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A soluble model obtained by a slight extension of the Lee model is considered in a study of the bootstrap
mechanism. By examining the general solution that is obtained by using properties of the Herglotz function,
it is found that the bootstrap mechanism can be achieved if and only if two further restrictions in addition
to the general requirements of analyticity, unitarity, and crossing symmetry are imposed on the solution.
They are that (i) the scattering amplitude satisfy the asymptotic condition lim,..w ™21 (w)=0 and (ii) the
scattering amplitude have no Castillejo-Dalitz-Dyson (C.D.D.) zeros. It is also proved that the condition
(i) is equivalent to lim,.,»w™D(w)=0 when N(w)=0(w™) as w — » or Z3=0 or the Levinson theorem
holds, while condition (ii) is equivalent to assuming the two familiar bootstrap equations based on the N/D
method and implies in particular a nonpositive scattering length. Either of the conditions (i) and (ii) alone
gives in general only an inequality between the mass and coupling constant, and it is therefore concluded
that the possibility of the bootstrap mechanism depends in a very sensitive way on the low-energy behavior
as well as the high-energy behavior of the scattering amplitude. It is further argued that destroying the
crossing symmetry in the approximate solutions will not give any physically meaningful conditions for
determining the parameters unless one introduces a subtraction or one C.D.D. zero in the Low equation.
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I. INTRODUCTION

URING the past couple of years there have
appeared many papers in which various conditions
for bootstrap mechanism have been discussed, either in
soluble models or in approximation frameworks. In
particular, in a recent paper by Huang and Low,! one
finds thorough discussions of bootstrap solutions in
many soluble models, where the bootstrap solution is
defined to be the one which satisfies the Levinson
theorem. Meanwhile, however, it has been claimed by
various authors that the assumption of no C.D.D. pole?
or a certain assumption on the high-energy behavior of
the scattering amplitude® or the condition Z3=0* gives
rise to a bootstrap mechanism. In view of these diverse
forms of the bootstrap criteria, it is highly desirable
to study the relations between different bootstrap
conditions which have been used by various people.

In this paper we shall study various bootstrap condi-
tions in a soluble model® which is a slight extension of the
Lee model and contains an antiparticle of 6 which is
identical to the 4 particle itself. It is well known that
the general requirements such as analyticity, unitarity,
and crossing symmetry alone do not give any relation
whatsoever between the coupling constants (residue
at the poles) and the masses of the particles (positions
of the poles).® Hence, the bootstrap mechanism is
possible only if some further specific restrictions on the
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solution, which we shall call bootsirap conditions, are
imposed. By starting with the general solution given by
C.D.D.,” we prove that the bootstrap is possible if and
only if

(i) at high energy, the scatlering amplitude does not
decrease as fast as w2, 1.6, limy w2 (w)=0,
and

(ii) there are no C.D.D. zeros of the scattering ampli-
tude.

Obviously, condition (ii) is equivalent to assuming
that

(ia) the scattering length is negative [t(u)<0] and
at any energy in the physical region there is interaction,
i.e. H{w)#0 for w>u,
or

(iib) the mass and coupling constant are determined by
the first and second bootstrap equations® based on the N/D
method.

We shall see that the two bootstrap equations alone do
not @ priori exclude the high-energy behavior ¢(w)
=0(w?) and without condition (i) in general they give
rise to only an inequality between the bootstrap
parameters.

Condition (i) will be shown to be equivalent to
assuming that

(ia) D(w) does not increase as fast as w, i.e.,
lim gD (W) /w=0 with t(w)=N(w)/D(w) and
N (w)= (g%/4m) (w+4a)7,

or

(ib) The wave-function renormalization constant of the
V particle vanishes, i.e. Zy=0,

7 L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1955).

8 For instance, F. Zachariasen and C. Zemach, Phys. Rev. 128,
849 (1962).
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or

(ic) The Levinson theorem, i.e.,
8(u) —8(0 )= (nmy—mnc)m, holds.

Here #; and #, are the numbers of bound states and
C.D.D. zeros of the scattering amplitude, respectively.

It is clear from these results that a bootstrap, at
least in this model, is impossible, for instance, if the
scattering lengih is positive or the scattering amplitude at
high energy decreases like {(w)=0(w?). For a realistic
case, however, it is an open question whether the
aforementioned situation might persist. Nevertheless,
it is evident that the positiveness of the scattering
length would necessarily imply the existence of at least
one C.D.D. zero between the bound state and the two-
particle threshold, and hence introduce at least two
more parameters, i.e., the position of the zero and the
slope of the scattering amplitude at the zero, irrespective
of the complexity due to the left-hand cut. As to the
high-energy behavior, it is also highly unlikely that in a
realistic case the bootstrap mechanism is less sensitive
to the high-energy behavior of the scattering amplitude
than in a simple model. In short, our conclusion is that
the possibility of the bootstrap mechanism depends in a
very sensitive way on the low-energy behavior as well as
the high-energy behavior of the scattering amplitude, even
if one excludes the C.D.D. zeros in the physical region.

In the next section, we shall give the Low equation for
the scattering amplitude in an extended Lee model® by
making use of the one-meson approximation, and
present the general solution for the scattering amplitude
following the discussions given by C.D.D.” Here, we
shall also show that the general solution can be obtained
in the framework of the N/D method. It will be seen
that the number of subtractions necessary in the
denominator function for a given choice of the nu-
merator function is determined by the lower bound of
the scattering amplitude and that in general we will get
only an inequality relation between the coupling
constant and the mass of the bound state unless
conditions (i) and (ii) are assumed. In Sec. III, we
state further restrictions imposed on the general
solution in addition to the general requirements so that
a definite relation between the parameters of the bound
state can be given. Implications of these bootstrap
conditions are also discussed.

Section IV contains the particular solutions obtained
by the N/D method. When the two bootstrap equations
of the N/D formalism are applied to the general solu-
tion, it turns out that there should be no C.D.D. zeros in
the amplitude. This implies that the two bootstrap
equations which are referred to as the bootstrap condi-
tions in some literature correspond merely to our
condition (ii). Moreover these bootstrap equations do
not restrict in any way the high-energy behavior of the
denominator function, and thus condition (ia) is needed
to achieve bootstrap mechanism. We shall also see
that the two bootstrap equations give only the same
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relation between the mass and coupling constant even
under conditions (i) and (ii) if there is crossing sym-
metry, and hence it is impossible to determine the
bootstrap parameters completely. We shall notice that
the particular solutions become atuomatically crossing-
symmetric as soon as the bootstrap conditions (i) and
(i) are assumed.

Other equivalent bootstrap conditions are discussed
in Sec. V. They are Zy=0 as a condition for the V
particle being composite, and the condition imposed by
the Levinson theorem. We shall show that these condi-
tions (ib) and (ic) are completely equivalent to our
condition (i). Finally in Sec. VI, we shall examine the
consequences of destroying the crossing symmetry in
the solution, in order to see if the two bootstrap equa-
tions give two independent conditions that determine
the bootstrap parameters completely. It will be seen,
however, that breaking crossing symmetry does not
give any more useful conditions, and therefore there is
no way of determining the parameters completely in
our model.

II. GENERAL SOLUTION

Let us consider an extended Lee model® in which the
6 particle has an identical antiparticle 8 and the interac-
tion between the 6 particle and the source NV takes place
through the virtual processes V<> N-+6 and NV
+8. In this model, the N-8 scattering has an identical
crossed process and the Low equation for the scattering
amplitude in the one-meson approximation turns out
to be’®

w5
+%/jmyuwoww@ow,(n

where A=my—my, f(w) is a cutoff function, and g is
the renormalized coupling constant. The crossing
symmetry
_ H@)=1(~w) @
holds since §=6.
By rewriting (1) in the form

g2
O
s
1 00 w’z—ﬂ2)1/2
- [ art el =
) o’ —w?
it is clear that ¢(w) is a Herglotz function® of ?, i.e.,
Im¢(w)/Imw?>0. From this it follows that —¢1(w) is
also a Herglotz function of w? and admits the representa-

9 J. A. Shohat and J. D. Tamarkin, The Problems of Moments
(American Mathematical Society, New York, 1943).
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tion’
W e )P
—t‘l(w)=A+Bw2+—/ dw'*
PR wl2(w12_w2)
R;
+Z G
i wl—w?

where +w;(1=0, 1, - - -, n—1) are zeros of ¢(w), R;>0,
and
—1
lim =B>0,

@ f(9)w?

(e<argm®<m—e). )

By imposing the condition that ((w)=0 at w?=A?
which is obvious from Eq. (3), we obtain??

0)2—‘A2 L)
dwl2
™ u?

| f@) 2=y Ri(w*—A?)
@ =A@ =) T (@2—e?)(2—A7) |

—171(w) = B(w?— A%+

(©)

z

and this gives us the most general solution for the
scattering amplitude {(w). Now by using the condition
that

[dt(w)/dw?]ur—nz= —21/Ag?,

which follows also from Eq. (3), one gets

A g AR o 1) 2w =)
27 B+ 272 ,/,;2 dw? (w2—A2)2

Ag? :
+ =
2r i (w2—A2)?

L,

and consequently the general solution reads

Ag2 Ag2 w2__A2
()= @ty 1+
27

2r 0w

/w | @) 21—y
X | do'
u? (w"2—w?) (w'2— A2)?
Ag? Ri(w?—A?) —1
2r i (0= A2 (w—w?)

This general solution can also be obtained by the
familiar N/D method 1

Hw)=n(?)/d(?), ©)

1 Along the real axis Eq. (5) does not necessarily hold. However,
if one uses the Phragmen-Lindehof theorem, it follows that
Hrﬂgfit‘l(w)w‘el <B and lim 2_s’}‘éplt‘l(w)z.r“[ >B.

Therefore, if #(w) does not oscillate as w? — «, (5) holds on the
real axis as well. This remark applies also to the bounds like (11).
1 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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where 7(w?) is taken as

n(w?) = (Agt/27) (A —a?)1. (10)

Since then —1/d(w?) can be shown to be a Herglotz
function of w?, the function d(w?) itself is a Herglotz
function of w?. The high-energy behavior implied by the
Low equation (1) is

Cilo| < |H(w)] <Colw|?, (11)
and therefore it follows that

C/<[d M| <CYf|w]*, (12)
and hence

Cy'w| < |d ()| <Cy. (13)

From the relation (13) and from the fact that d(w?)
is a Herglotz function of «?, it follows that?

©  Imd(w?)
/ dw? <o, (14)
u? w?
and we have a representation for d(w?):
1 o Imd(w'?) 7i
dey=at- [ =i T ay)
T w?—w? i wl—w?

where +w;(1=0,1, ---, n—1) are zeros of {(w), 7:>0,

and
liin dw)=a20. (e<argu’<m—e). (16)
Upon normalizing d(w?)=1 at w?=A?, one obtains
1~ Imd(w?) r;
a=1—-—/ dw? . 17)
wJ wP—A? T w?—A?

Inserting Eq. (17) into Eq. (15), the denominator
function becomes

Ag2 wi—A? (') ]2 ('2—p2) 12
dw)=14+— / dw'2[f |
2r T« u? (02— w?) (02— A2)2
7 (wz-— Az)

i (w2—w?)(w2—A2)

(18)

In writing (18), we have used the unitarity relation
g2
Tmd () = (o) 2w =)
m
X (@ =A%) 718w —p?). (19)

By inserting Eqs. (10) and (18) into Eq. (9), the general
solution (8) is rederived if one sets

ri=(Ag%/2m)R;(w2—A2). (20)

We remark in passing that only when no C.D.D. zeros
are present in /(w) can it be shown that the N/D
solution is independent of the subtraction point; we
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also remark that the lower bound of {(w) determines the
number of subtractions in the denominator function for
a given left-hand-cut contribution or the numerator
function.

Although the general solution (8) meets the general
requirements of analyticity, unitarity, and crossing
symmetry, it does not give any relationship between
A and g? except for an inequaltiy

21r 1 0 () 2w2_ 2)1/2
[ ad@rer

B=——-
Ag ), (w2— A2)2

R:
> ——20, (1)

T (wa—an?

which is clear from the relations (5) and (7) or from
(16) and (17). Since R; are positive and unknown, one
gets from (21)

A_gzg(l /‘“‘ dwzlf(w)P(wL—y”)”z)"‘. )

2 \wJpe (w2—A2)?

This is the well-known L.S.Z. inequality'? which holds
in the general framework of the quantum field theory.

III. BOOTSTRAP CONDITIONS

Though in this model the general requirements such
as analyticity, unitarity, and crossing symmetry do not
lead to an equation between g2 and A which does not
contain any other unknown parameters, it is possible
to obtain such an equation by imposing more specific
conditions. These we shall call bootstrap conditions.

In our model, such an equation is furnished by Eq.
(7), namely

w1 [(a |f) |2 @—py
Ag? wJ

((.02’— AZ)?

R;
+——, (23)

i (w2—A2)?

in which if we impose further conditions

B=0, (24a)
and
R;=0 forallz, (24b)
the resulting equation then reads
1o f) et
—=- f dw? / , (25)
ag ) (= A2):

and Egs. (24) are necessary and sufficient conditions for
the relation (25). From the relation (5), however,

12 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 2, 425 (1955).
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B=0 is equivalent to the requirement that
lim 1/t(w)w?=0, (26)

if one excludes too violent oscillatory behavior of ¢(w)
along the real axis in the w? plane. Hence, the bootstrap
conditions in our model are that

) lim 1/¢()e?=0,

and
(ii) there are no C.D.D. zeros in ¢(w).

It is clear that condition (i) does not exclude the C.D.D.
zeros and that without condition (i), condition (ii)
alone will give in general only the inequality (22).
Thus either one of the conditions (i) and (ii) alone
does not give the relation (25). It is claimed by Aramaki?®
that the assumption on the high-energy behavior of
t(w) alone ensures the bootstrap mechanism. We
observe, however, that this was so only because the
author tacitly assumed no C.D.D. zeros of {(w) in his
discussion.

Still another author? claimed that the bootstrap
condition is equivalent to excluding C.D.D. zeros and
used in his argument an approximate solution. Here
again one can easily notice that condition (i) was
assumed without mentioning it. To see this, we remark
that (w+A)t(w) is a Herglotz function and is bounded
by

Cilo|?' < [w+A)(w) [ SCalw| . 7

It follows then that —D(w) is again a Herglotz
function in w when N (w) is taken as

N(w)=(g¢/4r) (w+4)™, (28)
and that
Ce|o| < D) <CY ], (29)
which implies that —D(w) should have a representation
o *° ImD(’)
—D(w)=4 1—|—Blw——/ do'——
7Ju o' (W' —w)
o ~# ImD(’)
——/ do/—————,  (30)
TS (0 —w)
if no C.D.D. zeros are assumed. Here
lim—D(w)/w=B,20, 31)

and B;=0 implies the condition (i). Indeed B is set
equal to zero in the discussion of Ref. 2, and thus
condition (i) was assumed in addition to the general
requirements of analyticity, unitarity, and crossing
symmetry. This solution will be discussed in detail
later on.

As for condition (ii), it is equivalent to assuming
that the scattering length #(u) <0 and |[/(w)|>0 for



1062 Y. S.

w?>p?, since #(u) >0 entails necessarily the existence of
a C.D.D. zero of {(w) in the region w? <u?. We note that
this situation occurs whenever one starts with an
unsubtracted dispersion relation. Thus, one concludes
that the bootstrap mechanism depends very sensitively
on the high-energy behavior as well as the low-energy
behavior of the scatiering amplitude ¢ (w).

IV. PARTICULAR SOLUTIONS OBTAINED
BY THE N/D METHOD

In this section, we shall discuss the bootstrap
mechanism for particular solutions of the scattering
amplitude ¢(w). For this purpose, it is convenient to use
the N/D method." Let us first start with the numerator
function given by (28). From the discussions given in
Sec. III, —D(w) will have in general a representation

o ° ImD(@)
—D(w)=A1+Blw——/ dow'———
T o’ (W' —w)
w [T ImD(w’) R;
= [ =, @
T)w (W= @ 0o—w,

where w; are C.D.D. zeros of {(w), R;>0, and B; is
given by (31).
By normalizing D(w)=1 at w=—A, we get

wt+A ImD (o)
D(w)=1— B, (w+A)+—— / dof————
T Ju  (@—0)('+4)
w+A “"‘d , ImD(w')
T Jow () ('+4)
Ri(w+4)

—. (33)
i (0—w)(A+w)

From unitarity and crossing symmetry, it follows that

ImD (w) = — (g7/47) | f (@) [*(@*—p?) "2 (w+4),

w>p  (34)
and
ImD(—w)=— (g/4m)| (@) |*(@*—p) 2 (w—A),
—w<—u. (35)
Thus Eq. (33) becomes®
2 w_'_A L)
D@)=1-Bilot )~ [ aul| )*
1
X w’?_ 2\1/2
{ #) <(w'—w) (w'4A)2
1 Riw A
= ) (wt+24) . G6)
(@+w) (@' —A4)) T (0—w)(w.+A)

13 Notice that the denominator function (36) contains a linear
term Bi(w+A). The N/D method of solution does not exclude
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The first and second bootstrap equations? based on the
N/D formalism are given by

D(A)=0, G7)
and
dD(w) g
[N(w) / — Lf—l;' (38)

By imposing Eq. (37), one gets from Eq. (36) that

R
1= ZA(Bl—Z )
T A2—w?

LG el

— (39)
7|'2 u ((02_A2)2
From Egs. (28) and (36), it follows that
dD(w) 2 Ag?
[N(w) / ] =§—<—2AB1———g— dw
do Jd,_a 47 m J
| f(e) |20 (w?—pu2)1/2 2AR; \!
X ) . (40)
(02— A?)? T (A—w)?
By inserting Eq. (39) into Eq. (40), we obtain
dD(w)
l:N (w) / :I
dw w=A
g 4A’R; -1
=—<——1-—Z ———-—) . @)
4t i (A—w)(A2—w?)

It is clear from Eqs. (38) and (41) that in order to
satisfy the second bootstrap equation (38), there should
be no C.D.D. zeros present in the scattering amplitude,
i.e., all R;should be zero unless A=0. Even if no C.D.D.
zeros appear in ¢(w), one would still end up from Eq.
(39) with the inequality relation (22), since B is
positive definite and unknown. Therefore, it is obvious
that the bootstrap relation (25) is achieved only when
B;=0 or equivalently

lim— D (w)/w=0 (42a)
and
all R;=0. (42b)

this term unless the asymptotic condition (42a) is assumed. See, for
instance, A. P. Balachandran, Ann. Phys. (N. Y.) 35, 209 (1965).
This term was also noticed by M. L. Whippman and I. S.
Gerstein of Ref. 14. When B;740 and no C.D.D. zeros are present
in Eq. (36), then D(u) <0 and the s-wave phase shift is always
negative and approaches —r as w — «. When B;0 but with
D(u)>0, then we will have at least one C.D.D. zero in the
interval A<w:1<p and a resonance behavior could emerge at
some energy in the physical region, i.e., the phase shift goes
through wf 2 at some energy and approaches = as w — o in the
o plane. This resonant solution, however, contains at least two
more parameters due to the presence of a C.D.D. zero.
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We remark that Eq. (42a) is equivalent to the condition
(i), while Eq. (42b) is the condition (ii) of Sec. III. In
this particular solution, therefore, the necessary and
sufficient condition in order to achieve bootstrap
mechanism is that lim, [ —w'D(w)]=0 with N(w)
=0(w™) and that there exist neither C.D.D. poles of
D(w) nor zeros of N (w).

When the conditions of (42) are met, the resulting
particular solution is

Hw)=

g2/41r[ g wtA
1

—_— d(.l)l (.0, 2 (Dlz—" 2\1/2
o / )2 —a?)

dr

X(("’I_C*’)l(ld'—i'A)z+ (w’+w)1(w’—A)z):|—l - @3)

This solution is not crossing-symmetric, as we have
solved the N/D equations in the usual approximate
way, i.e. we have tried to explain the bound-state pole
in the direct channel from the force due to the one-
particle exchange in the crossed channel.

In order to force crossing symmetry, let us rewrite
the particular solution (43) as

f<w>=if:[0—§ i / " o] )
X((w'—w)l(w’ﬂ) (w'+w)1(w’—A)):|—l’ (44)
with

C=1_é_j:f mdwlf(w)lzw(w2—“2)1/2
(w2— A2)?

w2 J,

45)

Since the particular solution (43) is obtained under the
conditions of (42), it is clear from (39) that C=0 and
thus (43) becomes

1 (w)=—2

W2—A2 ) | 20 (w2 — 42)1/2
/dw,lf( Il

T M (0 —w?) (w*— A2)

We shall show that the conditions of (42) will result

again from Eq. (46) for the other particular solution,
where

2

N(@)=—2(@—a).
4

™

(47)

After a manipulation similar to that used before, one
obtains under the conditions of (42) a particular solution

g2/41r|‘ g2 w—A
w)=— 14+ o' | Fle!) | 2 (et — 2172
==t [ e
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which can be rewritten as
g:/4m

w—A

X((“’"w;(w’—A) (""+w)1(w’+A)>:|_l’ )

where C is given by Eq. (45) and is zero when the boot-
strap conditions of (42) are met. Thus the particular
solution (49) becomes Eq. (46), which is clearly crossing-
symmetric. In other words, the particular solutions (43)
and (48) become automatically crossing-symmetric, as
soon as the bootstrap mechanism is achieved.

)=~ [C+£; / | 1) 2 )

V. THE CONDITION Z;=0 AND THE
LEVINSON THEOREM

Recently, it has been suggested by many authors that
in the framework of field theory the compositeness of a
particle can be characterized by vanishing of its wave-
function renormalization constant,!* i.e. Z3=0. From
the standpoint of bootstrap philosophy, however, there
is no elementary particle and every particle should be
regarded as a composite of the others. Therefore it is
very plausible that the condition Z3=0 may turn out
to be equivalent to the bootstrap condition. In this
section let us study in our model what the condition
Z3=0 implies.

If we denote the V-particle propagator by Ay’(s),
the Lehmann representation!® is

1 00
Ay (5)= (A2—s5)" 14— / ds'a(s")(s’—s)"1, (50)
TJ

where

a(s)=G%(s)|A(s) |2, (51)

with
A(s)= (2m)¥*w (2PnoPao) 'V | N6), (52)
p(s)=17(s)|2(s—u®)2, (53)

and s=w? The quantity A(s) is related to the form
factor F(s) by F(s)=(A2—s)A(s) and to the vertex

function by
T (s)=A(s)/Av'(s)- (54)

Since the propagator Ay/(s) is a Herglotz function,
—Ay'1(s) is also a Herglotz function and admits the
representation

A?—s

/w L POITE)?
T Ju (F—A22(s—s)

C.(A2—y5)
LU
n (sa—s)(s,—A2)?

4 A, Salam, Nuovo Cimento 25, 224 (1962); Phys. Rev. 130,
1287 (1963); S. Weinberg, sbid. 130, 776 (1963); M. L. Whippman
and I. S. Gerstein, zbid. 134, B1123 (1964).

15 H. Lehmann, Nuovo Cimento 11, 342 (1954).

Ay'—i(s)= (Az—s)lil—-G2
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where C,>0, 5,>A?, and s, gives the position of C.D.D.
zeros of Ay’(s). In the interval A?<s<u?, there can be
at most one zero, depending on the sign of Ay'(u?).
Since the wave-function renormalization constant Zy is
given by lim,,,(A2—s)"'Ay’""!(s), by making use of
either (50) or (55), we obtain

1 00
Zy = 1+—-/ ds'o(s")
T J a2

GZ 00
ﬂ+—/dw«wmwzﬁm>
T Ju

or
G o(sH|T(s)|? Cn
y=1—— [ ds . (56b
z ™ /n’ ’ (s'—A%)? Z": (sa—A%)? (60

Let us make the following decomposition of the
s-wave scattering amplitude T'(s),'

T(s)=GT(s)Ay’ ()T (s)+H(s)

=GA()Ay" (A ()+H(s). (7)

Then by making use of the unitarity relations
T(s+ie)—T(s—ie)=2ip(s)T(s)T*(s), (58a)
A(s+ie)—A(s—ie)=2ip(s)A(s)T*(s), (58b)
Ay’ (s+ie)— Ay (s—ie) =2iG% (s)A(s)A*(s), (58c)

it can be easily seen that on the physical (right-hand)
cut, i.e., s>u?

H(s+ie)—H (s—ie)=2ip(s)H (s)H*(s), (59a)
T (s+i€)—T (s—ie) = 2ip(s)T (s)H*(s).  (59b)

Hence, H(s) by itself satisfies unitarity and has the
same phase as I'(s), while A(s) has the phase of T'(s).

We shall now proceed to discuss the condition Zy=0
in our model. As we start from the Low equation (1)
for t(w) [=T(s)], we do not a priori have quantities
like Ay’(s), A(s), and T'(s). In the following we shall
rediscover these quantities in terms of the scattering
amplitude T'(s) which is given by Eq. (8),

2

Ag Ag?s—A? [
T (S)Ef(w>=E—(A2—s)-l[1+—— / ds’

T 2r T«

R,(s—A?) 1
8/
(s,-—Az)?(s,—s):] ®)

which is the most general solution which satisfies
unitarity, analyticity, and crossing symmetry (in the
w plane). In the s plane the scattering amplitude does
not have the left-hand cut, and in what follows we shall
make much use of this situation. (Note that in the s
plane our scattering amplitude is exactly the same as

16S. D. Drell and F. Zachariasen, Phys. Rev. 105, 1407 (1957);
M. Ida, Phys. Rev. 136, B1767 (1964); Y. S. Jin and S. W.

MacDowell, sbid. 137, B688 (1965); I. S. Gerstein and N. G.
Deshpande, 7bid. 140, B1643 (1965).

p(s) L Ag
(s'—A22(s"—s) ] 2T
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that in the Zachariasen model'” in which G? is replaced
by Ag?/2r and the cutoff factor |f(s)|? is introduced.)
By introducing the phase (s), which is defined by

8(s)=Im logT(s), for s2>u?;
=0, for s<u?; (60)
one has
Ag? ne (§—5,)
T(s)=—(a*=s)""I1 D(s), (61)
2 i=1 (A?—s;)

with

5(s") ]
s .
(s'— A2 (s'—s)

Since A(s) has the phase of T'(s) and has a pole at
s=A? with no left-hand cut, it is appropriate to define

A2_S 0
D(s)= exp[ / ds’
T Ja

Ag? n, (§—s;)
A(s)=—(A2—5)' 1 DI(s)=T(s).
27 i=1 (A2—s;)

(62)

Thus A(s) so defined has zeros at the C.D.D. zeros
of T'(s). In much the same manner, since H (s) has the
phase of I'(s) and in our model neither of them has a
left-hand cut, it is evident that on the right-hand cut

H(s)=Pa(s)T'(s), (63)

with an arbitrary polynomial P,(s), and hence it
follows that

T(s)=(4g*/2m)T (s)Av' ()T (s)+Pa(s)T'(s).  (64)

The ambiguity in the determination of P,(s) is closely
related to the existence of C.D.D. zeros of T'(s) [or of
A(s)]. If one attributes those zeros to the zeros of
Ay’ (s), then we must take

P.(s)=1I

b
i o§;— A2

Si—S

and I'(s) will then have no zeros, unless 7T'(s) has
multiple zeros. However, if one attributes all the C.D.D.
zeros to those of I'(s), then P,(s)=a (=const) and
Ay'(s) will have no zeros. In the following we shall
take the latter alternative in defining Ay’ (s) and T'(s),
so that all C,=0 in Egs. (55) and (56b) and

T(s)= (Ag/20T ()Ay' ()L ()+aT(s),  (65)

I'(s) having zeros at the C.D.D. zeros s=s;(:=1,2,- - - )
of T'(s). From (54) and (65), it follows then immediately

that
T(s)=T(s)[(Ag*/2m)A(s)+al™, (66a)
and hence
Ay’ (5)= (Ag"/2m)A () +a, (66b)
and « is given by
d \ T(s) Ag? \
a_d_;l: (s—A )F(s) Z(s A )A(S)]3=A" (66¢)

17 F. Zachariasen, Phys. Rev. 121, 1851 (1961).
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From the unitarity relations (58), some trivial manip-
ulation gives

A(s)

Imm= [T (s)ImA(s)—A(s)ImI(s)]|T(s)| 2. (67)
s
Comparing (51) and (67) and using (58b) we get
2 T*
ImI-1(s)= _A_g_p (5)A*(s) —I-)—(f)*—()(—sz . (68)
T s

By substituting (65) in (68) and using (64), we obtain

ImI(s)= —ap(s), (69)
and hence also

ImI (s)=ep(s)|T(s)|?, (70)

and the following once-subtracted dispersion relations:

2

s—Ar = p(s)|T(s)|
I'(s)=14«a ds’'———— 71
O=tte— [ @ ZE T,
s—AZ p(s")
r-i(s)=1—a . /“2 ds—~———-————(s,_A2)(s,_s)
a;(s—A?)
X, (72)

i (si—s)(s,—42)

since from (62) and (66a), I'(s)=0(1) for s — . As
we defined Ay’(s) so that it does not have zeros in
Eq. (55), we do not have any C.D.D. contribution of
Ay’ (s) to Zy given by Eq. (56b). From (71), however,
we know that

1rdr L= p(s)|T(s)]?
L L
aldsd,_ar wJ (s'—A?)?
while from Eq. (72),
1dr 1 p(s") a;/a
—[—] =- / ds’ + ; (714)
aLdsd,car wJ,  (§—A22 0 (5,—A2)?
and finally it follows from Eq. (56b) that
Ag® o(s" Ag? a./a
Zv=1—— [ 4y UL
S (=A% 2r i (si—A%)?
By using Eqgs. (62) and (66a), it turns out that
a;= lim(s—s,)T~'(s) = im(s—s:;)aT (s) =aR;, (76)
and consequently we obtain
A 2 0 (S/) 2(s/_ 2)1/2
Zy= 1__g_ ds/u_")_
2n? J e (s"—A2)?
Ag2 Ri
- an

2wt i (S,'—Az)z.
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By comparing (77) with (7), it is clear that
Zy=(Ag?/27)B. (78)

Hence, we conclude that Z;=0 is equivalent to the

condition
lim[w? (w)1=0
w0

or
limD(w)/w=0

which is our condition (i). But since this condition does
not exclude the C.D.D. zeros, for a bootstrap it is not
sufficient to assume Z;=0 alone.

Before concluding this section, the following remark
on the Levinson theorem is in order. Using the s
variable, the phase representation of T'(s) given by
Eq. (61) reads

1) =E (s T S22
27 i=1 (A2—s;)

s— A2 wd' 8(s") 19)
<o o)

Then the high-energy behavior of T'(s) is given by
T(s)~ [s|net=bir, (80)

up to a possible logarithmic factor in s. Hence, if the
phase §(x) satisfies the Levinson theorem,!® i.e. if

8(u?)—d(0)=(1—nr 81

[note that in the s-plane we have one bound state and
normalize so that §(u?)=0], then from (80), we get

T(s)=0(Q1), (82)

and consequently we get the condition (i),
lim[w? (w) T'=0.
w0

Conservely, if one assumes that lim,.[w?(w)] =0,
then we have no linear term in w? in (4), and for this
solution one can prove the Levinson theorem. However,
if the linear term is present, then the solution does not
satisfy the Levinson theorem, since in this case the
contribution from the large circle to the Cauchy

integral
D'(z)
/ dz
c D(3)

VI. APPROXIMATE SOLUTIONS

does not vanish.

In the discussions of Sec. IV, we noticed that there
should not be any C.D.D. zeros in the amplitude, in
order for the particular solutions to satisfy the two

8 N. Levinson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 25, No. 9 (1949).
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bootstrap equations (37) and (38). Yet these equations
did not limit in any way the values of By, and thus gave
only an inequality relation (22) for the parameters of
A and g. In other words, the two bootstrap equations
(37) and (38) are merely equivalent to one of our
bootstrap conditions (ii) of Sec. IT or (42b) of Sec. III
when there is crossing symmetry, and we need the
condition (i) or equivalently (42a) in order to have a
definite equality relation between A and g which does
not contain any other unknown parameters such as
the relation (25). Even under the two conditions (i)
and (ii), however, one can never determine both A and
g completely for the given cutoff function f(w) unless
one develops an extra independent condition for them.
We can only get a relation between them which gives
one of the parameters in terms of the other.

One might think that if it were not for crossing
symmetry, the two bootstrap equations (37) and (38)
would become independent of each other, thus giving
one more condition for the parameters. In order to
examine this possibility, let us destroy the crossing-
symmetric property of our model by introducing two
different cutoff functions* f,(w) and f_(w) which are
not identically zero along the cuts, so that the denom-
inator function (36) can be modified as

g2 w+A 00
D(w)= 1—Bl(w+A)—4— — | 4w (W—p?)\2
[ | fr@]? PACHE :I
@ —0)@+A) (@'+w) @ —A)
Ri(“"*"A)
—_—. (83)
i (0—w)(wit4)
Then the first bodtstrap equation (37) results in
-Ri A 2 £ 0.’2_ 2)1/2
1=2A(Bl—z >+—5g— / Pl
i Al—w?/ 272/, w?—A?
X[lf+(w)l +If-(w)l ] (84)
w+A w—A

while one obtains

[vo/ %L

g R; g
=—{—1—4A2[Z 4=
47 i (A—w)(A2—w?) 4r?

x / ) dw%__iz;-;<|f+(w>|2— [f~(w)l2)]}_l, (85)

where an identity relation from (84) is inserted. We
notice that Eq. (85) becomes Eq. (41) when | f, (w)|?
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=|f_(w)|?, as it should. When Eq. (85) is compared
with Eq. (38), one finds in general that A=0 and/or

(w2__ 2)1/2

do————(| f1 (@) 2= | f-(@)[?)
(w2—A2)2

gZ )

4z J,
R;

_—y (86
;(A—wi)(Az—wﬁ) (%0

whether the parameter B is zero or not. It should be
noticed that the right-hand side of Eq. (86) is always
negative if there exist C.D.D. zeros, since R;>0.

If no C.D.D. zeros are present in the scattering
amplitude, then the integral on the left-hand side of
Eq. (86) should vanish in a delicate manner. While
one may choose the two cutoff functions so as to make
the integral vanish, it is plausible (if nature is simple)
that the cutoff functions will behave more or less
monotonically. The bootstrap equations therefore may
lead to crossing symmetry when there exist no C.D.D.
zeros. Moreover, it is clear that Eq. (86) in the case of
no C.D.D. zeros does not provide any more independent
conditions as far as determination of the parameters
A and g is concerned.

Let us consider a particular case in which one neglects
the left-hand-cut contribution®® in the above general
discussion. This means putting f_(w)=0 identically.
Then the bootstrap equations (37) and (38) can be
satisfied by A=0 and/or by

((1)2—#2 1/2

do—— 2
o @)

g2 0

2
4r? J,

> K (87)
T (A—w) (A2

for all possible values of Bj. Since the right-hand side
of (87) can never become positive and the integrand
stays always positive in the domain of integration,
Eq. (87) can be satisfied only when all R; are zero and
f+(w)=0. Thus we notice that the bootstrap equations
lead to the retention of crossing symmetry in our
approximate solution with no C.D.D. zeros of the
amplitude present. This approximate solution, however,
is clearly uninteresting to us, because the bootstrap
equations restrict the parameters to A=0 and/or to the
case of no scattering at all. Again we see that breaking
crossing symmetry in this way does not result in any
nontrivial conditions for determining the parameters.
In order to get meaningful results in the approximate
solutions, one must either introduce a subtraction in
the Low equation (1) from which we started, or
introduce one C.D.D. zero. In the former case, it is
anticipated that we can determine the parameters A
and g2 completely, while in the latter case we would get
an equation between them, since one C.D.D. zero
introduces two more parameters.

1t seems, therefore, that there is no way of determin-
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ing the parameters completely in our model. Even if
one breaks the crossing-symmetry property, the two
bootstrap equations never give any more useful condi-
tions than a relation which merely relates the symmetry-
breaking factors built in. Furthermore, using crossing
symmetry rather than destroying it seems to be the
reasonable approach, in the sense that the bootstrap
equations then can result in a nontrivial relation
between the bootstrap parameters. The bootstrap
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equations, when crossing symmetry is used, do not
permit any C.D.D. zeros and hence exclude the possibil-
ity of having a positive scattering length in our model.
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The Gell-Mann current-commutation relations are used to obtain a relation between matrix elements
involving vector currents and matrix elements involving axial currents, in the infinite energy limit. This
relation leads to a set of sum rules. One of these is used to calculate the rate for w® — #%+~ in terms of the
p-meson width and the axial-current renormalization constant, under the assumption that only states with
spin and parity 0* and 1~ need be taken into account. The result, I'(w® — 7°+v) =1.2 MeV, is in reasonable

agreement with experiment.

INTRODUCTION

HE remarkable calculation of the axial-current
renormalization constant by Weisberger! and
Adler? may be ranked with the determination of the
Yukawa coupling constant from the forward scattering
dispersion relations as one of the major successes of
field theory in the domain of the strong interactions.
This calculation, based on the equal-time current
commutation relations of Gell-Mann,? has stimulated
further exploitation of these relations in a number of
sum rules. When certain assumptions concerning the
dominant contributions to the sum rules are made,
relations between different matrix elements are ob-
tained. In all of the calculations published so far, little
use has been made of the symmetry between the vector
currents and the axial currents. Thus, in the calculation
of the axial-current renormalization constant only
matrix elements of the pion field operator appear, with
the commutation relations providing a scale. Similarly,
the calculations of the magnetic moment of the
nucleons? relate these to matrix elements of the iso-
vector current alone. What has been missing so far is

t Work supported in part by U. S. Atomic Energy Commission
Contract No. AT-(11-1)1371.
1 W. I. Weisberger, Phys. Rev. Letters 14, 1047 (1965).
2S. L. Adler, Phys. Rev. Letters 14, 1051 (1965).
(1;61\;1)' Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63
4S. Fubini, G. Furlan, and C. Rossetti (to be published).
8 S. Gasiorowicz, this issue, Phys. Rev. 146, 1071 (1966).

the analog of the old photoproduction or form-factor®
calculations of dispersion theory, in which, using certain
assumptions concerning the intermediate states, pho-
tonic matrix elements were calculated in terms of
pionic ones. It is the purpose of this paper to suggest a
method of using the commutation relations for such
problems, and to illustrate it by a calculation of the rate
for the process w®— 7%+.

THE SUM RULE

We begin by considering two matrix elements, one
involving a commutator of vector isospin currents, the
other a commutator of axial isospin currents:

Vo8 0 pb,0) = —i / dx e*0(x,)

X(#',a|[5,°(x),5,5(0) ][ p,8) (1)

and
A (8 s pbg) = —i [ dx e¥h(x,)

X (' ,0|[5.°(x),5,°2(0) ]| p,6). (2)
The indices a, b, @, and 8 refer to the isospin, and we con-

¢ G. F.Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys.
Rev. 106, 1345 (1957); G. F. Chew, R. Karplus, S. Gasiorowicz,
and F. Zachariasen, ¢bid. 110, 265 (1958); P. Federbush, M. L.
Goldberger, and S. B. Treiman, zbid. 112, 642 (1958).



