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From Bardakci et ul. ,
24 we have

(f-.-'/4~)=32/9,

For F(ales y) 1 MeV, we have

(f„„'/4s.) 1.09X 10 '.
Thus

and taking F (p'i s y)~0.103 from Table I, we obtain r(p'~n's'y): r(p'~Hy) 1:5. (11)
(f„~'/4s) 1.27X10-'.

Taking F(ales'y) 1 MeV, we get

r (~0
~

~+~-q): r (~'~ ~'q)=1: 1OO. (9)

Again from p
—+ co+ —+ mxy, we have"

r (p'I ~'+v)=(f.-'/4~) (f-v'/4~)
X (tn, '/48sm ')(1.05X10 ') . (10)

~ K. Bardakci et al. , Phys. Rev. Letters 14, 264 (l965). We
would like to note here that Eq. (8) of these authors is derived on
the basis of a U(12)-type theory and it is not a prediction of
SU{6)~symmetry."P.Singer, Phys. Rev. 130, 2441 (1963).

Thus, from the above we 6nd that, compared to
co' —& x'&, the oP —+ x+x p mode is highly suppressed.
The discrepancy in such a conclusion is due most
probably to the failure of the pole model for such proc-
esses, w'hich has been clearly mentioned in Ref. 23. For
processes V ~P+P'+y, one has to evaluate the ampli-
tudes (y~~V~~~PDP0') and can estimate their partial
widths from the observed width'9 of oP ~ x+x y.

The author acknowledges his deep indebtedness to
Professor S. N. Biswas for suggestions and useful dis-
cussions and to Professor R. C. Majumdar for his kind
interest.
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The N/D method for n two-body channels is extended to allow arbitrary inelastic effects. The functions
regarded as given are the left-cut discontinuities and the "absorption matrix. " (The absorption matrix F
is the term of the unitarity condition accounting for transitions between the n channels and any other open
channels: ImT+= T+pT +F.) The procedure is based on a new D matrix, which is defined by means of
generalized complex phase shifts. The basic equation is a singular but linear integral equation for ImD.
The singular equation is related to an equivalent Fredholm equation. The method may provide a useful
general framework in which to discuss absorptive corrections to the peripheral model of high;energy proc-
esses. It includes other ways of treating such corrections as special approximations. The technique may
also be valuable as a tool in constructing a more rigorous bootstrap theory. A by-product of the investigation
is an elegant parametrization of an n-channel submatrix of the entire S matrix.

1. INTRODUCTION

HE matrix sV/D representation proposed by
Bjorken' can be used to solve systems of coupled

partial-wave dispersion relations. One employs the
matrix analog of the Chew-Mandelstam method. '
The Bjorken representation refers only to n two-body
channels, so the procedure has the drawback of always
violating unitarity at high energies. Mandelstam'
proposed a way of handling three-body channels, but
the possibility of an explicit treatment of all necessary
channels at high energies seems completely out of
reach. If only one channel is treated explicitly, the
unitarity condition referring to that channel can be

*Work performed in part under the auspices of the U. S. Atomic
Energy Commission.' J. D. Sjorken, Phys. Rev. Letters 4, 473 (1960).' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).

g S. Mandelstam, Phys. Rev. 140, 8375 (1965),

met at all energies by a modi6ed A'/D procedure. 4 '
In the latter approach the inelasticity factor q is put
into the equations as a given function. In the applica-
tions of this method carried out so far, ' empirical in-
formation on the low-energy behavior of y is combined
with hypotheses about its high-energy behavior.

In the following I show how to extend the matrix
rV/D method to allow n two-body channels with
arbitrary, given inelasticity. The given inelasticity
function is the term in the unitarity condition which
accounts for transitions between the n explicit channels
and any other open channels. I shall call this term the
"absorption matrix. "

The equations derived may turn out to be useful as a
4 G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963)~' M. Froissart, Nuovo Cimento 22, 191 (1961).' See, for example, P. W. Coulter and G. L. Shaw, Phys. Qev.

138, B1273 (1965).
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general framework in which to investigate absorptive
corrections to the peripheral model of high-energy
processes. The plan would be to treat a production
process such as m+3, ~p+,V as a two-channel
problem. All channels but x—.V and p —.'V are ac-
counted for by the given absorption matrix, for which
some model is to be assumed. In accordance with the
peripheral picture, the only left-hand singularities of
the two-channel amplitude would be those due to ex-
change of single particles of small mass. In principle the
number of explicit channels may be greater than two,
but in that case the equations become rather com-
plicated unless the absorption matrix has a simple form.
Bialas and van Hove' suggested a reasonable model of
the absorption matrix based on minimal correlation of
produced particles and minimal overlap of states pro-
duced in dift'erent two-particle collisions. Their as-
sumptions imply that the absorption matrix is a real
multiple of unity. With that simpli6cation the .t/D
equation is tractable with a good many channels
treated explicitly. If the absorption matrix is merely
real, the equation is still relatively simple. Also, eGects,
of a small imaginary part of the absorption matrix may
be assessed by a perturbation method without solving
the complete equation. The advantage of the approach
suggested is its generality. Other schemes (e.g., the
distorted-wave Born approximation' or the BiaIas-
van Hove' method) are comprehended as special ap-
proximations. The general 1V/D equation might suggest
improvements to these approximations.

An incidental motivation for this work has to do with
the Castillejo-Dalitz-Dyson (CDD) ambiguity' 4 in the
single-channel cV/D method with inelasticity, and also
with the general formulation of bootstrap dynamics.
SuKcient conditions for the lack of arbitrary CDD
parameters in the solution of a single-channel dispersion
relation with inelasticity were given in Ref. 4, Sec. V
and also in Ref. 10. These conditions are likely to be
met in the higher partial waves, but in the lower waves
arbitrary CDD parameters are expected to appear in
the general solution of the dispersion relation. Such
parameters may appear in the physically relevant
solution, even if the existence of "elementary" (non-
composite)" particles is ruled out. This was mentioned
by Chew and Frautschi, " who noticed that in the
Dalitz-Tuan" model of the Yo* (1405 MeV) resonance
a CDD pole should appear in the denominator function
of the m —Z channel. Here the I'0* is regarded as a

7 A. Bialas and L. van Hove, Nuovo Cimento 38, 1385 (1965).
8 N. J. Sopkovich, Nuovo Cimento 26, 186 (1962); K.. Gottfried

and J. D. Jackson, ibid. 34, 735 (1964);L. Durand, III, and Y. T.
Chiu, Phys. Rev. 139, B646 (1965).

9 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).

'0 R. L. Warnock, Phys. Rev. 131, 1320 (1963).
"See, for instance, S. C. Frautschi, Eegge Poles and 5-matrix

Theory (%. A. Benjamin, Inc. , New York, 1963).
'~ G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394

(1961).
» R. H. Dalitz and S.F.Tuan, Ann. Phys. (N. Y.) 3, 307 (1960).

virtual bound state of the E—.V system; i.e., a state
which would be a E—3;"' bound state if the coupling
between the E—3" and x—Z channels were reduced to
zero. The CDD pole in the x—Z channel is a reAection
of the virtual bound state. In the two-channel treat-
ment of the problem there is no such CDD pole. This
situation has led several authors" to comment on
inequivalence between the single-channel inelastic
equation and the many-channel .V/D equations.
Actually, there is full equivalence between the single-
channel equation with CDD terms L(Eq.) VI.7 of Ref. 4j
and the many-channel equations, since the former
equation provides the general solution to the single-
channel dispersion relation. "The present paper suggests
an escape from the CDD problem while still allowing
arbitrary inelasticity. If there are no elementary
particles, it is reasonable to assume that so many
channels may be included explicitly that CDD poles
become unnecessary. In this way one can imagine a
relatively complete and general formulation of a boot-
strap theory: A limited number of two-body or quasi-
two-body channels participate in the basic bootstrap
dynamics, while corrections from all other channels are
provided by an appropriate absorption matrix. Of
course, the above remarks are not meant to imply that
the CDD ambiguity is diminished in a mathematical
sense by increasing the number of channels. On the
contrary, arbitrarily many CDD parameters remain.
The supposition is merely that a limited number of
such parameters have any importance for the bootstrap
dynamics of states of fairly small mass, and that these
few parameters may have their values determined by
allowing sufficiently many explicit channels.

2. DEFINITION OF THE D MATRIK

The partial-wave scattering matrix referring to n
two-body channels is denoted by S=LS;,(s)j. The
variable s is the squared energy in the zero-momentum
frame. The transition matrix T= LT;,(s)$ is related to S
by the equation

5= 1+2'p'~'T+p' I'

"M. Bander, P. Coulter, and G. Shaw, Phys. Rev. Letters 14,
207 (1965); E. J. Squires, Nuovo Cimento 34, 1751 (1964); K. J.
Squires and P. J. S. Watson, ibid. 42, 77 (1966); H. Munczek,
Phys. Letters 13, 92 (1964); H. Munczek and A. Pignotti, ibid.
16, 198 (1965); D. Atkinson, K. Dietz, and D. Morgan, CERN
Reports TH. 531 and TH. 564 (unpublished); J. B. Hartle and
C. E. Jones, Phys. Rev. Letters 14, 801 (1965); Phys. Rev. 140,
B90 (1965); Ann. Phys. (N. Y.) (to be published); P. Hertel,
Z. Physik 186, 288 (1965); T. Kanki, Nuovo Cimento 37, 1769
(1965); Y. Fujii, Phys. Rev. 139, B472 (1965); J. Finkelstein,
ibid. 140, B175 (1965).

"More precisely, it provides the general solution within the
class of amplitudes having bounded Holder continuous phase
shifts and such that the E/D equation is of Fredholm type. This
follows because such amplitudes have an X/D representation,
and Kq. (VI.7) of Ref. 4 is a necessary condition on ImD. In some
of the papers of Ref. 14, there seems to have been doubt as to
whether inclusion of CDD poles would establish complete equiva-
lence between the single-channel and many-channel formulations.
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where p=fp, (s)b;,] is a diagonal matrix of threshold
factors of the form p, (s)=8($ sp')0''(s) and T+(s)
=T(s+i0). Here so, is the threshold of channel i The
positive function a,(s) is chosen in such a way that the
analytic function T;;(s) does not have branch points at
the thresholds so;, so, , and so that o.; behaves as s'/'
at infinity. " By time-reversal invariance, T may be
chosen to be symmetric: T= Tr. (Superscript T means
the transpose. ) We also assume the reality condition
T(s) = T*(s*).The unitarity equation referring to the n
channels that are treated explicitly is

(T+ T)/2i=—T+pT +F.
For simplicity it is assumed that all unphysical sin-
gularities of T;; lie to the left of so;, so, . The absorption
matrix F accounts for virtual transitions from the n
channels to any other physical states that are allowed
at the energy s'/'. In terms of the 5 matrix the unitarity
condition is

55&= i —4p'/V'p'/2=H. (2 3)

(2.4)

Since 5 is symmetric, LS,St]=2i ImH. In general the
Hermitian matrix H is not real, so S does not commute
with its adjoint. Hence there is no guarantee that S
may be diagonalized. This makes the inelastic X/D
problem a good deal more complicated in general than
in the special case of real H. Since H has the form SS~,
it is clearly a non-negative matrix. In the following work
the stronger requirement that H be positive-definite
is imposed. This is very reasonable physically, since
it only means that the eigenvalues of the absorption
term 4p'/'Fp'" are forbidden to reach their upper
limits.

In order to carry the single-channel inelastic method
over to the many-channel case, one must 6nd an
analog of the complex phase-shift description on which
that method is based. Kith a single channel the
denominator function D(z)=D*(s*) is defined4 as an
analytic solution of the equation

D (s)=e2i"'D (s)

(2.5), the requirement D(s) =D*(z*), and the demand
that D+(s) have an inverse at all points s on the physical
cut. For the many-channel problem without inelasticity,
one has M'(s)=1+2ip(s)T+(s), and (2.6) is just the
unitarity condition on T. Khen inelasticity is allowed
it is appropriate to make use of the following general
solution of the unitarity condition (2.3):

S=g, e,n,e, a=+, e, ~~;~'e,t, (2.7)

where the +; form a complete, orthonormal set of
eigenvectors of H, and the n; are complex numbers
such that 0( ~a;~ & 1. Equation (2.7) is proved in the
Appendix; the only conditions for (2.7) are symmetry of
5 and the positive-definite property of H. A factoriza-
tion of S as a product of an Hermitian and a unitary
matrix follows from (2.7); viz. , S=H"'0, where

n=P, e,e*~ e,', ~;= ~~;~e*'~'. (2.8)

Since 0 '=0*, 0 is a good candidate for identi6cation
with the matrix M of Eq. (2.S). Furthermore, the
quantity @; is the closest many-channel analog of the
phase 2b appearing in Eq. (2.4). The generalized com-
plex phase shift is 6;, where n.;=e"~'. Actually, 3f= 0
is not precisely what is needed. To find further condi-
tions on 3f one must look at the equations giving the
jumps of the V and D matrices over their cuts. If D(s)
is an analytic function satisfying (2.5), and N(z) is
defined as!V(z) = T(s)D(s), the following relations hold:

(1+2ipT+)D+ Q'"Sp '"M——']D =D++2jp!V+,
(1—2ipT )D =[p'! S*p '!2M]D =D 2ipN . (2.9)—
In the single-channel case the square bracket expressions
of (2.9) are equal to the real inelasticity factor p:
p'!iSp '!~M ' =pi!25*p '! M = g. In that case Eqs. (2.9)
lead to the integral equation of Ref. 4, via dispersion
relations for .V and D. In the many-channel case it
does not seem possible to make the two square bracket
expressions of (2.9) real, but at least they can be made
to depend only on the absorption matrix. In fact, the
identi6cation

D (s) =M(s)D+(s), (2.5)

where the functions D+(s)=D(s&i0) are the limits of
D(s) as s approaches the physical cut. In (2.4), 8 is the
real part of the phase shift. The many-channel analog
of (2.4) should have the form

~—pl/2Qp
—1/2

ensures M—'=M* and also yields

gD =D++2spcV+,
g*D+——D —2zpiV

(2.10)

(2.11)
where M is a matrix such that

M '(s) =M*(s). (2-6)

Equation (2.6) follows from complex conjugation of
"The behavior of 0; at infinity may depend on the relation b-

tween invariant and partial-wave amplitudes. The behavior 0;~sI~'
is commonly assumed for spin 0—spin & scattering, while 0.; 1 is
standard for spin 0—spin 0 scattering. Modifications of the dis-
cussion for behaviors other than s'/' are straightforward; subtrac-
tions may be introduced in the dispersion relation (3.2). It should
also be mentioned that formulation of the spin 0—spin $ problem
in the complex plane of m=s"~ is more suitable than the s-plane
formulation given here. The only reason for avoiding the m plane
is the notational complication that it involves.

The generalized inelasticity factor p is the matrix

1/2H 1/2 —1/2

(Reg —1)ReD+ Imp ImD= —2p ImN,
(Rey+1)ImD —Imp ReD= —2p ReN. (2.13)

(2.12)

The divisions by p'" in (2.10} and (2.12) are justified
la, ter on Lit turns out that there is no trouble from the
vanishing of elements of p at closing of channels —Eqs.
(2.10) and (2.12) are still well-defined]. By addition and
subtraction of Eqs. (2.11) the discontinuity equations
follow:
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In the following section an integral equation for Ima
is deduced from Eqs. (2.13).

1 AT(s')ds'
T(s) =T~(z)+T~(s) =-

7I g 8 S

1 T+(s)p(s)T (s) ds 1+- +—
F(s) ds

(3.2)

The letters U and P denote the unphysical and physical
cuts, respectively.

To investigate the asymptotic behavior of D, it is
necessary to inquire about the possible solutions of
Eq. (2.5). To my knowledge this problem is not dis-
cussed in the literature, even in the case of the matrix
cV/D method without inelasticity. I intend to treat
the question in a later paper by transforming Eq. (2.5)
to the "Hilbert problem in several unknown func-
tions. ""There certainly are solutions of (2.5) which are
bounded by polynomials at i~6nity, under weak condi-
tions on 3E(s)."On the other hand, one does not yet
have a complete classi6cation of all such solutions by
which the "minimal" asymptotic behavior of D is
related to the asymptotic behavior of 3E." In the
single-channel problem such a classification was given
in Refs. 4 and 10. In those papers it was proved that
there are solutions D(s) of (2.4) such that D(s) =0(

~
s

~
'),

with e&0 arbitrarily small. "Such solutions may or may
not have poles, depending on the asymptotic behavior
of b(s). The "normal" case is that in which there are no

"R.I,. %arnock, Bull Am. Phys. Soc. 9, 116 (1964).' The D with minimal asymptotic behavior is that for which
D(z) =O(~ z

~ ), with o az small az possible. Note that if D(z) iz a
solution of (2.5), then so is C (s)D(s), where 4(s) is a polynomial
with real coefBcients." This is true if the phase is bounded and Holder continuous,

3. THE SINGULAR INTEGRAL EQUATION

To set up the integral equation, some assumptions
about the behavior of T and D at in6nity are needed.
The behavior of T on the physical cut is restricted by
unitarity. This is seen from the formula (2.7) for the
5 matrix. Since 0; is normalized to unit length, and

~a;i (&1, 5,, is bounded. From (2.1) and the fact that
p; is asymptotic to cs"z, a bound on T+(s) is 6xed:

T+(s)=O(s "'), s~ eo . (3.1)

(As was noted in footnote 16, the behavior of p at
in6nity may depend on the spins of the particles, as a
result of diGering relations between invariant and
partial-wave amplitudes. The choice p; cs'~' is ap-
propriate for scattering of spin-0 from spin -z particles. )
From (3.1) it follows that the Cauchy integral of
ImT+(s) along the physical cut converges. If the be-
havior of T(Re'z) as lt.'—+zo is suSciently uniform in 8,
an unsubtracted dispersion relation for T(s) will hold.
For simplicity the condition T(z)=O(~s~ '), e)0, wtll

be assumed. Then the unsubtracted dispersion relation
is valid:

poles of D, while in the "CDD" case poles are necessary.
If 8(eo) exists, then the larger the value of b(~), the
more poles are required to maintain the behavior
D(s) =O(~ s

~

'). In the following discussion of the many-
channel case it will be assumed that for the class of
scattering amplitudes of interest (equivalently, for the
class of 3E matrices of interest) there is a normal solu-
tion of (2.5); i.e., a solution without poles and such that
D(s) =O(~z~ '), e&0 arbitrarily small. Extension of the
work to allow CDD poles depends on an analysis of
Eq. (2.5), which is deferred for the time being. In the
normal case, D(z) satisfies a once-subtracted dispersion
relation

s ImD(s) ds
D(s) =1+-

s(s—s)
(3 3)

The iV matrix satisfies an unsubtracted dispersion rela-
tion, since T(s)=O(fzf '), e)0 and D(s)=O(Jz('),
8«. Hence

1
X(s)=—

AT(s')D(s') 1 ImX(s) ds
+— (3.4)

I' E(s,s') n(s') ds'
n(s)n(s)+ — ' =f(s),

rl p s —s
where

u(s) =p '(s)Res(s) p(s),

&(s,s')it = L»(s) —s'&(s') 1p(s')/s'

——,'Q-'(s)lmt)(s)s/s'+p '(s')Imt)(s') jp(s'),

f(s) =B(s)——,'p—'(s) Imt) (s),

(3.6)

B(s)=— ds AT(z)

S—S

I' ds' ap '(s')$1 —Ret)(s'))
+— — . (3.7)

U s —s

Of course, Imp=0 in that part of the physical region P
in which there is no absorption from the n explicit
channels (i.e., where K= 1).

Define the function n(s) by ImD(s) = —p(s)n(s). In
terms of n the Eqs. (2.13) read

1mÃ=-,'p '(1—Ret))ReD+-,'p 'Imn,
Re%=-z'p '(1+Ret))pn+z'p 'Imt)ReD. (3.5)

Substitute (3.3) for D(s') in Eq. (3.4), and (3.5) for
Im3~ in the same equation. Then take the real part of
(3.4) after letting s go to s+i0, and substitute (3.5)
for ReÃ on the left side. The second integral of (3.4)
now involves repeated principal value integrations,
since ImiV is proportional to Rea. The order of these
principal value integrals is reversed4 by the Poincare-
Bertrand formula, and the outer integral becomes
proper. These manipulations parallel the work of Ref. 4,
to which the reader is referred. The resulting equation is
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If Imp=0, Eq. (3.6) is a straightforward matrix analog
of the single-channel equation of Ref. 4. Equation (3.6)
then has no singularity at s'=s. In fact, it will be a
Fredholm equation if 8(s) meets appropriate bounded-
ness conditions at s= ~. Su6icient conditions on 8
(discussed in Ref. 4) are met in those single-particle
exchange models which are usually considered non-
singular; viz. , those based on exchange of spin-0 or
spin--,' particles.

To account for Imp/0, two procedures come to
mind. The first is a simple-minded perturbation proce-
dure in which (3.6) is 6rst solved with Imp=0. This
"unperturbed" solution is substituted under the integral
sign in (3.6). Then an evaluation of (3.6) with the com-
plete expressions for E and f gives the 6rst-order
perturbed solution. If p ' Imp is small compared to 8,
in some sense, this method might work. Convergence of
the perturbation series has not been investigated. A
second method is to relate (3.6) to an equivalent
Fredholm equation. This approach has the advantage of
mathematical rigor, but the Fredholm equation (derived
in the following section) is somewhat complics, ted.
However, it too can be treated by a perturbation
method when p

' Imp is small. The perturbation
method can probably be justified in this case by a
standard trick. "

where

1
+— k(s,s')n(s') ds'= f(s), (4.2)

p(s) =E(s,s); k(s, s') =E(s,s') E(s,s)—
s s '

(4.3)

If E is Holder continuous (as it will be in the physical
applications of the theory) the kernel k(s, s') is "quasi-
regular" at s= s' ' "; i.e., it is subject to the Fredholm
theory provided its behavior at inhnity is satisfactory.
In the following it will be assumed that the behavior
of k at infinity is all right, so that 4 is a Fredholm kernel.

~ The kernel of a I'redholm equation may be divided into a
large part and a small part, and the small part treated by an
iterative method. See S. G. Mikhlin, Linear Integral Eqlations
(Hindustan Publications Corporation, Delhi, 1960)."N. I. Muskhelishvili, SingNIar Integra/ Equations (P. Noord-
hoff I.td. , Groningen, The Netherlands, 1953).

4. THE NONSINGULAR INTEGRAL EQUATION

Equations of the type (3.6) are dealt with by
Muskhelishvili. " I shall review the relevant part of
the theory very briefly. Write Eq. (3.6) as

(4.1)

By addition and subtraction of E(s,s) in the numerator
of the integral, the equation becomes

P(s) n(s') ds'
Kn = Eon+ kn =a(s)n(s)+

7(2 y S —S

In fact, it will be assumed that all kernels encountered
have good behavior at infinity, so that the only singu-
larities to be concerned about are the Cauchy singu-
larities at s= s'. The Cauchy singularity of (4.2) occurs
in the term proportional to P. For this reason Kp ls
called the dominant part of the operator K, where

P(s) n(s') ds'
Ion =a(s)n(s)+

s —s

farl

(4 4)

Multiplication of two operators of the type of K yields"

K(K~)=L () .()+p()p.()j~()
I' [ai(s)E2(s,t)+Ei(s,&)a2(t) jg(&) d&+—

gran

+
(~i)'

P

t—s

Ei(S,u)E2(u, t) du-

(u —s)(t—u)
y(i) dt. (4.5)

The second integral over t in (4.5) is proper, so the
operator K~K2 can be made into a Fredholm operator
if the dominant part of the operator represented by the
erst t integral in (4.5) can be made to vanish. If K*
=KgK2, then

ala2+ plp2

p alp2+pla2 ~ (4.6)

S =D*=SjS2——DgD2. (4.8)

Suppose K2 is given, and Ki is to be determined so that
(4.8) holds. Then Ki may be chosen in infinitely many
ways, provided S2 and D2 are nonsingular everywhere.
This is seen by noting that for arbitrary S*, the follow-
ing expressions solve (4.8):

Sg=S*S2 ' Dg=S~D2 '. (4.9)

The dominant part of Ki is determined from S~ and Dj,
while the nondominant part is arbitrary; it may be set
equal to zero. The choice S*= i is convenient for present
purposes, and it also has the nice property of making
K~K2 and K2K~ both Fredholm.

If a singular integral equation is written

(4.10)

and K~K2 is a Fredholm operator, then all of the solu-
tions of (3.17) are included among the solutions of the
Fredholm equation

KiK~=Eif. (4.11)

If P*=O, K~ is Fredholm. In terms of the "sum" and
"difference" functions S=a+P, D=a —P, Eqs. (4.6)
read

5 a +p (ai+pl)(a2+p2) 5152 y

D'=a'- p"= (ai- pi)(a2- p2) =DiD2. (4 7)

The condition P*=O is the same as
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LAssume that /+I', and that Ki maps I.' into itself,
so that (4.11) is indeed a Fredholm equation. 7 In the
physical application, Eq. (4.11) presumably has a
unique L' solution, since in the usual models vanishing
of the Fredholm determinant would be an incredible
accident. Thus, if (4.10) has an I solution at all, it is
unique, and is the same as the unique solution of (4.11).
But how can one be sure that (4.10) has an I.' solution?
Note that (4.11) may be expressed as

jy1/2p 1/2D D 1pl/2 (4.17)

Here E(s,s') and B(s) are the same as in Eq. (3./). As is
expected, H(s, s) =0. Also, the equation reduces to
Eq. (3.6) if Imit=O in both equations.

Perhaps the most direct way to obtain the scattering
matrix from the solution I of (4.16) is by first con-
structing D from Eq. (3.3) and the definition ImD

p—n T.hen from S=H'i20 and (2.5), (2.10),

Ki(K2y —f)=0, (4.12)
An equivalent expression is

so the I.' solution of (4.11) also solves (4.10) provided
Kq@'=0 has no nontrivial solution in J2. If the latter
equation has a nontrivial solution 4, then so does the
equation

K,K,+=0. (4.13)
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by (3.7) and (4.3). Since H is positive-definite, det52
= detH'/'~ and detD2 =detII'/' are nonvanishing. From
(4.9) and 5~=1 the regularizing operator Ki has the
coefFicients

ai=p 'Re(g ')p, Pi= —ip 'Im(q ')p. (4.15)

The nondominant part of the regularizing operator is set
equal to zero.

The final integral equation KiKme= Kif is as follows:

1 H(s, s')n(s') ds'
~(~) =g(~)+-

p S—S

g(s) =p '(s)ReLit '(s) jg(s)B'(s) —2i Immit(s) j
P—p-'(s) ImLg-'(s) jp(s)—

XPB(s')——,'p '(s')Imp(s')7ds'/(s' —s),

p(s)H(s, s') = i ReLit
—'(s) jp(s)E(s,s')—

z—ImLit '(s)jp(s)p '(s')Reit(s')p(s')+ —ImLit '(s)j
I' E(s",s') ds"

Xp(s)— (s—s') . (4.16)
i (s"—s)(s' —s")

This is not possible if K2K~ is a Fredholm operator
with nonvanishing determinant. In that case if follows
that the solution of (4.11) is also a solution of (4.10).
With the choice 5*=1 mentioned above, K2K~ is a
Fredholm operator, and it undoubtedly has nonvanish-
ing determinant in the physical examples of interest.
Therefore, for the purposes of the XjD method the
regularized equation (4.11) is equivalent to the singular
equation (4.10), provided 5*=1 and 52 and D2 are
nonsin gular.

If Ku ——K in (4.2), then

1+2ip T+ = rlD D„'. (4.18)

High-energy conditions on H and g sufFicient to make
(4.16) a Fredholm equation will not be studied here,
since the general problem is too academic. It seems
certain that "regular" Born terms appearing in B(s)
(i.e., Born terms for exchange of spin-0 or spin-2
particles) will have suitable high-energy behavior. As
usual, higher spin exchanges must be subjected to a
cut-oG procedure. As in the single-channel problem, the
eigenvalues of q must not approach zero too rapidly at
infinity, since they occur as divisors in the kernel. In
the Bialas —van Hove' model of the g matrix, the
eigenvalues tend rapidly to a constant.

S. SYMMETRY OF THE SCATTERING
MATRIX

Since the absorption matrix F is not symmetric in
general, it is by no means obvious that the solution of
the dispersion relation (3.2) will be symmetric, even
if the jump 8 T over the unphysical cuts is a symmetric
matrix. It is, therefore, gratifying to be able to prove
tha. t the solution T obtained through Eq. (4.16) is
indeed symmetric for arbitrary F, so long as hT is
symmetric. The argument follows Bjorken and Nauen-
berg, "who prove (neglecting inelasticity) that

(5.1)

provided AT= AT~. Since D is nonsingular except pos-
sibly at isolated points, it follows that T=T~. The
jump of the matrix (5.1) over the unphysical cuts U is

A/Dr(T Tr)Dj=Dr(DT —DTr—)D=O (5.2)

since D is analytic on those cuts. On the physical cut P,
substitute T=XD ' and compute

h/Dr(T Tr)D]=ImDr ReÃ+R—eDr 1m'
—ImA'r ReD —ReEr ImD. (5.3)

Eliminate 1V by means of (2.13). The Hermitian prop-
erty of H and Eq. (2.12) show that

Imps= —p
' Imgp; Regr=p ' Regp. (5.4)

By using (5.4), it is easy to show that the expression
(5.3) is identically zero. That is true even if D has

~ J. D. Bjorken and M. Nauenberg, Phys. Rev. 121, 1250
{1961).
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CDD poles, which can be accounted for by delta func-
tions in ImD. Thus, the matrix Dt(T Tt—)D has zero
discontinuity over the cuts of D and T, and it vanishes
at ininity by the assumed asymptotic behavior of T
and D (cf. Sec. 3). Consequently, Eq. (5.1) is true.

6. MULTIPLICATIONS BY y
'/2 AND y

'

One small problem that remains is to show that the
multiplications by p "' and p

' in Eqs (2..10), (2.12),
(3.5), (3.7), and (4.16) cause no difliculty when elements

of p vanish due to closing of channels. Suppose that the
nth channel has the threshold sp„, and that the nth
diagonal element of p is proportional to Q just above
threshold. Here Q is a suitable power of the momentum
of the nth channel (e.g. , Q=q„21+'). To make the dis-
cussion simple, suppose that only the nth channel has
its threshold at sp„. All matrices involved in multiplica-
tions with p '/' or p

' are constructed from the eigen-
vectors 0 of H. Therefore, it is appropriate to study 4
at small Q by a perturbation method. First decompose
H into terms of zeroth, first, and second orders in Q'!2:

H = 1 4pl/2Fpl/2 H p+H1+H2

4p11/2F lp11/2 0

4p 1/2Gtp 1/2

Fj G
7

Gt F2

p11/2Gp21/2-

p 0

-0 p2-'

H2=
0 4p l/2F p

l/2

(6.1)

where Hp@'p = Xp;0'p, . Now it is clear that the dyadics
constructed from the 0 's may be represented as follows:

o(Q) o(Q'")
@0(@a)t

-o(Q'") 1+o(Q)-

@ a(@ a)t—
.a(+ a)t+0(Q) 0(Q1/2)—

-o(Q"') o(Q)

(6.3)

From (6.3) it is apparent that the limit of p'!'4%' p '!'
as Q —+0 exists. A similar statement holds if 4't is
replaced by 4't. Hence, the definitions (2.10) and (2.12)
of M and g are generally valid. The other possibily
troublesome matrices that enter the discussion are
p '(1—Reg), p 'Imti, p 'Reqp, p 'Re[ti —')p, and
p

' Im[g ')p. Using (6.3) and the definition of it one
may check that these matrices are also well behaved.
If more than one channel has the same threshold sp„, a
more elaborate discussion based on degenerate perturba-
tion theory leads to similar conclusions.

In these matrices the block in the upper left corner is
(n —1)X (22—1); the 1X1 matrix p2 is proportional to Q
for s+sp and zero for s&sp„. One of the eigenvectors
of 80 is 0'0'=(00 01). The other 22—1 eigenvectors
of Hp are denoted 0'p, , they have vanishing nth com-
ponents. The first-order perturbation Hl causes transi-
tions a~ b but does not allow a+-+ a, b~ b. Standard
perturbation theory yields the eigenvectors

(+0' +1+0 )
+0(Q)

Xp,—1
(6.2)

(+0',&1+0 )
+0(Q),

1—Xp;

V. REMARKS ON APPLICATIONS OF
THE EQUATIONS

It is clear that numerical solution of the nonsingular
integral Eq. (4.16) would be a complicated matter.
We think, however, that Eq. (4.16) will be useful in the
general mathematical analysis of coupled partial-wave
dispersion relations —i.e., in generalization of the
single-channel analysis of Refs. 4 and 10. In applications
of the method to particular physical problems it will
usually be necessary to make a suitably simple hypothe-
sis about the behavior of the absorption matrix. In
principle this matrix may be determined by experiment.
In practice the determination will be far from complete,
but we can expect at least some qualitative indications
from experiment. At sufIiciently high energies a
theoretical argument of Bialas and van Hove' may
apply. These authors point out that the matrix element
F,, of Eq. (2.2) represents the overlap of the final
states produced from initial states i and j.If iW j, these
final states are likely to be nearly orthogonal at high
energies where many channels are open. It is reasonable,
therefore, to suppose that F is diagonal at high energies.
Since F is Hermitian, it is then also real, and the rela-
tively simple equation (3.6) becomes nonsingular.
Better yet, F is actually a multiple of the unit matrix
if it is diagonal (this was noted by Bialas and van
Hove', and also by Shaw, " who has independently
studied matrix!V/D equations with absorption). By
additional physical arguments based on minimal cor-
relation of the particles produced, Bialas and van Hove
obtain the following model of F:

p'"Fp'"= fo exp( —0'/r2)I

3 G. L. Shaw, Bull. Am. Phys. Soc, 11, 23 (1966).



ROBERT LEE WARNOCK

The parameters f0 and r are real constants, b=ljq
denotes the impact parameter, and I is the unit matrix.
We intend to apply Eq. (7.1) with Eq. (3.6) to study
absorptive corrections to the peripheral model. Of
course, (7.1) may not hold at lower energies, and it
remains to be seen whether its introduction in the low-

energy region will be a serious error.
Another difficulty in the iV/D approach to the

pheripheral model is the difficulty of meeting the
threshold conditions when left singularities are given
by single-particle exchanges. To guarantee the correct
q"+' momentum dependence at threshold, '" one must
choose the p, of Eq. (2.1) to behave as q,m'+' at thresh-
old, and to have the correct behavior at s= ~ (p, s'"
at infinity for the spin 0—spin —,

' case). Except for s
waves, such a choice of p necessarily introduces new
poles in the T matrix; i.e., poles not present in the Born
term for single-particle exchange. In the case of low
partial waves, at least, the T matrix is known to depend
strongly on the location (which is arbitrary) of the new
poles. ' ' In the peripheral model at high energies
there are many partial waves participating, so it is not
clear without calculation whether the dependence of T
on the pole positions will be a severe difficulty in that
model. In any case, one may attempt to adjust the pole
positions to 6t experiment. If the poles turn out to be
far from the physical region, their existence may be
ascribed to the unknown short-range forces necessary to
produce correct threshold behavior. Since low partial
waves will be largely absorbed, the dependence of results
on pole positions may be less pronounced than it is in
the case of bootstrap models.
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1+iX 1+ix
5—81/2

1—iX 1—ix
(AS)

The representation (A5) of 5 has the disadvantage that
X is subject to restrictions other than Hermiticity; viz. ,
those due to symmetry of S. Bialas and van Hove have
applied Eq. (AS) in the special case in which H is a
multiple of unity. In that event there is no difficulty,
since the additional requirement on X is merely that it
be symmetric. Note that the equation S=H'~'0 is the
matrix analog of the exponential representation of a
complex number: An arbitrary nonsingular matrix 3f
may be factored as an Hermitian matrix times a unitary
matrix.

Since the reaction matrix method turns out to be
inconvenient, it may be better to look for a generalized
complex phase shift h. One naturally expects e"~ to be
something resembling an eigenvalue of S. Since there
is no guarantee that 5 may be diagonalized, the re-
semblance cannot be perfect. An eQ'ective substitute
for diagonalization is to exploit the symmetry of 5
by relating 5 to a real, symmetric matrix of twice the
dimension. The 6rst step is to show that there is a com-
plete, orthonormal set of vectors P such that

Sg*=(qk, (A6)

where the orthogonality is with respect to the usual
Hermitian scalar product:

where b and f denote eigenvalues of JI and 4p"'Fp'l2,
respectively. Equation (A2) permits the de6nition of
the Hermitian matrix

& '"=Z*f*b* "V", (A3)

where the |b; form a complete, orthonormal set of
eigenvectors of H. From (A1) it follows that the matrix
H '~'5 is unitary:

n= H-ii25 ant= i. (A4)

Existence of 0 suggests the de6nition of a generalized
reaction matrix X=Xt:

(O'A) =0 "4~=~'~ (A7)
Here I establish the parametrization of the 5

matrix stated in Eq. (2.7). Recall the definition (2.3) of
H'

SSt= 1—4pl~2I. p~~2=a, (A1)

where I' is the absorption matrix appearing in the
unitarity relation (2.2). One wishes to find the most
general symmetric matrix 5 satisfying (A1) for given
positive-de6nite and Hermitian H. This problem was
posed by Biakas and van Hove. Since p'~'Fp'~ is a
unitarity sum, it is non-negative and Hermitian.
Therefore,

0&h&1, 0&f&1, (A2)"A. Ql. Martin and J.L. Uretsky, Phys. Rev. 135, 8803 (1964)."L.M. Simmons, Jr., Phys. Rev. 145, 1157 t', 1966).

S=g, g,a,g; (A9)

An arbitrary vector may be represented as f=g; b;f,*,
and Eq. (A6) implies that

Sg =Q, b,n,g;. (A10)

By (A7) this is the same as the result of applying (A9)
to g, so (A9) is indeed correct. To establish the exist-

The pseudo-eigenvalue o, is a complex number. From
(A6) it follows that P is an eigenvector of H:

Ss*p=W=
I
&

I y. (AS)

From the P's and 's a amanifestly symmetric representa-
tion of S may be constructed:
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co+

sing

—sing Ref '

(A11)
co+ Img

where a= ~e~e'~. Multiplication by the inverse of the
matrix in p yields

ence of the f,, note that the complex equation (A6) is
equivalent to the real equation

ImS Ref

ImS —ReS Imp

By combination of (A13) and (A14) the complex
orthonormality equation (A7) follows, and the proof is
complete. Note that by (A9) the n's are not unique;
a change @~@+8in the phase of a may be com-
pensated by the change P —+e '"Q. In fact, the |t's
may always be defined so that the n's are real.

The expressions for S and H solve the problem
stated:

co&ReS+sinpImS co&In&—sin@ReS

co&ImS —sin&ReS —co@ReS—sinqHmS

Reij

Imf
(A12)

When H (equivalently, Ii) is given, and a definite set of
eigenvectors of H chosen, there remain just n real,
free, parameters —the phases of o, The analog of the
usual complex phase shift is 3„,defined by o.;=e"~'. The
unitary matrix 0 takes the form

With fixed g the matrix of (A12) is real and symmetric,
and therefore has a complete, orthonormal set of 2n
eigenvectors. Precisely e of the eigenvectors are solu-
tions of (A12), since the matrix has n positive and n
negative eigenvalues. To verify the latter statement,
just notice that if LRef, Imp] is an eigenvector with
eigenvalue X, then Dmf, —Ref] is a eigenvector with
eigenvalue —P. There are no zero eigenvalues, because
if there were there would be a f such that Sf~=0, or
SS*Q=0, contrary to Eq. (A2). A set of e real solutions
LReg;, Imp, f of (A12) may be chosen in such a way that

Ref;r Reg+Imf;r Img, = 8;,, i, j=1, , e. (A13)

Each of these solutions is orthogonal to all eigenvectors
with nega tive eigenvalue:

Ref, r Img, —Imp, r Ref, =O, i, j= 1, , m. (A14)

where n, = ~u, ~e'&'. It is a pleasant surprise that 0 is
symmetric. In the special case in which H is real, its
eigenvectors P may be chosen real. These vectors are
then simultaneous eigenvectors of H, S, 0, and X.
The fact that S may be diagonalized in this case is an
example of the well-known theorem that a matrix may
be diagonalized if it commutes with its adjoint

(LS,St7=2i ImH=O) .
%hen H is nondegenerate, there is remarkably little

freedom in determining S after H is fixed. In that case
the eigenvectors of H are unique up to phase factors, so
that only the n real parameters 0.; are free. %hen H is
degenerate the f, are not unique in direction, and S
depends on a greater number of free parameters. %hen
H=1 the number is n(m+1)/2, as is seen from (A5)
and the symmetry of S.


