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ing the parameters completely in our model. Even if
one breaks the crossing-symmetry property, the two
bootstrap equations never give any more useful condi-
tions than a relation which merely relates the symmetry-
breaking factors built in. Furthermore, using crossing
symmetry rather than destroying it seems to be the
reasonable approach, in the sense that the bootstrap
equations then can result in a nontrivial relation
between the bootstrap parameters. The bootstrap

equations, when crossing synnnetry is used, do not

permit any C.D.D. zeros and hence exclude the possibil-

ity of having a positive scattering length in our model.
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The Gell-Mann current-commutation relations are used to obtain a relation between matrix elements
involving vector currents and matrix elements involving axial currents, in the inlnite energy limit. This
relation leads to a set of sum rules. One of these is used to calculate the rate for ago ~H+y in terms of the
p-meson width and the axial-current renormalization constant, under the assumption that only states with
spin and parity 0+ and 1 need be taken into account. The result, F{w' —+ Q+p) = 1.2 MeV, is in reasonable
agreement with experiment.

INTRODUCTION

HE remarkable calculation of the axial-current
renormalization constant by Weisberger' and

Adler' may be ranked with the determination of the
Yukawa coupling constant from the forward scattering
dispersion relations as one of the major successes of
6eld theory in the domain of the strong interactions.
This calculation, based on the equal-time current
commutation relations of Gell-Mann, ' has stimulated
further exploitation of these relations in a number of
sum rules. When certain assumptions concerning the
dominant contributions to the sum rules are made,
relations between different matrix elements are ob-
tained. In all of the calculations published so far, little
use has been made of the synUnetry between the vector
currents and the axial currents. Thus, in the calculation
of the axial-current. renormalization constant only
matrix elements of the pion 6eld operator appear, with
the commutation relations providing a scale. Similarly,
the calculations of the magnetic moment of the
nucleons4' relate these to matrix elements of the iso-
vector current alone. What has been missing so far is

THE SUM RULE

We begin by considering two matrix elements, one
involving a commutator of vector isospin currents, the
other a commutator of axial isospin currents:

V„;~(p',a,k; p, b, q) = i dx e—"*tt(xo)

and
x&p', aILs„-(x),s, (o)jl p, b& (i)

~„, ~(p', k;ap, b, g) = i dx e"—~e(xo)

the analog of the old photoproduction or form-factor'
calculations of dispersion theory, in which, using certain
assumptions concerning the intermediate states, pho-
tonic matrix elements were calculated in terms of
pionic ones. It is the purpose of this paper to suggest a
method of using the commutation relations for such
problems, and to illustrate it by a calculation of the rate
for the process co'~ m'+y.

t Work supported in part by U. S. Atomic Energy Commission
Contract No. AT-(11-1)1371.

'%. L Weisberger, Phys. Rev. Letters 14, 1047 (1965).' S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).
'M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1964).
S. Fubini, G. Furlan, and C. Rossetti (to be published).

~ S. Gasiorowicz, this issue, Phys. Rev. 146, 1071 (1966).

x &p', al L~„'-(x),s, s(o)j I p b&. (2)

The indices a, b, n, and P refer to the isospin, and we con-

' G. F.Chew, M. L.Goldberger, F.E.Low, and Y.Nambu, Phys.
Rev. 106, 1345 (1957); G. F. Chew, R. Karplus, S. Gasiorowicz,
and F. Zachariasen, ibid. 110, 265 (1958); P. Federbush, M. L.
Goldberger, and S. B.Treiman, ibid. 112, 642 (1958).
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sider the matrix elements for The quantities (A; p(v, t)),b may be written in the form

k'= q'=0.

If it is assumed that matrix elements involving currents
are not very singular, and further, that the divergences
of currents are operators less singular than the cur-
rents themselves, then it has been shown that'

The crossing relation

V p(p b —k p' a —q)*=V„, p(p', a,k; p, b, q) (11)

implies the following symmetries:
lim k"V» P(P', aP; P,b,q)= dx b(xg)
V ~oo F;u( v, t) =F—;(v,t),

G,g(—v, t) = —G;(u, t),
H;*(—v, t) =H, (v,t),

i=1) 5, 6, 8, 9, 10;X&p' aIL~g-(x), s,p(0) jIp b&—= V.'(t) (4)

(12)

(3) (A; P(v, t)).b=F, (v, t)(b..bbp+b. pbb )
+G;(v, t)(b, bbp b,—pbb )+H;(v, t)b, bb p. (10)

»m k A „;p(p', a,k; p, b,q) = dx b(x, )V~

X&p', aI I & '(x),~.gp(0))
I p,b&=A.'(t) (5)

F;~(—v, t) = F;(v,t), —
G;*(—v, t) =G;(v, t),
H;u( v, t) = —H—;(v,t),

i=2, 3, 4, 7.

Here the standard notation

f,(v', t)

/2
P —P —Zf.

2P
F,(v, t) =

7l pis used. The Gell-Mann commutation relations imply
that

v'g;(v', t)
dV

V —P

2
G, (v, t) =—V,.P(t) =A;P(t) . i=2, 3, 4, 7;

Lorentz invariance demands that therefore

lim k"$Vu, P(p', a,k; p, b, q)
h;(v', t)

dP'
P V Zf.

2P
H, (v, t) =-

pA„;P(p', a,k; p, b—,q)]=0. (8)

Thus, if the scalar functions F;(v,t), G, (v, t) and H;(v, t)
can be represented by subtraction-free dispersion in-

p 1
(p /+p ), Q

1 (k + ), g p
/

p k tegrals, these must have the form

u=P Q; (6)

This relation may be used to derive sum rules which
connect photonic matrix elements to mesonic ones.

The simplest case which is of interest is one for which

I
p', a) and

I p, b) represent one-pion states. In this case,
the most general form of the matrix elements is given by

2P
G;(v, t) =-

p

g, (v', t)
dV

(2 2 ~

V V Z6

2 " u'f;(v', t)
F;(u, t) =— dv'

1P p V —V —f6

i=1, 5, 6, 8, 9, 10;

V„u P(P', a,k; P,b,q)
= [P„P,Ab P(v, t)+P„Q,Ag P(v, t)

+P„huAg P(v, t)+Q„P A4 P(v, t)+QuQuAb P(v, t)

+Q„A,A4 P(u, t)+A„P,A7 P(v, t)+AuQ, Ag P(v, t)

+h„huAg P(u, t)+g„uArg P(v, t)j. (9)

2 " v'h, (v', t)
H;(v, t) =— dv'

p V —V —l6

It follows that the only nonvanishing terms in (4) and
(5) when v-g~, are

2 oo

» m"k»V'(p', ,akp, b, q)= ——Pu(5 bbp b.pbb ) dv'—gqu(v', t)+(b, bbp+b, pbb )
V ~QO x'

XI Q, dv'fg (v', t)+Du dv'fg"(v'&t) +b, bb~p Q, du'hg"(v', t)+6, dv'hg (v', t) I
(14)

for the vector commutator (hence the superscript V),
with a similar result for the axial-current commutator.
The sum rule which will be studied in the next section
is the one obtained by equating the coeS.cients of

P,(b„bbp bpbb ) in the ve—ctor and axial terms, i.e.

dv'I gbv(v', t) —g, '(v', t))=0.
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CALCULATION

Our calculation will take into account the lowest lying
boson states in the two matrix elements. For the vector-
current matrix element, the contributions will come
from intermediate one-pion and ~-meson states. ' Since
the isovector part of the vector current is being con-
sidered, G parity excludes the p-meson contribution.
The T=O scalar meson (a) contribution' vanishes be-
cause of parity conservation. For the axial-current
commutator matrix elements, it is the 0 meson and the

p meson which contribute, whereas the pion and co

meson contributions vanish.
In all cases the absorptive part of the matrix element

is obtained from

—-'. (2~)'Z. (~(P-—P—v)&p', ol ~. I ~&

x &n I P,s
I
p', b&+crossed terms) . (16)

so that with the help of the polarization sum

Z "(~)"(~)=-(g -P" P"'/ -) (23)

Z &P', t~..lp",»&P'. I~.'IP",&)'
= (&'/m-') Pi(&-»e+ 4s» )+k(&-»s &.—s».)j

x[ „,(p p"p' p" p' pp'"—) p„p,(p"——p)
x(p"—p')+P Q (—-', ( .'— .')—-', t)

+ ,'P„h,(m„'-m. ')+ —j. (25)

Thus the coefficient of interest is

s = g (g sg g g s)
+g.s(g,-g.. g;—g-) g.—(g"g.s g.—sg-) (24&

we obtain

The single-particle contributions are of the form g&.'(t) = i (8'/m. ')t. (26)

II

—-', (2w) 4 8(p"'—m.') 5(p"—P—Q)
(2s)'

x Z &P', I~:Ip",".&&P", "I~'lp, t»
spins,

isospins

= ——,'s.b(v ——,'(m„'—P' —Q'))

x 2 &p', ol~;I p" "&(pbl~,'I p"."&*. (»)
spina,

isospins

The delta function disappears in the integral in Eq.
(15), so that we need only concern ourselves with

We next turn to consideration of the absorptive part of
the axial-current commutator matrix elements.

c-Meson Contribution

Here the matrix element of interest is &p', o I
5„'

I
p").

We write it in the form

&P' I~' lP"&= ~-(Jtf P'+~P").
The assumption of a partially conserved axial current
(PCAC)' leads to a relation between the two constants.

We write

Pion Contribution

2 &P',~l+:Ip"" &&Pbl&'lP", " &*.
spms,

isospins

If we define the coupling constant g, by
18

&P' o
I i:I

P"&—=b-m-g-.

then PCAC leads to

Mg+Mn ——2m.Cg.../(m. '—m, '),

(28)

(29)

so that
&P' ol ~:I

P" c)= ~~- (P'+P"—) where C is defined by

& &P'ol~: IP" c&&pbl&'IP", c)*
=e- e~s (P'+P"&Ap+P").
=Lb-s~'+l(~-~. -~.s~ -)-!(~-~s+h.s~.-)]

X (4P„P,+2P„Q, P„h,+ ) . (20—)

8"F„' (x) =Cm 'P (x)

and has the value

C= ~PA/gNN~ y

(30)

(31)

We write

u-Meson Contribution

Thus the coefficient of interest is

gg, "(t)=2. (21)

where M is the nucleon mass, g~~ is the pion-nucleon
coupling constant, and F~ is the axial-current re-
normalization constant. It should be noted that with
our normalization of states, the matrix element (28)
leads to the following expression for the width of the 0.

meson:
8

&P' ol +. I
P"»&=6- "(~)~.:.P"P"' (22) g. ' m 4m ')"'l./m. =3

4~ 8m, m, 'J (32)

' Actually the q-meson contribution should also be included.
We shall argue later that this is small.

8 The evidence for the existence of a T=0 scalar meson is still
inconclusive. It may perhaps be viewed as a convenient param-
etrization of a strong 5-wave attraction in the pion-pion system.

9 M. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960}.
As is the case in all applications of PCAC, one of the pions is oB the
mass shell (qs=k'=0}; the correction factor XzN (0} which is
expected to be close to unity is ignored in what follows.
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Equation (29) impLies that

&p'~l~' lp")
(2m Cg.,

=a-ll t'+a (P.
"—u.')) . Q3)

km. 2—~.2
"

Consequently

&p',
I ~. -I p"&&p,bi~;pl p-&*

=B(~ »p+4p&b )+2(~. ~bp 4—p&b.)j
t'2m Cg., ' 2m Cg.x I I„I,y
Em, '—m' m' —m'

X —M2—
2

(34)
Sgg

~ ~ ~
~

Thus the o.-meson contribution to g&~ is given by

gg."(t)=-', L2m.Cg.../(m. '—m. '))'. (35)

It should be noticed that this contribution does not
contain the unknown constant 312. It is this fact which
motivated our choice of sum rule.

We write
y-Meson Contribution

r, 2 2 1/2

m 4x 12' pg p2

PCAC leads to the relation

Kb+K2=4Cyp. ./(mp' m. ') . —

(38)

(39)

&p',
I ~."Ip",l, )

ie, .—/be&(A) p„'](Kbp„"+Kbp„') (36)

and introduce the constant pp„by
&p', ~li - I

p",~,c)= be- C~e"0)p'3—v.- (37)

With this form of the matrix element, the width of the p
meson is given by

The coeScient of interest is

1 4'... i'- m '—m. ' '
gi,"(t)=- —

I + ', t .-(42)
2 m, '—m') 2m,

Collecting terms from (21), (26), (35) and (42), we ob-
tain what are hopefully the dominant parts of the sum
rule (15):

1 B2 nZ Cg.
2+— t=2

~.2—~. )
Cy...i' t 4'... i'

+2
I +natl I

(43)
m, ) Emb —m, 2&

The term independent of the momentum-transfer
variable t leads to the relation

yg ~g, 2 ~yp
(44)

F~' (m.' m')gN—N m,gNN

This is just the expression for the axial-current re-
normalization constant obtained by Kawarabayashi,
McGlinn and Wada. '0 With the popular choice of
parameters

m. =390 MeV,

r.=90 MeV,
(45)

one 6nds that
Fg' ——j. 47 (46)

The term linear in I, leads to a relation between a pho-
tonic matrix element 3E(co' —+n'+y) and a mesonic
matrix element, which reads

4C&p~~~~ ' 4~~~~~ ' 7p~~B2— (47)8$8$8$p g~Pf

The rate for the decay au' —+ m-'+y is calculated to be

I'(cob —b s'+y) e' 1 m )' m ')'
(4g&

m. 4~ 24 m. i m. '/

4C&pm x+ K)P„Q,+
Sl'p m g

(41)

(p', ttl &„'
I
p",x,c)=e. ,e&(x)p,

'

4C&px vx PP'+Kb(p" —P') (4o)
Slp Sgg

From this we calculate

Z&p',
I ~.'"Ip",~, &&P,bi~.~l p",l;&*

cX

Pab raP+k(~aa~bP ~ae~ba) g (~aa~be+~ae~ba) j
t'(O' P")(p p") -I 4'... i'

xl p' p I

"-II',I',
L m, '—m. 'j

With the choice of parameters esp=750 MeV, 1'p=100
MeV, and F~2=1.39 we obtain

I'(bp —b m +y) = 1.2 Me V, (49)

which is in good agreement with experiment. "
If the g-meson contribution is included, Eq (47) is.

replaced by

B„b+Bbb=$4Cy, m /(m, ' m') j' —(50)

which replaces (49) by an inequality. There is no way of
separating the contributions of the two isoscalar vector

' K. Kawarabayashi, W. D. McGlinn, and W. W. Wada, Phys.
Rev. Letters 15, 897 (1965}.See also S.L. Adler, Phys. Rev. 140,
8736 (1965).

"References to the experiments may be found in A. H. Rosen-
feld, A. Barbaro-Galtieri, W. H. Barkas, P. L. Bastien, J. Kirz,
and M. Roos, Rev. Mod. Phys. 37, 633 (1965).
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within the framework of the SU(2)XSU(2)
algebra used in this paper. We therefore appeal to the
crude and ridiculously large upper limit

to estimate that the calculated value of F(co' —+ x'+y)
can be decreased by no more than 15% from the value
predicted in Eq. (49).

A by-product of the calculation is obtained mhen
either side of the Eq. (43) is equated to the appropriate
coeScient in V, s(t) Ldefined in Eq. (4)j. Since

V' s(t) = d~x&p', a
I LP (x,0),F,~(0)j I p, b)

=(p', ILT A'(0))lp»&

=i@.s,&p', oI s, (0) I p, b&, (51)

we obtain an expansion in powers of t for the pion form
factor. The term linear in t yields an expression for the

pion charge radius in terms of the rate F(uP ~ xo+y),
a result obtained by Cabibbo and Radicati. "

In conclusion, it should be stressed that a number of
unproved assumptions have been made in the deriva-
tion of our result. Some of these have to do with the
nature of singularities of commutators of currents, and
they are certainly at variance with what is found in
perturbation theory. Calculations such as this one may
perhaps be viewed as encouraging to the point of view
that the assumptions are correct. Other assumptions
have to do with the states which are taken to "saturate"
the sum rules. The structure of matrix elements which
have been investigated is such as to suggest that if the
coupling constants do not grow with mass, then the
higher mass and higher spin-state contributions, in
addition to yielding sum rules for F(f ~ x+y) in
terms of I'(f' ~ 2x), say, will not significantly alter the
numbers so far obtained.

I mould like to acknowledge useful discussions with
Dr. D. Geffen and Dr. J. Meyer.

"N. Cabibbo and L. Radicati, Phys. Letters 19, 697 (1965).

P H YSI CAL REVIEW' VOLUME 146, NUMBER 4 24 JUNE 1966

Sum-Rule Calculation of the Isovector For ~ Factor~

S. GAsIoRowIcz

School of Physics, University of Minnesota, Minneapolis, Minnesota

(Received 28 January 1966; revised manuscript received 21 February 1966)

A class of sum rules due to Fubini is rederived from a point of view which clarifies the assumptions made
about the singularities of field operators. A calculation of the isovector magnetic moment is performed in
the isobar approximation. The result F1~(0)=$ emerges as a model-independent consistency condition,
but the calculated value E~"(0) =3.64 is in disagreement with the experimental value.

" 'n a recent paper Fubini' presented a new method of
obtaining sum rules of interest in strong-interaction

physics. It is the purpose of this note to present a set of
assumptions which lead to an alternative derivation of
the Fubini result. Sum rules for the isovector form fac-
tors of the nucleon are derived and their properties are
discussed.

We consider the matrix element T„~s(p',k; p, q) de-
fined by

T„~s(p' k p q) = i dx e'~ —tt(xo)

isospin or SU(3) labels, so chosen that the operators
(x) and ps(0) are Hermitian. The matrix element

(p', k; p, q) may be decomposed into invariant fuzz-
tions. For example, if the particles described by the
state vectors

I p) and
I
p') have spinzero, then the most

general form of the matrix element is

T„ t'(p', k; p,q)=P„Ag s(v, t)

+Q„A2 s(v, t)+h„Ag s(v, t) . (2)

W'e have used the conventional notation
X&p'II j;(x)A'(0)ll p) (1)

Here j„(x) is a current operator, ps(0) is scalar or a
pseudoscalar field operator, and the indices o, P may be

*Work supported in part by U. S. Atomic Energy Commission
Contract No. AT-(11-1)-1371.

' S. Fubini, Nuovo Cimento (to be published},

P.=k(p, '+p.),
Qv 2 (kv+qv) &

~.= p' —p.=q.—kv

t=52
7

v=P Q.

(3)


