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"Incoherent Droplet" Model of High-Energy Large-Angle Scattering*
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The high-energy large-angle scattering between two hadrons is thought of as incoherent scattering be-
tween two objects of complicated internal structure. A model is proposed whereby the incoherence is simu-
lated by a simple recipe. Consequences of the model can be deduced simply. The salient feature of the result
is that transverse momentum transfer is strongly inhibited for kinematical reasons. Orear s empirical fit
for large-angle p-p scattering is obtained.

1. INTRODUCTION

STRIKING general feature of two-body collisions
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of hadrons at high energies ()10 BeV) is that the
angular distribution displays qualitatively different
behavior in diferent angular ranges:

(a) Near the forward direction it is sharply peaked,
and has the form exp( —nt), where t is the invariant
4-momentum transfer. There is indication that a similar
peak occurs near the backward direction. '

(b) At large c.m. angles (i.e., near 90'), it decreases
very rapidly with increasing transverse momentum
transfer P~=P sine, where P and 8 are, respectively,
c.m. momentum and scattering angle. ' For p-p scat-
tering at t) 2.3 (BeV/c)', Orear' has pointed out that
all existing data fit the formula

do/dQ= A exp( —uP~),

A =3.0X10 "cm'/sr,
u '=152 MeV/c.

medium; for large-angle scattering, subunits of the
droplet act independently. Motivated by the analogy,
we suppose that hadrons have complicated internal
structure, and that the ideas of coherence and inco-
herence might be useful in understanding the behavior
of the angular distribution.

Byers and Yang' have proposed a "coherent droplet"
model for forward scattering, in which the scattering
process was pictured as the traverse of a particle
through an optical medium. %e propose here a "droplet"
model in which incoherent rather than coherent effects
are simulated, in an attempt to reproduce the experi-
mental features of large angle scattering. Ku and Yang'
have suggested some of the ideas of the present model,
which may be called an "incoherent droplet" model.
Compared to the "coherent droplet" model, it em-
phasizes momentum space properties rather than con-
figuration space properties. The two models should
complement each other, for they apply under different
physical conditions.

The marked diGerence between forward and large-
angle scattering reminds one of a more familiar phe-
nomenon, the scattering of waves by a liquid droplet,
where coherent scattering produces a sharp forward
peak, while incoherent scattering accounts for the rest.
That is, for forward scattering the droplet acts as a
whole and may be approximated by a dispersive

2. DEFINITION OF THE MODEL

For simplicity we discuss the elastic scattering of two
spinless protons of mass M. In the limit of inhnite
energy, where spin and mass probably make little
diQ'erence, the gross features of our result should be
shared by all two-body reactions.

%e suppose that the colliding protons in the initial
state are made up of X subunits each, where X—+Do.
The subunits in a proton have a dehnite energy and
momentum distribution. The momentum distribution
is spherical symmetric in the rest frame of the proton.
The individual 4-momentum of a subunit may be
space-like or time-like, but the sum of the 4-momenta
should be the physical 4-momentum of the proton.
Intuitively we think of .V as the potential number of
pieces into which a proton can be "fractured" when it is
hit. Since, in a naive view, this number depends on how
hard the proton is hit, we expect S to increase with
total c.m. energy. Ke shall see later that this is in
fact necessary in order to agree with experiments, Thus
the subunits are not properties of isolated protons, but

+ Research sponsored by the U. S. Air Force Ofhce of Scientific
Research, Ofhce of Aerospace Research, U. S. Air Force, under
AFOSR Nr 42-65.

f John Simon Guggenheim Fellow on leave of absence from
Massachusetts Institute of Technology, Cambridge, Massa-
chusetts.

csee, e.g., K. Foley, S. Lindenbaum, %. Love, S. Ozaki,
J. Russel, and L. Yuan, Phys. Rev. Letters 11, 425 (1963); 11,
503 (1963); O. Czyzewski, B. Escoubes, Y. Goldschmidt-Cler-
mont, M. Guinea-Moorhead, D. Morrison, and S. Unamuno-
Kscoubes, Phys. Letters 15, 188 (1965), and the work of many
other groups quoted in these papers.

~ C. T. Coffin N. Dikmen, L. Ettlinger, D. Meyer, A. Saulys,
K. Terwilliger, and D. Williams, Phys. Rev. Letters 15, 838
(1965);H. Brody, R. Lanza, R. Marshall, J. Niederer, %. Selove,
M. Shochet, and R. Van Berg, ibid. 16, 828 (1966).'D. S. Narayan and K. V. L. Sarma, Phys. Letters 5, 365
(1963);A. D. Krisch, Phys. Rev. Letters 11, 217 (1963);J.Orear,
ibid. 12, 112 (1954); G. Cocconi, V. Cocconi, A. Krisch, J. Orear,
R. Rubinstein, D. Scarl, B. Ulrich, %. Baker, E. Jenkins, and A.
Read, Phys. Rev. 138, B165 (1965}.

4 See Ref. 3. Krisch suggested exp( —aPQ) which fits small-
angle data better than large-angle data. Orear's form fits l
angle data better.

arge- ' N. Byers and C. N. Yang, Phys. Rev, 142, 976 {1966).' T. T. Wu and C. N. Yang, Phys. Rev. 137, B708 (1965).
j.46 1075



KERSON HUAN6

of the colliding two-body system. The number E is a
Lorentz invariant associated with a given colbsion.

During the collision the 2S subunits in both protons
are freely regrouped into two groups representing the
outgoing protons. The individual 4-momentum of a
subunit remains unchanged in the regrouping, and there
is no restriction on the possible regrouping except that
the final protons have physically permissible 4-momenta.
It is not required, for example, that the final protons
each have E subunits; nor do they have to have any
speci6c 4-momentum distributions. This is consistent
with the philosophy that the subunits are meaningful

only for the colliding system.
Given the 6nal 4-momenta of the protons, the relative

probability for the 6nal state is the number of ways in
which the 2E initial subunits can be regrouped to yield
the final state. The relative probability gives a relative
angular distribution at a fixed energy.

To calculate an absolute probability, the model has
to be supplemented by a description of small angle

scattering (for which this model does not claim validity),
and multiple production processes such as p+p ~ p
+p+m. The former seems difiicult, whereas the latter
canbe accommodated by a natural extension. A11we have
to do, for multiple production, is to regroup the 2g
initial subunits into more than two groups, requiring
only that each group have total 4-momentum cor-
responding to an appropriate 6nal particle. Assuming
that the elastic cross section can be neglected compared
to the production cross section, we can obtain an
absolute probability for p-p elastic scattering by
dividing the relative probability obtained earlier by the
sum of all relative probabilities for multiple production.
In this paper, however, we calculate only the relative
probability for elastic scattering.

Some consequences of the model are immediately
obvious. Ke recall that the momentum distribution in
one of the colliding protons is assumed to be spherically
symmetric in the Lorentz frame in which that proton
is at rest. It follows that in the c.m. frame the momen-
tum distribution is constant over the surface of an
ellipsoid of revolution, with major axis along the
incident direction (the x axis). In the limit of infinite
energy, the ratio of minor to major axis approaches
zero. The Inomentum distributions of the two initial
protons are mirror images of each other with respect to
the y-z plane. Since in the limit of in6nite energy the
combined distributions of the two protons contain
overwhelmingly more longitudinal than transverse mo-
mentum, the model implies a small probability of trans-
verse momentum transfer.

The maximum transverse momentum transfer is
achieved when one of the final protons is given all those
subunits in both initial protons that have a positive
component along the transverse direction. For any
reasonable momentum distribution it is a 6nite number
proportional to N. Since physically the maximum mo-

mentum transfer increases with energy, we see that
unless E increases with total c.m. energy, the angular
distribution will be strictly zero in a finite neighborhood
of 90, and this neighborhood will enlarge with in-
creasing energy. Such a behavior does not agree with
existing experiments. Therefore E should increase with
total c.m. energy, in accordance with our intuitive
expectation discussed earlier.

Ke now work out the model in more detail. In
the c.m. frame, let the initial and final 4-momentum
of one of the protons be respectively P„=(P,E), and
Q„=(Q,E). We choose the x axis along the initial mo-
mentum, and let the final momentum lie in the x-y
plane. Thus

P= (P,o,o),
Q=(P cosH,P sinH, O).

Let v be the proton velocity in the c.m. frame, with

P=Mv/(1 —s') "',
E=iV/(1 —s')"'

(2)

Then a Lorentz transformation along the x axis with
velocity ~v will bring either proton to rest.

We denote by p„=(p, po) the 4-momentum of a sub-
unit in either proton, in the c.m. frame. There are then
altogether 2X values of p„.From this set of 2E values
choose a subset G, arbitrary except for the condition

In the limit X—+~, the integral above can be evaluated
by the method of saddle-point integration. Putting
X=lnz, we find the leading contribution to the integral
to be

lnW(Q) =Q In(1+e"")—XQ,

Then 6 is a possible grouping that constitutes one of the
outgoing protons. The complement of 6 automatically
satisfies all the kinematic requirements for constituting
the other 6nal outgoing proton. The relative probability
W(Q„)for the final state specified by Q„is the number
of subsets G that satisfies (4).

To iOustrate the counting method in calculating
W(Q„)we consider a simpler example in which p„is re-
placed by a one-component quantity p. Ke assume
that by choosing the unit of momentum sufFiciently
small, all the 2X values of p will become integers
(pq, p, ,p ~}. Consider the polynomial g„(1+s"),
where the product extends over all the 2E values of p.
The coefficient of z@ in the polynomial is the number of
partitions of Q into integers belonging to the set
(pr, p, , ,p2~), with each p, appearing at most once
in a partition. This coe%cient is given by
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where 'A is such as to maximize in@'.

Q= 2 pi(1+e-"")

which, by reason of symmetry, is satisfied by

30=0. (14)

The generalization to our actual problem is straight-
forward. Ke merely give the result:

lnW(Q„)=g ln(1+e"'")—A, Q, (8)

Q.=Z p./(1+e-" "),

where X„=(X„X„,X„Xp) is a 4-vector, X.p denotes
4-vector scalar product, and the sums extend over all
21V subunits of the initial protons. To calculate W(Q„),
we have to solve for ),

„

from (9) and substitute the
result into (8).

The method of counting can be immediately general-
ized to obtain the relative probability for multiple
production processes. Suppose in the 6nal state there are
in addition to a proton n particles of 4-momenta
Q~„, ,Q „.Again consider first a simpler example in
which Q;„is replaced by a one-component quantity
Q;, and consider the polynomial

g„(1+zp+sp"+. +s«&) .
The number of ways to divide the 2X values of p into
pp+1 groups, I of which having sums of p values equal,
respectively, to Q~, Qp, Q, is the coeKcient of
s~'s2@' z„@ in the polynomial. The relative proba-
bility for the 6nal state in our problem can now be
immediately written down:

W(Qr», Q„„)=g ln(1+e~'&+ . +e""")'

To proceed further we need to specify the momentum
distribution of the subunits. For cV suf5ciently large,
we can introduce a 4-momentum distribution function
f(p), such that f(p)d'p is the number of subunits whose
4-momentum lies in the volume element d4p about p„,
with the requirements

d'P f(P) =-~'

d"P P.f(P) =F.,

where fV is Lorentz-invariant. Under a Lorentz trans-
formation p„~p„',the function f is transformed into
f', with

f(P) = f'(p') (16)

«ppR ep(&p &)I (17)

where po ranges from —~ to +~, and 0. and P are
numerical constants. To satisfy (15) we put

C= (n'P/w' )E
p =M/1V.

(18)

Let the distribution functions of the two initial protons
be denoted respectively by f&(p) and fp(p) in the c.m.
frame. A Lorentz transformation of velocity v along the
x axis transforms fq into a spherically symmetric func-
tion f', and one of velocity —p transforms fp into f' For.
convenience we take

—(4'Qr+ +&«Q«), (1O) Using (16) we find that

where the n 4-vectors Xj„, ,h„„aredetermined by

Q =Q(p e""&)/(1+e"»+ e"«&)

(i=1, , e). (11)

3. ANGULAR DISTRIBUTION

, (P* ppp)'—
f~(p) =«xp —o' +P'+P '

pp ~p*

(1—v') "' (19)

X,=O. (12)

Before introducing a speci6c assumption for the mo-
mentum distribution of the subunits, it is possible to
deduce some consequences without it. First consider the
equation for Q, in (9). By noting that Q, =O, and the
fact that the momentum distribution is cylindrically
symmetric about the s axis we find

Fi(p) = dpofr(p) =&(w"'v/oP)

XemL —~'(P*—o)'—~'(P'+ p*')j (2O)

and fp(p) is the same except that v is replaced by —p,
with C unchanged. The momentum distribution cor-
responding to f~ is

Next consider the equation for Qp in (9). Noting that
Qp=E, and that by definition P„pp——2E, we subtract
p p„ppfrom both sides of the equation to obtain

where
y'=a'P'(1 —v')/(P'+p' ')

o =pp/(1 —p')'". (21)

O=Q pp tanh(X p —Xppp) To obtain Fp(p) from F&(p), repls. ce o by —o.
Using (12) and (14), and replacing sums by integrals,
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iV[P'+v'a'(1+2P'u') j X

E cos8= —g(z)
aP'(1 —v')

P sin8=1r "'a—
'&Vg(z),

(26)

(27)

where the terms neglected are at least of order X,', and

z= 2a/Xv, (28)

g(z) = dh(sech/)' exp( —z'l') . (29)

Table I contains numerical tables for g(z) and —dg(z)/dz.
The following expansions can be obtained:

v.pn(22m —1 1)82 1

g(z) = 1+Q (—z')"
n I2~nn= j.

vr' 7x'
=1——z'+ z4+ . . (30)

12 480

g(z)=(v-"'/2z)(1 ——',z '+zz '+ . ) ~ (31)

~here 231„1is a Bernou11i number. Dividing (26) by
(27), we get

we reduce (8) and (9) to the following set of equations:

lnW(Q„)= d'p(F1+F1) in[1+exp(&,p +&„p„)]
X,I' —cos8—X„Psin8, (22)

P cos8= d'P(F1+F1)

Xp, [1+exp(—X.p.—X„p„)j—', (23)

I' sin8= d'p(F1+F1)

X~,[1+-p(-~.p.-4p, )7-'. (24)

For 8=90', (23) requires X,=O. Thus for large angle
scattering we expect X, to be small. Expanding (22)—(24)
in powers of X„andkeeping only lowest order terms in

we hnd

lnW(Q„)=21r '".V duu 'g(u)

X„I'sin8——X~ cos8, (25)

TABLE I. The functions g(z) and h(z), de6ned, respectively,
by Eqs. (29) and {39).

0
0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0
20.0

g (z)

1.000
0.992
0.969
0.935
0.895
0.851
0.806
0.762
0.720
0.680
0.644
0.497
0.398
0.330
0.280
0.244
0.2 15
0.192
0.174
0.146
0.125
0.110
0.098
0.088
0.044

0
0.159
0.290
0.378
0.428
0.447
0.445
0.431
0.408
0.383
0.356
0.238
0.162
0.115
0.084
0.064
0.051
0.041
0.033
0.024
0.018
0.013
0.011
0.009
0.002

1.23
1.06
0.913
0.778
0.661
0.563
0.482
0.414
0.358
0.311
0.272
0.151
0.094
0.064
0.046
0.034
0.026
0.02 1
0.017
0.012
0.009
0.007
0.005
0.004
0.001

X=1Vp/(1 —v') '" (35)

where E~=P sin&, and where s is to be found by solving
(27). For high energies and large angles the last term
in the bracket may be dropped. Thus the parameters
P and p, become irrelevant.

We note that g(z) is a monotonically decreasing func-
tion with g(0)=1. For (27) to have a solution, 'it is
therefore necessary that

&&1r"'aMv/(1 —v')'~'. (34)
A simple reason for this requirement has been given
earlier. There are now two possibilities. Either E in-
creases faster tha, n (1—v') "' as v —+ 1, or E is pro-
portional to (1—v') '".

If the former were the case, the 6rst term in (33)
would dominate. This would lead to the prediction that
W(Q„) is a decreasing function of z, or that it is an
increasing function of 8 at 6xed v. Since this prediction
disagrees with experiments, we conclude that

v2

P'+vPa'(1+2PPuP) tang

where Eo is a numerical constant.
(32) We shall make the approximation P=iV/(1 —v')"'

in (27), so that z becomes purely a function of sin8:
which is small at high energies (v=1) and/or large
angles (8=90 ). Using (28) and (32), we can rewrite
(25) in the form

g(z)/g(zp) = sin8,

where so is the root of

(36)

2$ "dN
lnW(Q„)= — —g(u)

2' P'(1-")
(33)

z [jP+v'a'(1+2P'u') j tan'8

g(zp) =1r"'aM'/A p. (37)
The di8erential cross section for p-p elastic scattering is
given by (33) up to a factor depending on the total
c.m. energy:

do/dQ=A(v) exp[ 2v "'EP—(z)/(1 v')'~'j, —(38)
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where 9

h(z) =7r'" dh t(secht)' erf(st),
0

(39) .8—

7—

and z is a function of sin8 determined by (36). A table
of h(z) is given in Table I. The only free parameters in

(38) are Xo and sp, which are related through (37).
We discuss the two limiting cases so«1 and s&)1, for

which we can solve (36) by using respectively the ex-
pansions (30) and (31).The final results are

da 7r 1/2—=A(v) exp ——
dQ 3

.6—

~2

Ep(Ãp sin8 —1)X,(z,«1), (40)
(1—v') '~'(1 —sine)"'

0 QI G2 0.5 0.4 G5 0.6 0.7 QS 0.9 LO Sin 8
0 IO 20 30 40 50 60 70 90~'~

do—=A(v) exp
dQ

+3f ssn'8
(z~&1).

sp(1 —v') "' (41)

Frc. 1. The function plotted is proportional to ln(da/dO)—ln (do /0) 90'. The model is not designed to be valid for small 8.

Neither of these agree with experiments.
For sp of the order of unity, (36) has to be solved

graphically. The results are illustrated in Fig. 1, where

(42)h(sin8) —=h(z) .

We see that in a wide neighborhood of 8=90', h(z) is a
linear function of sin8. Accordingly we expand h(z)
about 8= 90'(s= zo), neglecting terms of order (1—sing) ',
and obtain

do/dQ = A (v) expL —(2a/zo)P~], (so= 1) (43)

This conforms to Orear's empirical formula (1) for
p-p elastic scattering, if A(v) is independent of v, and
zp/2a= 152 MeV/c. There is still some freedom in the

choice of zo. For illustration we choose so=0.7. Then

a =2.3(8eV/c)
—'

iV0 ——5.4. (44)

At a laboratory momentum of 30 BeV/c, we have
(1—v')"'=-' which gives 7lr=22.
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