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within the framework of the SU(2)XSU(2)
algebra used in this paper. We therefore appeal to the
crude and ridiculously large upper limit

to estimate that the calculated value of F(co' —+ x'+y)
can be decreased by no more than 15% from the value
predicted in Eq. (49).

A by-product of the calculation is obtained mhen
either side of the Eq. (43) is equated to the appropriate
coeScient in V, s(t) Ldefined in Eq. (4)j. Since

V' s(t) = d~x&p', a
I LP (x,0),F,~(0)j I p, b)

=(p', ILT A'(0))lp»&

=i@.s,&p', oI s, (0) I p, b&, (51)

we obtain an expansion in powers of t for the pion form
factor. The term linear in t yields an expression for the

pion charge radius in terms of the rate F(uP ~ xo+y),
a result obtained by Cabibbo and Radicati. "

In conclusion, it should be stressed that a number of
unproved assumptions have been made in the deriva-
tion of our result. Some of these have to do with the
nature of singularities of commutators of currents, and
they are certainly at variance with what is found in
perturbation theory. Calculations such as this one may
perhaps be viewed as encouraging to the point of view
that the assumptions are correct. Other assumptions
have to do with the states which are taken to "saturate"
the sum rules. The structure of matrix elements which
have been investigated is such as to suggest that if the
coupling constants do not grow with mass, then the
higher mass and higher spin-state contributions, in
addition to yielding sum rules for F(f ~ x+y) in
terms of I'(f' ~ 2x), say, will not significantly alter the
numbers so far obtained.

I mould like to acknowledge useful discussions with
Dr. D. Geffen and Dr. J. Meyer.

"N. Cabibbo and L. Radicati, Phys. Letters 19, 697 (1965).
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A class of sum rules due to Fubini is rederived from a point of view which clarifies the assumptions made
about the singularities of field operators. A calculation of the isovector magnetic moment is performed in
the isobar approximation. The result F1~(0)=$ emerges as a model-independent consistency condition,
but the calculated value E~"(0) =3.64 is in disagreement with the experimental value.

" 'n a recent paper Fubini' presented a new method of
obtaining sum rules of interest in strong-interaction

physics. It is the purpose of this note to present a set of
assumptions which lead to an alternative derivation of
the Fubini result. Sum rules for the isovector form fac-
tors of the nucleon are derived and their properties are
discussed.

We consider the matrix element T„~s(p',k; p, q) de-
fined by

T„~s(p' k p q) = i dx e'~ —tt(xo)

isospin or SU(3) labels, so chosen that the operators
(x) and ps(0) are Hermitian. The matrix element

(p', k; p, q) may be decomposed into invariant fuzz-
tions. For example, if the particles described by the
state vectors

I p) and
I
p') have spinzero, then the most

general form of the matrix element is

T„ t'(p', k; p,q)=P„Ag s(v, t)

+Q„A2 s(v, t)+h„Ag s(v, t) . (2)

W'e have used the conventional notation
X&p'II j;(x)A'(0)ll p) (1)

Here j„(x) is a current operator, ps(0) is scalar or a
pseudoscalar field operator, and the indices o, P may be

*Work supported in part by U. S. Atomic Energy Commission
Contract No. AT-(11-1)-1371.

' S. Fubini, Nuovo Cimento (to be published},

P.=k(p, '+p.),
Qv 2 (kv+qv) &

~.= p' —p.=q.—kv

t=52
7

v=P Q.

(3)
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Let us now consider

kvT. s(p'k pq)

.'" Ia(x.)&p'ILj..(x),~'(0)jl p&,
ax„

d x e'"&p
I Lj,-(x),ys(o) jl p),

+ d*s'"*a(x )&O'I I a"j:(x)A'(0)jl P»

+ d*.*' a(x0)&p'ILjo (x),&»'(0)jl p& (4)

The consequences of crossing symmetry may be deduced
from the formal identity

T.'(P, -t P', q)'-=T (P'» P,q).

If, for simplicity we assume that the particles have iso-
spin» then we may write

A; s(v, t)=b &&A, &+&(v,t)+-,'I r, r&&)A & &(v-,t), (9)

and the crossing relations are

Ag&+&(v, t) = &A&&~&(—v, t)*,
A 2&+&(v,t) = wA 2&+&(—v, t) *,
A 4&+&(v,t) = WA 3&~&(—v, t)~.

If the A '(v, t) are assumed to obey unsubtracted dis-
persion relations, then

We shall be interested in the limit v —+. Under those
circumstances the erst term on the right gives no con-
tribution. ' The second term will vanish if the current is
conserved. If the current is not conserved, we shall
assume that it is partially conserved, i.e. that the di-
vergence of the current is a less singular operator than
the current itself. Thus the quantity

and

2v " a&& '(v', t)
A &&-&(v,t) =— dv'

7l p V V 2|c

2 " v'a, &-'(v', t)
A '(v, t) =— dv'

/2 2
p V —V —Z6

for 4= 2, 3. Hence Eq. (6) yields

(12)

d«' a(x,)&P IIa j„-(x),+s(O)jlp&,

may be expected to satisfy unsubtracted dispersion
relations, and in the limit v~~ it will be dominated
by the last term in (4), which is given by

dx e*"a(x.)&P'I Ljo (x)A'(0) jl p&

d'x&P'll j:(*0)A'(0)jIP&

and is a function of (p' —p)' independent of v. We
therefore obtain, as a result of our assumptions about
the nature of the current operators, that

I~ &"T.'(P'»; P,q) =(P'ILQ, &t'(0)jl p), (6)

p

a&&-'(v', t)dv'

=Dsovector part of (p'I LQ, s&s(0)jl p)j, (13)

which is just Fubini's result.
9 e now proceed to apply the technique to the deduc-

tion of a sum rule for the isovector form factor F&'(0).
To do this, we take the states

I p), I
p') to describe

single nucleon states. The most general form for
T„s(p'»; p, q) is given by

T.'(P'»' P q)
=4&(p )V4(V.A ~'(v t)+ LV»0]A ~'(v, t)

+P„(As S(v,t)+QA4 S(v, t))
+Q„(A4 s(v, t)+QA&& t&(v, t))

+D„&A7 s(v, t+QA&& s(v, t)))N(p), (14)

where we use the notation Q=»Q". If j„(x) is taken
to be the isospin current, so that

for all t. It appears that for a conserved current

&"T.'(P'» P,q)= &P'II.Q A'(0) jl p&,

and
avj (x)=0

d'xjp (x,o)=T,
should hold for all values of v as well, but we shall see
that the v dependence of this sum rule is spurious.

For spinless particles it follows from (2) that
we obtain, after some straightforward manipulations,
two identities

A 4 (v, t)+vA 4 &(v, t)

+(Q'—-'t)(-'As& '(,t)+As'-'(, t))=0, (16)

pvT ~t&(p' p p q) = (v—-'P h)Ag s(v t)
+(Q'—-'Q h)A2~s(v t)+(Q. h —-'b')Ags(v t)

~ If the commutator is expanded in usual fashion by the insertion
of a complete set of states, contributions are only possible from
single particle states. These, however, must have four-momentum
(P~Q}, i.e. (mass}~ =p'+P~2v, and there are no such states for
large v. +(Q' —-'t)(lA ' '(,t)+A '-'(.,t))=G(t).
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Here G(t) is defined by

(P'I [T.~'(0) jl p&

=4~(p')v42[r-, ~~jn(p)G((p' —P)'), (18)
so that

and (17) that

a& (v, t)+va4 (v, t)+(Q 4t)—

X [gas' '(v, t)+a4' —'(v, t)j=0, (24)
and

G(t) = (V2gK»&»&. (t))/(m '—t), (19)

and we have taken k'=0, so that

Q t&=Q'+ 't- (20) Thus Eq. (16) may be rewritten in the form

ma&&
—'(v, t)+2vam' —'(v, t)+va»' '(v, t)

+(Q'—'t)P. a4'-'(v, t)+a7'-'(v, t)j=0 (25)

The constant g in (19) is the pion-nucleon coupling
constant and K~~ (t) is the pion-nucleon vertex func-
tion, normalized so that

2 " v'a&'-'(v', t) 2v'
dv '+

7l p V V
/2

p

a4&-&(v', t)
dv

V V

KNN~(mm )= 1 . (21)

It is generally beheved that KN~ (t) is a slowly varying
function of t for small t, and we shall approximate
K~~ (0) by unity when the question arises.

It follows from (8) and the assumption of unsub-
tracted dispersion relations that

}.e.,

2 dv'
+-

p

a4& (v', t) =0. (26)

[ v'a, &—-&(v', t) ."a4—&-&(.', t)5=0,
V V

and

2V
A;& &(v,t) =— a' '(v't )

dv' 4=2, 3 4, (22)
V V Z6

This is just the result which is obtained by letting
v -+44& in (16). We use (25) to rewrite (17) in the form

dv'(2ag' '(v', t)+a4' '(v', t)) =G(t), (27)
2 " v'a;& &(v', t)

A '(v, t)= — dv' 4=1, 5, 6, 7, 8. (23)
p V —V —'E6

We will now show that the v dependence of the sum
rules (16) and (17) is spurious. ' It follows from (16)

Vl p

which is again equivalent to letting v ~~ in (17).
The absorptive parts a '(v, t) are determined from

the isovector coefficients of y„, [y„,Qj, F„, t1„Q in
the expansion of

t.'(P', k; P,q) = d~ '"'&P—'I—[j:(*),0'(0)3 I P&
2

= —-', (2&r)4 p(8(F —p' —k)(p'I j„(0)I n)(n I
Qt'(0)

I
p)+crossed term}

=——',(24r)4 Plh(F —P' —k)(P'I j„(0)In)((nl j 4'(0) IP)/(m ' q'))+—crossed term}. (28)

The single-particle terms are of the form

(2~)4 2M (p"
I j.&(0)

I p)dP" ~(p'" JtI') t'(P" P' k)—Z &p'I j:—(0) I
p—") +crossed term

2 (24r)' epinH 8$~ —
g

Q')) 2 2kI&p'I jv (0) I
P'+k&&p'+k

I j ~(0)
I p)(m '—q') '+crossed term. (29)

HP I I1H

When the single particle contribution comes from a
nucleon state then M=rn. W'ith the current matrix
element written in the form (k'=0):

(p'I J„-(o)I
p")=a(p') ..[&„(F,'(0)+ F,'(0))

—((P"+P')/2m)F2'(o) j44(p") (30)
' I am indebted to Professor Fubini for this simple argument.

The same result is obtained if one notes that the a;( )(v, t) can be
expressed in terms of the absorptive parts of the photoproduction
amplitude which can be expressed in terms of only four amplitudes,
A( )(v,t), . D( )(v, t) of G. F. Chew, M. L. Goldberger, F. E.
Low, and Y. Nambu, Phys. Rev. 106, 1345 (1957).

and with

&P"
I j-'(0) I p) =4g (P").w»(P)KN~ (q ), (31)

a straightforward calculation yields the following
single-particle terms:

A &&-&(v,t) =0,
A2 -'(v t) = —-'G(q')(F& (0)+F (0))v/(v '—v') (32)
A»&

—
&(v,t) = —G(q')F&v(0) v/(v„' —v'),

A4 (v, t) = —(G(qm)/m)F2v(0)v/(v 2—v ),
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where

The sum rules thus take the form

If we specialize to n=3, P=1, 2 and take
I p) to be a

neutron state, I
p') to be a proton state, then'

(P"
I j."'IP)=(3) '"P&/m-)u. (P")q ~(p), (41)

and

G(q')F ~'(0)

cont inuum

dv'&&:4& &(v', t) =0, (34)
where A, ~= 2.2 is the coupling leading to an isobar width
of 125 MeV. We also use

(p'I j."&(0)
I
p")
= (iC/m )u(p')y&;(8„"k—y„&&:")N&,(p"), (42)

G(q')(2F&v(0)+F2 (0))

continuum

dv'(2am& &(v', t)+a»& &(v', t))=G(t). (35)

G(q2) hss s, pole at q~=m 2, but so do the terms under
the integral, so that there is no obvious difFiculty with
that point. It is far from clear that the integral term
has a pole at t=m ', but then the one-dimensional dis-
persion relations which we use may only be valid for a
range of values of t. If we restrict ourselves to t= g', then
we see from (24) and (25) that

2a2& &(v', t)+u»& &(v', t)
= —(ma&& &(v', t)/v') =ma4& &(v', t) . (36)

Thus the sum rules (34) and (35) become

with C=0.345 determined by Gourdin and Salin4 from
the photoproduction of the isobar state. The coefFicients
of y„, etc. are obtained with the help of

Z N~(p")u. (p")
spins

= 1/2M*(g, .--,'q„q.—(2p„"p."/3M*')

(P& "v.—P"v&/—3M')(p" +M'), (43)

where M* is the isobar mass. The result of the calcula-
tion is that

&+ '&o&&'.h-= „, -(—)(
M —m'

X 1+ =3 64 44
4M*'

G(t)Fmv(0) 2 " al (v& &')

+— dp =0
I

(37) This result is in rather poor agreement with the ex-
perimental value F2'(0) = 1.85. In contrast to the
threshold-type of sum rule used by Fubini et ul. ,4 the
isobar does not seem to yield the major contribution to
the form factor in this sum rule, even though the ex-
pression in (44) reduces to that of Fubini et al. in the
limit m/M*= 1. An estimate of the eBect of the next
resonance shows no major change in the result, so that
pending a clearer understanding of the higher energy
contributions, or a formulation which shifts the weight
to lower energies in the sum rule, we must conclude that
the new sum rules are not as useful as the old ones.

This work was stimulated by a very interesting
seminar given by S. Fubini at Argonne National
Laboratory. I am indebted to him and to D. GefI'en
for enlightening discussions, and I am grateful to
Professor R. G. Sachs for giving me the opportunity
to visit the laboratory, where a good part of this work
was done.

Q

j.
G(&!)(2F,v(0) 1+F, (0))

2 " a&& &(v', t)
+— dv' =0 )

Q P

i.e., we obtain
2m " a&& &(v', t)

G(t)F2v(0) = — dv'

Q V

(38)

and
F v(0) 1

It is interesting that the correct value of the isovector
charge form factor emerges as a consistency condition.

We conclude with a calculation of the isobar con-
tribution to the right-hand side of (38). We set t =q'= 0.
The a,' '(v', 0) are obtained from

4%e have taken the parameters from S. Fubini, G. Furlan, and
C. Rossetti, Nuovo Cimento (to be published), who reevaluated
them following the analysis of M. Gourdin and Ph. Salin, Nuovo
Cimento 27, 193 (1963).

——,'&r Q b(v ——,'(M,.. '—m')) Q (2M,„/m.').
resonant spins

states

x(p'I j„(0)I
(p'+k)„..)((p'+u), .,

I j.s(0)
I p). (4o)


