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couplings, we found that considerable refinement of the present analysis

(especially for the Zz&) and will check the validity
(i) (f/d) r» (F—/D)r» —2—

of this approach to high-energy scattering.
(ii) The (T)(BB)coupling strength must necessarily
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The time-reversal symmetrization of the multichannel scattering amplitude proposed by Fulton and
Shaw is used to construct the amplitude for nonrelativistic single-channel Yukawa potential scattering. It
provides a modified determinantal method for the solution of the N/D equations. This amplitude is com-
pared to the exact solution of the Schrodinger equation. It is found that the scattering lengths predicted
by this method are qualitatively the same as those predicted by the full N/D equations and significantly
better than the results of the determinantal method. The computational simplicity of the determinantal
method has been retained and combined with the accuracy of the full N/D solution, which, with first-order
Iqlorn approximation, gives quite a reliable picture of the qualitative features of the scat tering.

I. INTRODUCTION

HE cV/D method of 6nding the relativistic scat-
tering amplitude for single-channel scattering

entail the solution of an integral equation and the
evaluation of an integral. One frequently uses the
determinantal method, which reduces the problem to
the evaluation of a single integral. Although simple to
use, this method gives results which often di6er
significantly from the results predicted by the full
N/D method. It was shown by Luming' that for
nonrelativistic Yukawa potential scattering the exact
Schrodinger solution lies close to the full N/D solution
with both 6rst and second Born approximation as input
to the N/D equations. The determinantal solution,
again using Born approximation for input, is quite un-
reliable in predicting the features of the scattering.

The ordinary determinantal method has no time-
reversal symmetry when applied to the multichannel
problem. A modiacation of the N/D equations was pro-
posed by Fulton' and Shaw' to restore the time-reversal
symmetry and the main purpose of this paper is to
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examine how this modi6cation sects the single channel
nonrelativistic scattering for which the exact solution
can be found for comparison. Another such modihcation,
proposed by Nath and Srivastava, ' was examined by
Smith. '

It is found that in the 6rst-order Born approximation
both of these methods give results in qualitative agree-
ment with those of the N/D equations for all the angular-
momentum states and coupling strengths examined, so
that a considerable amount of computational labor can
be saved by using a modiaed determinantal method.
Calculations are in progress at present to include
second-order Born terms in both methods and pre-
liminary results show that one can obtain fairly good
quantitative agreement between them.

The application of the N/D and determinantal
method to Yukawa scattering was examined by
Luming, ' and the reader is referred to that paper for
details. A short discussion of the Fulton-Shaw method
is given in Sec. II. The application to potential theory
is discussed in Sec. III, where the effective-range ex-
pressions are derived. Finally, in Sec. IV, we give the
results of the calculations, which were performed on the
AMrRAN self-programming computer system, and our
conclusions.

' P. Nath and Y. K. Srivastava, Phys. Rev. 138, 81195 (1965).' J. Smith (to be published).
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G. FULTOH-SHAW METHOD

The problem of constructing a partial-wave scattering
amplitude from a knowledge of the discontinuity across
the nearby cuts is usually solved by the N/D method
However, as is well known, there are several features in
the N/D method which are undesirable. The problem of
imposing the correct threshoM. behavior of the amplitude
for partial waves with l&0 is, by the introduction of the
v' factor, transferred to a problem of how to cut o8 the
divergent integrals. Subtractions can, of course, be
easily made, but it is dificult to decide where to make
them. Many authors have stated that the solution to
the full 1V/D equations is independent of the subtraction
point, and, if that is the case, it should be possible to
find a modiication of the 1V/D equations in which sub-
traction points do not occur. This was first done by
Fulton and Shaw. Hassoun and Kang' examined their
result, and, in order to have a better understanding of
the approximations made, calculated correction terms.
However, the method of elimination of subtraction
points due to Hassoun and Kang is lengthy and not
really necessary. One can just write down dispersion
relations for a suitable combination of the input
"potential, "and the inverse of the scattering amplitude
to obtain the same result.

Suppose we take Bi(v), v=k' as our known input or
"potential, " and write down a dispersion relation for
the function

gi(v) =Bi(v)L1/fi(v) jBi(v)—Bi(v), (2 1)

the expression

Bi(v) =1-
fi(v) «Bi(v) anc

8 ( ')p ( ')8 ( '),
dv'. (2.4)

Equation (2.4) can be derived from the full N/D equa-
tions by the following trick, designed to eliminate the
dependence on the subtraction point. Suppose we con-
sider the N/D equations with one subtraction,

1 P—Pp.Vi(v) =Bi(v)+— Bi(v') — Bi(v)
RHC— v —vo

pi(v')Ni(v')
X dv', (2.5)

P—Vp

Di(v) =1— pi(v') N, (v')dv'

RHc (v —v)(v —vo)
(2.6)

1 11=- +
Ci(v) «8 i(v)

Bi(v')pi(') Bi(v')
dv

I
V —V

v —vo pt(v )8&(v )dv

P —P V —
Vp

replace Ni(v) by Ci(v)Bi(v), and approximate Ci(v')
under the integral sign by Ci(v). Equations (2.5) and
(2.6) become

Imgi(v) = —Bi(v)pi(v)Bi(v)

while, on the left-hand cut, ImBi(v) = Im fi(v) so

Img ( )=Re(8 ( )—f ( )) Immi( )/f ( )j.
Hence

(2.2)

where fi(v) is the partial-wave scattering amplitude.
The unitarity condition for fi(v) is Imfi '(v)= —pi(v)
so that, on the right-hand cut where Bi(v) is real,

(v—vo)

Bi(v) Di(v)

fi(v) «(v) «Bi(v)

Di(v) 1

Ci(v) Ci(v)

Hence,

pi(v')Bi(v')
dV

P —V P —
Vp

Bi(v')pi(v')Bi(v')dv'

I
V V

(2.7)

1 Bi(v')p, (v')8, (v')
Bi(v)Li/f i(v) jBi(v)= —— dv'

I
RHC P P

Re(Bi(v') —fi(v')) Bi(v')
IIIl dv,

P V -fi(')—
or

Bi(v')pi(v')Bi(v')
dv

«Bi(v) anc v' —v

8 i(v) —1—
fi(v)

1 Re(Bi(v') —fi(v')) Bi(v')-~
Im dv'. (2.3)

«Bi(v) Lac v' —v -fi(v')—

' G. Q. Hassoun and K. Kang, Phys. Rev. 137, 8955 (1965).

In the approximation where we neglect the contribution
over the left-hand cut, on the grounds that P' —v is large
for values of v on the right-hand cut, then we arrive at

which is the result given by (2.4). The drawback of
using dispersion relations for fi—'(v) is the fact that
fi(v) may have zeros which would produce additional
poles in the dispersion relation for fi '(v). Suppose we
take the first-order Born approximation, for example,
and replace fi(v) by Bi(v), then fi(v) would be a product
of Legendre functions of the first and second kind. The
Legendre function of the first kind has a number of
zeros depending on its order, but they are usually
situated on the left-hand cut below the physical
threshold, and are probably so far away as to have no
inQuence in the physical region. This problem is dis-
cussed in more detail in the paper of Franklin. ~ Our
case of Yukawa-potential scattering is special because
the input term does not contain any zeros. Therefore
we do not go any further into this question.

' J. Franklin, Phys. Rev. 139, B9j.2 (1965).
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III. APPLICATION TO POTENTIAL THEORY use (2.4), with (3.7) as input, i.e.,

Ke consider the case of an attractive Yukawa
potential

g2 p 2

Q( 1+—
(3 1) f/(v) 2v'+' 2vV(r) = —goe ""/r,

g2 v/+) 99
Q (1+F2/2v1) 3 2 v3)+1/2

d '.
2 I l+1

with the partial wave amplitude defined by

h/(v) = v '/' e-xpib/(v) sinb/(v)
2m- Ol(,'1+p !2v') o v & v

=v '/2)cot&/(v) ij—' (3. 2) Let us now put /32=1, and use the abbreviation

The first Born approximation for the amplitude is

g2
h("(v, cos8) =

/32+ 2v(1 —cos8)

with partial-wave projection

(3.3)

1 "/Q((1+1/2v') ' v"+"'
It, ( )v= I'

~

-dv', (3.S)
p 5 V V V

where I' denotes the Cauchy principal value integral.
The expression for the effective range is now

f)3"'(v) = (g'/2v) Q/(1+u'/2v) .
V

l+1g2
(39) '+"'cot3 ( )=(1—— — )9 ( ))

2 Q/(1+1/2v)
Because of the analytic properties of the Legendre func-
tion of the second kind, f)t (') (v) is an analytic function of
v with a cut from v= —/32/4 to —~. We now approxi-
mate the whole of the left-hand cut by assuming it to be
the same as this first Born cut, so we let

82(v) = f)3(')(v) . (3.S)

Unfortunately, (3.4) does not satisfy the correct thresh-
old behavior for higher partial waves, so we disperse
in the new amplitude

f&(v) =hr(v)/v' (3.6)

with a new hrst-order Born approximation given by

g2
Bt(v) = Q/(1+/3'/2v) .

2Vl+1
(3.7)

The 1V/D equations for f&(v) now diverge, so that a sub-
traction should be made. Luming preferred to use a
simple cutoff and examined the dependence of the re-
sults on the variation of the cutoG. %'e would like to

2 ——1

X O (3+—
) . (3.9)

Unfortunately the integral IC/(v) cannot be evaluated
analytically in terms of elementary functions. It is
possible, however, to express K/(v) in terms of Clausen's
integral as shown in Appendix A.

The analyticity properties of E&(v) now allow one to
extend the result (A7) to all values of /. We need to
construct a function whose discontinuity across the
left-hand cut is

iv'+"2$Q/(1+ 1/2v)/v'+' j' (3.10)

and which has no other singularities. Remember that

Q/(s) =I'2(s)Qo(s) —W/-2(s)

where W& z(s) is a polynomial of order (t—1).The func-
tions I'3(1+1/2v) and W/ 2(1+1/2v) are analytic
everywhere in the v plane except at the origin, where
they have tth- and (t 1)th-order poles, re—spectively.
Suppose we take

I,(1+1/2.) 2 4 1
t
Qo(1+1/2v) '

2 3(v) = In
~

1+4v )
arctan(2v~ 2)——ln2+ C12(or—2 arctan(2v'/ ))+iv'/

~

Vl/2 V3/2
lv

v'/'

V1/2Vl/2

2W/ 2(1+1/2v) I'&(1+1/2v) arctan(2v'/ ) iv / Qo(1+1/2v)
+

(W/ 2(1+1/2v)+i„/
~

(3.11)
vl/2+2

where Clo(8) is the Clausen integral

C12(8)—=— ln(2 sin-,' t)dt .

The imaginary part of this function reduces to

Im/f 3(v) = v'+'/ PQ/(1+1/2v)/v'+']'
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as required. However, the real part of A&(v) given by

)Pi(1+1/2v) ' 1 4
Remi(v) =I ln

I
1+4v

I
arctan(2v'~2) ——ln2+

V3/2 v

Clq(s —2 arctan(2vi~ ))
V3/2

vl/2V
l+1

2%i(1+1/2v) P~(1+1/2v) arctan(2v"')
(3.12)

has poles at the origin, which have to be subtracted out before we can identify Red&(v) with ReIC&(v). The ex-
pansion of all the terms for small v involves the multiplication of several terms and a lot of tedious algebra. De-
pending on l, one has to go to several orders of v. Using the series expansion and a recurrence relation of Clausen's
integral, expanding the logarithm and arctan, and collecting all terms of the curly bracket of (3.12), we obtain for
the expansion in terms of v'.

(bracket of (3.12)}=xsa'(1 —ln2)
+n~v(xs ln2 —(7/15) j+a~v2L —(2/7) Ln2+ (2/15)+ (11/135)+(106/810)j

+a'v'L(2/9) ln2 —(2/21) —(11/225) —(106/2835) —(1399/28 350)j. (3.13)

This is enough for s and p waves. We now subtract the divergent terms (3.12) to find,

(1+1/2v)' 1 4 16
ICi(v) = ln

I
1+4v

I
arctan(2v"') ——ln2+ C1~(x.—2 arctan(2v'")) ——(1—ln2)

v v 3

~2 7 q ~1 1 q 32~103 2 ) 2 1 (tan '(2v'~') 8—32I - »2 ——
II
-+

I

—
I

—- 1"2
I

—— 1+—
I

—2 —— (3 14)
lS 15~ lv 4v'I v l315 7 J v 2v l v'~' 3v

Actually, to find E(v) for d waves, would require terms
up to the sixth order in the expansion of the large
bracket of (3.12). This is probably not worth the labor
involved.

Expressions for the scattering length for s and p
waves can be found from the above expansions. At v =0

Qi(111/2v)/v'+ =s'~ I'($+1)/F(1+2)

so, for s waves

effective range values for s, p and d waves. At the same
time the scattering lengths and two eGective-range
values were calculated in Copenhagen using formulas

L5

&o '=
I 1 kg'I:o(0) j/g', —

x%o(0) =—,'(1—ln2) =0.409;

whBe for p waves

ai '= L1—0.375g'Ei(0) j/xg'
and

(3.15)

(3.16)

LO-

0,5
4P

It i(0)=32P, ln2 —(7/15) $
8

+128I —(2/7) ln2+ (103/315)j
+128$(2/9) ln2 —(1297/5670) j —0.02. (3.17)

The efI'ective range values were then calculated by
two difFerent methods. Equation (3.8) was integrated
in Huntsville using the AMxmN computer system and
the result substituted into (3.9) to give a plot of the

8 L. Lewin, Dilogarithms and Associate Functions (MacDonald
and Company Ltd. , London, 1958).

FIG. 1. EGective-range plot for S wave, g'=3, p=i. The
Schrodinger equation is solved exactly while the N/D Fulton-
Shaw and determinantal methods are evaluated using Grst Born
approximation only.
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(A&), (3.14), (3.15), (3.16), and a table of Clausen's

integral. The resulting numbers checked with each
other which gives us conhdence that d-wave values
from the computer are also reliable. The resulting
curves for g'=3 and g'=1 are plotted in Figs. 1 to 6.
We did not calculate the D function for negative energies
to look for bound-state poles because we were mainly
interested in the application of this method to scattering
problems.

The determinantal method of Baker' assumes that
the .Vi(v) function is the same as its first Born approxi-
mation, so we get the following expression for the
partial-wave scattering amplitude.

«P

-+x
2

Bi(v) 1 B((v')v"+"'
=1—— dv'.

~ P 'll P —V

(3.18)

After substituting for Bi(v') from (3.7) the effective-
range expansion becomes

v'+'~' cot8)(r )= (1—-'g'M~(v))

where

1)-
X Qil 1+—

l
(3 19)

2v'+' k 2v)

1 "
Q t(1+p'/2v') v"+'~'

Mi(v) = I' — dv'. (3.20)
7l p V P —V

OO

FIG. 2. ERective-range plot for S-wave scattering with g~=1.

Obviously 3fi(v) and IC&(v) have different properties
with regard to convergence. Both integrals are con-
vergent in potential theory while their equivalents in
relativistic scattering problems do not have this be-
havior. The equivalent of (3.8) is convergent, but the
equivalent of (3.20) is divergent, and requires a sub-
traction. Luming has integrated (3.20) for s, p, and a
waves and we quote his result:

iM ~(v) =P~(1+1/2v)Ltan '(2v'~')/v'~ ]—A ~(v),

where

X/D results, although, in the first-order Born approxi-
mation, both of them are poor representations of the
Schrodinger-equation values. As an approximation

/=3 P NAVE

IO

Ao(v) =0; A i(v) = 1/v; A2(v) = 2/v+3/4v .

The effective-range values calculated from (3.19) are
also shown in Figs. 1 to 6.

Finally, we have checked some of the results given by
Luming for the efI'ective-range values calculated from an
exact solution of the Schrodinger equation and for the
full iV/D equations with the first-order Born term. These
two curves are plotted for comparison in Figs. 1 to 6.

IV. RESULTS AND CONCLUSIONS

The original purpose of this investigation was to
compare the eEective-range values calculated from the
full .V/D equations and the Fulton-Shaw approxima-
tion. It is obvious from Figs. 1 to 6 that the Fulton-
Shaw approximation predicts values fairly close to the

~ M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958).

O

FIG. 3. Effective-range plot for P-wave scattering with g~=3.
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FIG. 4. KBective-range plot for I'-wave scattering with g'= 1.

then, the Fulton-Shaw approach will give values which
are qualitatively equivalent to the ones given by the full
X/D equations. However, the amount of time saved in
computation when using the Fulton-Shaw method is

20-

FIG. 5. EBective-range plot for D-wave scattering with g'=3.

FrG. 6. EBective-range plot for D-wave scattering with g'=1.

considerable. One does not have to solve the Fredholm
equation for V&(v) and one does not have any subtraction
points in the formalism.

When we compare the Fulton-Shaw approximation
with the determinantal one, there is a large difference
between their respective results. The fact is that both
methods involve a mutilation of the 3'/D equations,
designed to produce approximations involving only
principal-value integrals. Nevertheless, the convergence
properties of these integrals are very different and this,
together with the multiplicative factor of LB~(v)] '
with the Fulton-Shaw integral, produces significantly
diferent results.

In nonrelativistic scattering there cannot be a reso-
nance so the generalization to relativistic scattering is
not obvious. However, we can safely say that the
Fulton-Shaw approximation in nonrelativistic scat-
tering is as reliable as the full X/D solution in predicting
the qualitative features of the scattering.

One may also observe that the deviation between the
various curves decreases as the angular momentum
increases, but increases as the coupling strength in-
creases. This is just as expected. The question is
whether one can be satis6ed with the results of a first-
order calculation. All the methods of constructing the
amplitude are bad in comparison with the Schrodinger-
equation results. We expect that this deviation will be
reduced considerably by finding a better approximation
to the far away left-hand cuts in E&(v). Higher order
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terms in the potential will have to be taken into account
and calculations are presently in progress to include the
second-order Born term and thereby improve the
agreement between the exact solution and the modi6ed
determinantal approximation.

hence for v&0

J(v,u) =
v'

27r arctan(uv'~2) inln. (1+u'v)
+

V1 j2
(A4)
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APPENDIX A

but for v(0 we must go back to the integral of (A3)
and obtain

J(—1/u' u) =2su ln2. (AS)

2 u' arctan(u'v'")
da' —2 ln2

2+o."v
Eo(v,u) =

V 1/2

Q dO!

p 2+& v

a

+ In~ I+u"v~du'. (A6)
p 2+n"v

If we now express BED/Bu in terms of the basic integral
using (A4) and (AS) and integrate with respect to u we

get

Evaluating the integrals we obtain

1 "ln'(1+4v')
Eo(v) =— dv'.

4so v'+'(v' —v)
(A1)

+ CI2(vr 2ar—ctan(2v'~2))
V3 j2The principal-value integral may be performed by

using parametric differentiation. One introduces the
parameter a and writes

2u i In'~ 1+u'v
~——ln2+ (A7)

4v'f2

The integral E~(v) may be evaluated in the following
way: Suppose we consider 5 waves for simplicity with

Eo(v,u) = In
~

1+u v
~

arctan(uv'~2)
V3/2

2

Eo(v, u) =-
4m-

"In'(1+u'v')
dv

v"~'(v' —v)
(A2)

where

C12(8)—= — In(2 sin2t) dt

J(v, u) =
"ln(1+u'v')

dv =
v"~'(v' —v)

Introduce the basic integral

2xi
ln(1 —uv"'), (A3)

VI/2

is Clausen's integral, tables of which are readily avail-
able. ' When u=0, Eo(u, v)=0, so there are no extra
terms. The integration for higher partial waves is per-
formed in a similar way.


