

where

(A B)=Ay B s (A B) "=Ay'B» —-'&1 "(A B)s ~

[27]„"L=[27]„p"L.~,

and D and [27] denote symmetric octet and 27-piet
formed from the octets 3f and X.The operators p" & and

p„, permute the indices attached to them. For con-
venience we denote the right-hand sides of Eq. (8) by

eC (8)= Tp j (27) (10)

As pointed out in the introduction, the Cabibbo
current forces Z(K ~ 2&r) to have U spin equal to one,
and to be symmetric under the Acyl reQection 2 ~ 3
[T-L(1) invariance). The U-spin restriction deter-
mines the indices in Eq. (10) and enables us to write
down the Hermitian form of Z(E' —+ 2s);

&(K~ 27r) =g&8&T2'+g&s&*T»2

+g(27& T21 +g(27& T31 . (11)

Next we note that for a normal, pseudoscalar meson
octet, say L„I", the CI' transformation gives

(CP)L:(CP)-'= L„". —

Consequently, CI' invariance requires

C(&) C()

and leads to an effective Hamiltonian

(12)

(13)

Z(K ~ 2s.)= i
i g(g& i (Tg' —Tg')

+i
~ g(g7&

~

(Tn3&—T,p'), (l4)

that is antisymmetric under the Weyl reflection 2+-+ 3
[i.e., T-L(2) invaris. nt']. It follows that, in a current
Xcurrent theory and the limit of exact SU(3), the

"K. Itabashi, Phys. Rev. 136, B221 (1964). This shows that
T-L(1) invariance alone forbids EI —+ 2x, i.e., for Z(n), n=8,
10, 10, 27, and 64. (n =35 is of course forbidden by Bose statistics. )

Hamiltonian will be an admixture of the representa-
tions 8, 10, 10, 27 and 64, each occurring with multi-

plicity one":

Z(E-+2&r)=P g„Z~ &, m=8, 10, 10, 27, 64. (7)
(n)
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combination of CI' invariance and T-L(1) invariance
forbids all E—+ 2x decays. "

We now consider corrections due to the breaking of
SU(3) by electromagnetic interactions. The electro-
magnetic current has zero U spin and is therefore
T-L(1)—invariant. Thus its only effect is to introduce
admixtures of the U=1 components of Z(j,o), Z(io),
and 2&04& intO Z(E —-& 22r). The SpeCifiC fOrmS Of theSe
representations are:

&(to) —=2'.p, —— P 0...{L.[27jp,0"
rsPV e p.

+(18/5)Lp0D, "+(18/5)L, 0Dp"),

Z(m&= TP'= —Q 0 ""{L"[27j g»
ap1 e.p.

+(18/5) L„PD„"+(18/5) L„rD„P),

Z(44& =—T p,"""= Q L "[27jpro"—trace terms,
aP'y C.P.,
Xpap C.p.

(15)

"This fact has previously been observed by Itabashi, Ref. (15);
however, his subsequent claim that the T-L(2)-invariant inter-
action of Eq. (14) also forbids K —+ 2m is not correct. The error is
to be found in the principle of his argument. Itabashi observes
that Z(E ~ 2~) is an admixture of the first two components of
a U-spin vector {L& ), L&+), L&0)). He rotates g{E—+ 2w) into L&0)

and K ~ 2~ into E' ~ 2~', and then uses the CP invariance of
L& & to show that (lf."~L@&~22.'l=o; from this he concludes that
the original matrix element for K~271- must also vanish. In
order for this conclusion to be valid, the rotation operator must
commute with CP (B. Sakita, private communication). For L& )

the rotation operator is T& ) —=expr -,'m {AP—A2g) j and for L&+) it
is T&+)—expt~~x(Ap+Ap)), where A, f' is a generator of SU(3);
and from the definition of CP in Eq. {12),we see that LT& ),CPj=0, but I T&+),CPj&0. Thus Itabashi's argument is correct
when 2 (E~ 2~) =—L& ), but not when g(E ~ 2~) —=L&+). Finally
we note that L& ) points along the U1 axis and is symmetric under
2 ~ 3, while L&+) points along the U2 axis and is antisymmetric.
Another way of making this point is to note: {a) that T-L(1)
invariance is necessary to forbid E~ 2x", and (b) that an inter-
action with U spin different from zero cannot be simultaneously
T-L(2}-invariant and T-L(1)-invariant (see Ref. 6).

where c.p. means "cyclic permutations, " and the
Hermitian correction to 2(E —+ 2&r) is

g(10&2122+g(10& 2 +g(10&T
+g(YO& 2 122+g(04&2 211 +g{04& T211 ~ (16)

CE invariance and 2'-L(1) invariance require

g( )= g( ) "=10 10 64 (17)
and

g(64) g(64) ) g(&o) g($) (18)

respectively. [Note that the negative sign in Eq. (18)
arises from the antisymmetric tensor e „, used in the
definition of otto& and Z&ro&, Eq. (15).] The correction
due to electromagnetic interactions is therefore

2
~ g(to& ~ {&222+ T' —&' —Ttss) (19)

Because Z(&0) and Z(&0) are totally symmetric in the
octets I., M, and E, we may identify I. with the initial

E meson and M and S with the 6nal-state m mesons.
The Hamiltonian in Eq. (19) is then proportional to

2E&0[E+E +E E+—&r+&r —&r rr+j
—E+[&r-&r0+rr0&r+] . (20)

It is interesting to note that Ey ~ 2Ã is still forbidden"
and that the amplitudes for E—+ 2~ satisfy the sum
rule"

S22= 22(S22+S2 )+—(Sss—S2 )
= —,'St'+-'(Ss' —Ss') (22)

The first term of Eq. (22) transforms in exactly the
same way as the electromagnetic current and will yield
the type of corrections discussed above. The second
term, however, has U spin equal to one" and breaks the
2'-L(1) symmetry; in fact when combined with 2,„
[see Eq. (4)j; it will produce corrections to the effective
Hamiltonian Z(E —+ 2&r) that are antisymmetric under
the Weyl reflection 24-43 [T-L(2) invariance$. Thus
the medium strong interaction can give rise to the terms

'7 E. C. G. Sudarshan, Syracuse University report, NYO-
3399-41, 1965 (unpublished); T. Das and K. Mahanthappa,
University of Pennsylvania Report, 1965 (unpublished).

' A detailed discussion of the Weyl reflection 2 ~3 is given
in A. J. Macfarlane, E. C. G. Sudarshan, and C. Dullemond,
Nuovo Cimento 30, 845 (1963);and in the appendix of Ref. 6.

2I&&I(E+~ &r+&ro)

= iif'(Et' —2 rr+rr ) 42M-(—Eto +&rorro-) . (21)

This sum rule follows from the fact that g(go) and g(ro)
contain hT= ~ and ~~ but no AT= ~.'~

The forbiddenness of Et'~2&re under T-L(1) in-
variance can be seen more directly. Under the Weyl re-
Qection 2 ~ 3, E~' changes sign, but m' and g transform
into linear combinations of themselves. These linear
combinations can be expressed in terms of two objects,
x" and y', which are, respectively, odd and even under
2+-+3; m

' is the Us=0 member of a U-spin triplet ~',
and rf is a U-spin singlet. " T-L(1) invariance for-
bids both E~~~ g'g' and E~ —+x 'm", but it allows
E» ~x"q'. Since E~ and x ' are members of the same
U-spin triplet, " say m', any nonderivative coupling
~y'~2'g' with total U spin equal to one must be anti-
symmetric under the exchange of x~' and x2'. However,
only symmetric couplings are allowed, and so E& —+ ~ 'p'

is also forbidden. It follows that the nonderivative
coupling Ej'~ x'xo, which is a linear combination of
E~' —+ g'g', x"x",m 'g', must be forbidden.

It is clear from this analysis that electromagnetic cor-
rections to the current)&current hypothesis are not
sufBcient to account for the smallness of the ratio R~
[see Eq. (6)].We therefore turn to the medium-strong
SU(3)-breaking interaction. If it transforms as the
Y= T=O member of an octet, it can be written as



PARITY —VIOLATING NONLEPTONI C DECAY 1121

of Eq. (14) as well as similar contributions from Z«0),
Zr{&p) and 2{64).

If we assume that the major correction from Sa' is
octet term of Eq. (14) together with a small admixture
of the 27-piet, the effective Hamiltonian will be pro-
portional to

~ g(8) ~

K(0(x+)r +x s++w')r+)

+ ~ g(2r) ~
{sK) (6)r+z' +6)r x'+—4)ra)r )

+K+(m ~'+)r'n —
)}

&&
I g(») I/I g(8) I

«1. (23)

3. APPLICATION TO HYPERON DECAYS

In order to determine the consequences of the current
Xcurrent hypothesis for nonleptonic hyperon decay,
we shall write the effective Hamiltonian for

(24)

as a linear combination of scalar and pseudoscalar
couplings. CP invariance then leads to an Hermitian
interaction of the form'

The sum rule of Eq. (21) is again satisfied, but Kp ~ 2H
is no longer forbidden. The ratio of the two coupling
constants can be determined from the experimental
value of R)r [Eq. (6)].

Our last point concerns the use of nonderivative
coupling in Z(K~ 2x). If we were to use derivative
coupling instead, the amplitudes for E~ 2m would be
proportional to the E-~ mass diGerence. In the limit of
exact SU(3), this mass difference vanishes, and with it
all the decay amplitudes. "Thus the qualitative conse-
quences of derivative coupling are accounted for when
we consider corrections induced by SU(3) breaking
strong interactions in the nonderivative coupling
scheme.

where A and 8 are real coupling constants and cor-
respond to the parity violating and parity conserving
parts of Z(X —+ I'n), respectively.

Let us now suppose that 2(X~ I'x) is an admixture
of the octet and 27-piet and that it is T-l.(1)-invariant.
Parity-conserving decays will then depend upon eight
independent constants and parity-violating ones upon
6ve; the difference between these numbers is due to the
negative sign of A in the second term of Eq. (5). Since
there are only seven observable decay modes, we can
derive two sum rules for pv decays, but none for pc
decays.

The SU(3) structure of the pv part, of Z(X~ I'x)
consists of three octets terms and two 27-plets. It is

f&[Dg'x 2"+D),')r()"—D,")r),'—D2"n ),')
+f2@') ' 2"+»')rm" —Px'xs" —F2"m), ')+A{[10)2' +[iO),')ry[10),2)r+[10),2 +[iO),27r}

+h){[10)2('"s) '+ [10]2('"x'),'+ [10)mga))r("+ [10]g),")r2"+[10)3),2)xP+ [10)g),2))r~"+[10)»»)r),'

+[10)3$'")r),'—trace terms) +h2{[27]»'"n z'+ [27)»'"7r),'—[27),z")rP—[27)&),"w2"
—[27)„"~,-—[27)„'~,-y[27]„'"~,+[27]3("~.}, (26)

where D and Ii denote the usual octet couplings of
baryons and antibaryons, and [X] ()"" denote the 10,
10, and (27), respectively. The symbol )r represents the
meson octet and

(27)

The trace terms associated with h& are equal to one
fifth of the expression associated with f(). By direct
calculation, we obtain two sum rules from Kq. (26):

A(h 0)+%A(X,o) =v2A(=, ') —A(=-:) (28)

2{—v3A(ZD+)+A(h ')+2A(:)}
=A (h ')+%A (Ao') —v3/v2{v2A (Z0+)

+A(Z++) —A (Z:)}. (29)

The first one, Eq. (28), relates the AT= 2 amplitude in
A decay to the corresponding amplitude in decay, and
was 6rst derived by Suzuki. "The second sum rule is a
generalization of the Lee-Sugawara triangle, ' Eq. (5),
and appears to be new. If we impose the A T=2 rule,

"S.Okubo, Ref. 9.

both sides of Eq. (28) are identically zero, and Eq.
(29) reduces to Kq. (5). To understand why this hap-
pens, we note that the combination of T-l.(1) invariance
and the hT=-', rule forces Z(X ~ I'~) to transform as
an octet" (i.e. h(=h2 ——0) and reproduces the condi-
tions under which Gell-Mann' derived the Lee-Sugawara
triangle.

4. CONSEQUENCES OF CURRENT COMMU-
TATION RELATIONS

To conclude this discussion, we use the results of the
previous paragraph to analyze the recent work of
Sugawara" and Suzuki. "These authors have applied
current commutation relations to the currentXcurrent
interaction and have derived four sum rules for pv de-
cays. Two of them are the AT= ~~ rule predictions for A
and decay, the third is a "pseudo-hT=-', rule" for
Z decay, and the fourth is closely related to the Lee-
Sugawara triangle. ' What we wish to point out here is
that these results are special cases of Eqs. (28), (29) and

~ S. P. Rosen, Phys. Rev. 135, B1041 (1964).
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that they follow from one simple constraint upon
Z(X —+ I'7r).

The essential feature of the Sugawara-Suzuki cal-
culation is that, in the eGective Hamiltonian they derive
from current commutators, the baryon-antibaryon sys-
tem is coupled to 8(27) whenever the effective Hamil-
tonian transforms as 8(27). For pv decays this is identi-
cal to saying that the baryon-antibaryon system is
never coupled to a decuplet, i.e. in Eq. (26)

fg ——hg ——0. (30)

Two of the remaining terms, fq and f2, are octets and
satisfy the AT=2 rule; the third, h2 is a 27-piet and
although it includes a AT=~ component, it never-
theless gives rise to the AT=2 in A and decay. To
show this, we note that the h2 term is invariant under
the transformation

RX„"E = —X&~, (31)

where X„"is any octet; from this it follows that the h2

amplitudes satisfy"

A(A ')=+A(:)
A (Ao') = —A (=-0')

(32)

and give rise to the AT= ', sum rules -through Eq. (28).
Notice that the h~ term is invariant under

E'X "E'-'=+X),~

and it yields relations like Eq. (32) except that the signs
are reversed in this case Eq. (28) becomes identity.

Because the system nZ+ has isospin T= 2, the ampli-
tude A(Z++) is independent of f~ and f2 and must be

"See Ref. 6 for the sign convention for baryon and meson
states.

where
2a(L, S)=43S(Z)—~(X)—2S(„=), (36)

6(1. 5) =v38(Zc+) —8(A-') —28(:),
~(~)=8(~")-(8(~=)/W2+(8(~+')/v2),
A(A) =B(h ')+vs(AO'),
6(-)=8(:)—428(="0') .

"S.P. Rosen, Phys. Rev. 143, 1388 (1966).

proportional to hm when Eq. (30) holds. In addition, fq
and f2 satisfy the hT=-', rule, and so the expression
v2A(Z0+) —A(Z:) is also proportional to h2. Explicit
calculation yields a relation

v2A (Z +)—A (Z:)=A (Z +), (34)

which differs from the AT=-, rule prediction only in the
sign of A(Z++). If we substitute Eq. (34) and the
DT= ,' rule-forh. decay into Eq. (29) we obtain Suzuki's
sum rule

+~A(Z:)—A(h 0) =2A t=:). (35)

We note that A (Z++) =0 if Z(X ~ I'm. ) is dominated by
its octet components and that (35) reduces to the
Lee-Sugawara triangle. The sum rule (35) can be
derived for very general transformation properties of
Z(X ~ Fn) provided only that the baryon-antibaryon
system is coupled to an octet."

Finally, it is amusing to note that if we carry over to
pc decays, the coupling of the baryon-antibaryon system
to 8 and 27, only, then using the properties (a), (b),
and (c) we Gnd that there is one sum rule among the
seven decay amplitudes. This is a giant Lee-Sugawara
sum rule which relates the deviation from Lee-Sugawara
triangle to the deviation from AT= ~ rule in A, Z, and

decays:


