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The collinear group SU(6)~ enables us to discuss vertices, form factors, and other collinear processes in
an SU(6) theory which is consistent with relativistic invariance. It leads, however, to a classi6cation of the
particles which is dUFerent from that of the "static" SU(6)8. The general "W-spin" properties of an arbi-
trary spin state constructed from any number of basic spin-$ objects are discussed in detail. Explicit formulas
for expressing the eigenstates of %'~ as linear combinations of ordinary spin states are given and some
properties of the transformation matrices are discussed. The relation between W spin and ordinary S spin
in the framework of the SU(2)QxSU(2) algebra is generalized to an arbitrary Lie algebra of the form GQxG.
Some examples of such generalized W-type algebras are considered and the special case of SU(6)~ and
SU(6}q is discussed in detail. An explicit formula for calculating the SU(6}~ properties of an arbitrary
component of a representation of the nonchiral U (6)U(6) is given. Some explicit transformation matrices
between the eigenstates of 8"spin and S spin are shown.

Lorentz transformations in the z direction (and with
the Dirac Hamiltonian for a free particle moving in
that direction) enables us to discuss three-particle
vertices, form factors, ' and processes such as two-body
decays and forward and backward scattering. 4'

The difference between the "old" SU(6) classification
of mesons and baryons' and their SU(6) rr classification'
stems from the different relative phases of the "ordinary
5-spin" and the "8'-spin" raising and lowering opera-
tors for quarks and antiquarks. 4 In order to classify
particles according to SU(6) s or SU(2) s, it is sufhcient
to de6ne the 8'-spin operators for states having zero
momentum, as the classifj. cation remains unchanged
when the particles are moving with an arbitrary mo-
mentum in the s direction. The 8'-spin operators for
quarks and antiquarks at rest are defined as follows4:

L DTTRODUCTION
''T has been pointed out that the difhculties en-
' ~ countered in formulating a relativistic version of the
static' SU(6) theory can be avoided, for various sets of
processes, by applying the approximate U(6)QU(6)
symmetry to particles at rest' and its appropriate sub-
groups to collinear and coplanar processes. In particular,
the collinear group SU(6) ~s ' which commutes with the

~ %'ork supported in part by the U. S.Once of Naval Research,
Contract No. NA—onr-7-66 and by the U. S. Atomic Energy
Commission.

t On leave of absence from the Weizmann Institute, Rehovoth,
Israel.

f, On leave of absence from Tel-Aviv University, Tel-Aviv,
Israel.' B.Sakita, Phys. Rev. 136, B1756 (1964); F. Gursey and L. A.
Radicati, Phys. Rev. Letters 13, 173 (1964).

~ The complete chain of symmetries for zero-, one-, and two-
dimensional processes was 6rst proposed by Dashen and Gell-
Mann, using the algebra of current components: R. F. Dashen
and M. Gell-Mann, Phys. Letters 17, 142 (1965).H. Harari and
H. J. Lipkin )Phys. Rev. 140, 81617 (1965)j have shown that
the U(12) theory of A. Salam, R. Delbourgo, and J. Strathdee,
)Proc. Roy. Soc. (London) A284, 146 (1965)j, B. Sakita and
K. C. %'ali I Phys. Rev. Letters 14, 404 (1965)j, and M. A. B.
Bdg and A. Pais )ibid. 14, 267 (1965)j leads to the same chain of
subgroups when symmetry breaking due to kinetic-energy terms
and derivative couplings is taken in account.' K. J. Barnes, P. Carruthers, and F. von Hippel, Phys. Rev.
Letters 14, 81 (1965); K. J.Barnes, ibid. 14, 798 (1965).

4H. J. Lipkin and S. Meshkov, Phys. Rev. Letters 14
(1965).

For quarks:

w +=s+ m'-=s- w, =s, .e a 2 e

For antiquarks:

W;+= —Ss+; Wrt ———S-, ; 8'a*=Ss*. (2)

Clearly, for any system which includes only quarks

, 670 ' J. C. Carter, J. J. Coyne, S. Meshkov, D. Horn, M. Kugler,
and H. J. Lipkin, Phys. Rev. Letters 15, 373 (1965).
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or only antiquarks we find: W'= S'. This simple rela-
tion does not hold, however, for systems containing
both quarks and antiquarks. Moreover, S' does not
necessarily commute with W' and an eigenstate of %'
may be described, in general, as a linear combination of
eigenstates of S' having diferent total ordinary spins.
It is our purpose in this paper to discuss the general
problem of calculating the W-spin properties of an
arbitrary spin state, and to present explicit formulas
for the general IV ~5 transformation matrices.

Our discussion is based on the assumption that all
the involved spin states are constructed from basic
spin--, objects which may or may not be identified as
physical particles (quarks and antiquarks). All we

really need is the assumption that the spins 5, and S;,
satisfying Eqs. (1) and (2), respectively, are well
defined' for all our states. In a simple quark model 5,
is the total spin of the quarks and 5- is the total spin
of the antiquarks. However, our arguments do not
depend on the existence of quarks. They can be applied
to any one of the following situations:

(a) All states are classified at rest into the repre-
sentations of the nonchiral U(6)U(6). (For spin
purposes, U(2)U(2) is, of course, sufficient. ] It is
then automatically guaranteed that the particles are
described by known linear combinations of eigenstates
of S,' and S, where S, is the spin associated with the
first U(6} Lor U(2)] group and S; is associated with
the second. Notice that in this case we do not assume
anything about the existence of quarks (although we

may still use them as a convenient mathematical tool).
(b) Particle states are classified according to a sym-

metry group which includes the nonchiral U(6) U(6)
as a subgroup. In this case 5, and S;are, again, defined
as the spins associated. with the two U(6) groups. How-
ever, these spins are not necessarily identical to the
total spins of the quarks and antiquarks, respectively.
5, and S; are now redefined as the total spins of the
positive-parity and negative-parity basic spinors, re-
spectively. ' In a (compact) U(12) or a (noncompact)
U(6,6) scheme' in which both positive-parity quarks
and negative-parity pseudoquarks are proposed (at
least as mathematical entities), S,will be the total spin
of all quarks and anti-pseudoquarks whereas S; is the
total spin of all antiquarks and pseudoquarks.

(c) The W spin can be defined for any system of
Physical quarks even without a U(6) U(6) classifica-
tion. This can be done for any particle which is con-
structed from S-wave quarks and antiquarks (and,
possibly, pseudoquarks and anti-pseudoquarks), pro-
vided that the total number of basic particles in the

' "Well defined, " for our purposes, means that a given particle
with spin S can be uniquely described as a linear combination of
eigenstates of S,' and S~~.

This generalized definition of IV spin was introduced by H. J.
Lipkin and S. Meshkov, Phys. Rev. jt43, 1269 (1966}.' See, e.g., Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys.
Letters 17, 148 (1965}.Pseudoquarks are negative-parity SU(3}
triplets transforming like the (1,6) representation of U(6}jsU(6}.

system is well defined (e.g., a given particle is a three-
quark object with no additional quark-antiquark pairs).

(d) Electromagnetic and weak currents, defined on
the basis of a quark model can be classified according
to SU(2)s and SU(6)s.' In this case, positive-parity
currents will have S-,=O and, consequently, S=W.
Negative-parity currents do not necessarily satisfy this,
as for them 5-,/0, and their W-spin values will be
determined by their 5, and 5;according to our formulas.

(e) Particles off the mass shell may have "virtual
components" with spins diferent from their ordinary
spin (e.g., the S=O fourth component of a virtual
vector meson). The W spins of such components can be
easily determined by using the following rule: The
so-called "large components" (those with yo ——+1) of a
Dirac four-spinor describing a J =-,+ object behave
like quarks (and contribute to S,); the "small com-
ponents" (with yo ———1) behave like pseudoquarks
(and contribute to S;).The large components (yo ——+1)
of the four spinors of the antiparticle behave like anti-
quarks (with S;) and the small components (y,= —1)
like anti-pseudo-quarks (with S,). Every spin state is
then constructed from basic J = ~+ objects with their
antiparticles, using the Bargmann-Wigner formalism
(or any other free-field equation for arbitrary spin).
The 5, and S~ values are then well defined, both for the
"real" and the "virtual" components. Notice that in
this case, the results may depend on the number of
basic Dirac spinors which are used. For example, the
virtual components of an S=i meson which is de-
scribed by one pair of basic spinors (e.g., according to
the Duffin-Kemmer equation) will differ from those of
a vector meson obtained from three pairs of basic
spinors. This ambiguity is present in any field-theoretical
description of a particle with an arbitrary spin.

The material of the paper is organized as follows. In
Sec. II we discuss the SU(2)SU(2) algebra which
includes both the W-spin and the S-spin operators, and
we present explicit formulas for the W++5 trans-
formations. Some properties of the transformation co-
efBcients are discussed in Sec. III, while in Sec. IV we
generalize our procedure to some bigger groups. Finally,
in Sec. V, the transition coefficients between SU(6)s
and SU(6) s are calculated.

II. 8' SPIN FOR ANY SPIN

Consider a particle state having well-defined values
of S, and S; and a total spin S, and denote the z com-
ponents of these spins by 3f„M;,and M, respectively.
We know that

S=S,+S,—,

9 The 5 -spin classification of the scalar, pseudoscalar, vector,
axial vector, and tensor currents can be easily obtained from the
classification of all Dirac p matrices which was given in Ref. 4.



1054 HARARI, HORN, KUGLER, LIP KIN, AND MESHKQV

From Eqs. (1) and (2) we obtain

TV+=5,+—S-,+,

erties of SU(2) and SU(2) XSU(2) "[which are locally
isomorphic to 50(3) and SO(4), respectivelyj we can
calculate the explicit formula for applying the lowering

(6) operator W to a spin state ~S,M). Defining

The six operators S,+, 5, , S,', 5,-+, S;—,S form an
SU(2)SU(2) algebra, " the generators of which may
be also chosen as S+, 5, 8"+, O', E=Nq —3f;, and
M=Mq+M;=5"=5'. Using the well-known prop-

S,+5;=r,
S —S-=t,q

we obtain the following expression":

(I)

(g)

W ASM)= fl(r+1)/5(5+1)g[(5 —M+1)(5+M)g'"iS, M 1)—
1 (5+M) (5+M—1)[(r+1)'—52j (52—P)-'@

iS—1, M 1)—
5 (2S+1)(25—1)

1 (5—M+2)(5—M+1)[(r+1)2—(5+1)2j[(5+1)2—Pj-i/2
S+1,M —1 . 9)+1 (2S+3)(2S+1)

In order to express the eigenstates of %' in terms of
the S-spin states, the following procedure may be used.
For any set of values of S, and 5- we start by consider-
ing the state

~
r,r) satisfying

r=S= 8'= M=Sq+5-, .

Using Eq. (9), we apply W to this state and obtain
all 28'+1 components of the 8'=r multiplet. The
maximal 5" component of the next 8'-spin multiplet
(W=r 1) is th—en found from its orthogonality to the
state

~
r, r 1), an—d all other components of the W= r—1

multiplet can be, again, obtained by applying 8'—.By
continuing this procedure we can express all the 8'-spin
multiplets in terms of the appropriate ordinary spin
states, and we can calculate the transformation matrices
between the eigenstates of S' and W' for any value of
5„5;,and 3I.

It turns out, however, that this procedure, though
very simple in principle, is not very convenient for
calculating a given 8'+-+ 5 coefIicient, when other co-
efFicients are not known, because it requires a successive
application of Eq. (9) of higher states. We therefore
present here an alternative procedure of calculating the
8"+-+ 5 transformations, expressing the coefFicients
themselves in terms of the ordinary SU(2) Clebsch-
Gordan coefFicients. Consider a system with a given set
of values for S„S;,and M=S'= 8". Its total 5 and
8' may be in the range

max(~t~, M) & W&r,
max(( t (,M) &5&r,

where r and t are defined by Eqs. (7) and (8). All
states having the given values of S„S;,M may be
labeled according to any one of the following sets of

"Some properties of this SU(2)SU(2) algebra were discussed
by K. Ahmed, S. A. Dunne, M. Martinis, and J.R. Poston, Phys.
Rev. 142, 995 (1966).

quantum numbers:

I. S„M„S;,M;;
II. S, M, Sq, Sq,

III. 8', M, S„S-,.
The transformation between the eigenstates of the
operators of set I and those of set II is given by the
usual SU(2) Clebsch-Gordan coeflicients. For every set
of values of Sqp Sq, and M we define the usual matrix":

A ir, s(SeSq,M) = (S,M,SqM;~ SM) . (10)

A similar matrix gives the transformation between sets
I and 111. However, all the SU(2) Clebsch-Gordan
coefficients in this matrix are multiplied by the phase
factor (—1)s~™~which reflects the minus signs in the
definitions of W+ for antiquarks [Eq. (2)j.The trans-
formation matrix 8 is then de6ned by

B~,~(S„Sy,M) = (—1)s ~&(5 MqS;M;~ WM). (11)

The transformation between the sets of operators II
and III can now be easily calculated. '4

C (Ss„Ss,M)

(12)

=Q (—1)s~~~(SM
~
S,M,S;M;) (SqMqS;Mq

~
WM),

where A~ is the transpose of A.
Using the standard phases of the ordinary SU(2)
"See, e.g., %'. Pauli, CERN Report 56-31 (unpublished).
"Equation (9) can be obtained by using some of the relations

given by %. Pauli, Ref. 11.For simplicity, we did not include the
full normalization factor in Eq. (9). This can be easily calculated
for any given speciac case.

"Tables of SU(2) Clebsch-Gordan coefficients organized in
matrices of this form, can be found, for example, in A. H. Rosen-
feld et al. , Rev. Mod. Phys. 36, 977 (1964); 37, 633 (1965}.

"Notice that the correct normalization is guaranteed in this
case by the properties of the ordinary SU(2) coefEcients.
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FzG. 1. A few C8~(S„S;,M) coefBcients. The diagrams in-
clude the coef5cients for M &0. The coefficients for M(0 can
be obtained from those by Kq. (16').

41 ji
5 tP

1

5

2 1

2'
5

0 1 0

2/6 11 — 05 5

Clebsch-Gordan coefFicients and the exact form of Eq.
(12), we automatically obtain standard phases for the
C8 coefFicients. Some of these coefficients are given
in Fig, i.

III. SOME PROPERTIES OF THE
COEFFICIENTS Cs~(Bq&S~&M)

1. For S~=0 or S~=O, Eq. (12) degenerates into
C8~= (—1)s& ~&ls~. This is consistent with our pre-

vious observation that W2= S' for any "pure" system
of quarks or antiquarks. This last equality is now
extended to systems in which all quark spins or all
antiquark spins are coupled to zero.

2. For Sq=Sq=2 we obtain the already well-known
W-S spin Rip for the vector and pseudoscalar mesons.
The two &=0 states of the qg system have S=O, W= 1
and S= 1, W=O, respectively. 4

3. For S,=S;,we obtain from Eq. (9) an interesting
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"selection rule. " Since t=5,—5;=0, no transition be-
tween two states with the same 5 spin can be induced
by applying 8' . Consequently, states with odd and
even values of S cannot be mixed in the same

~
W, M)

states and vice versa. The qg system is, of course, a
simple example of this rule.

4. The matrix C~8 is symmetric. This refIects the
symmetrical relation between the 5-spin and the 8'-spin
generators in SU(2) 8SU(2).

S. It can be shown that":
pic W~ P. gix8~

l fit (13)

where I';„t, is the intrinsic parity. We know that
e*' .

~
W M)= (—1) —

~
W, —M), (14)

S,„'-&*~S,M)=Z;.,( 1)'—"~S, —M). (»)
Consequently

C.~(S„S,,M)=( 1)-& ~J;„—C, (S„S„—M), (-16)

IV. THE GENERALIZED 8' SPIN
The SU(2)8SU(2) analysis of W spin and S spin

can be generalized to any algebra of the form GtsG.
We denote the generators of the two commuting G
algebras by g, ', g;" and assume that they satisfy the
usual commutation relations

or

Cs~(S„Sy,M) = (—1)e-~—'~~Ca~(S„Sy, —M) . (16')

For the case PI=0 we find

(17)

Namely, for an odd number of antiquarks the zero
helicity state connects odd 5 to even 8' and even 5 to
odd IV. For an even number of antiquarks, even 5 can
be connected only to even 8' and odd 5 to odd 5'.

6. It is clear that states with high 5 spins have, in
general, components with small 8' spins. This means
that 8'-spin conservation does not lead to any general
&58 selection rule. This is extremely important, as
otherwise the m-x or E-vr decay modes of resonances
with high spins (2Pes, —,', etc.) would be forbidden in an
SU(2) s invariant theory

such that: (1) E is a subalgebra of G, (2) the operators
in I' transform like one or more irreducible representa-
tions of E', and (3) the commutator of any two opera-
tors in I' belongs to E. We may then define

for

for

Again

gs &+p gs = gs +g'

g' ~J, g' =g' —g'

fg,w g,w] —C, .kg w

(23)

(24)

F+= U++ V+,

E =U+V
gc Is

(26)

The other five generators transform like a K= 2 tensor:

and the g;~ operators form an algebra G~ isomorphic
to GD. Both G~ and G~ have the same subalgebra E,
but they diGer in all their other generators. The general
transformation between the eigenstates of the G~ and
G operators can be easily expressed in terms of the
Clebsch-Gordan coefFicients of 0, using a straight-
forward generalization of Eq. (12).

The simplest method of finding all possible isomorphic
G~ subalgebras of GG is based on the analogous prob-
lem of finding all noncompact versions of a compact
algebra G. In both cases all we have to do is to And all
subalgebras E of G which satisfy the conditions (1)—(3).
For every such E we can construct another G~ algebra
(and, similarly, a noncompact version of the compact
G). Since we know the solution to the second problem
(at least for the classical algebras) we also know how to
construct all G~ algebras.

We now consider a few examples:

(a) For G=—SU(2) the only possible subalgebra E is
U(1). Consequently, we have only one G~ algebra:
SU(2)s Lsimilarly, SU(2) has only one noncompact
form SU(1,1) whose maximal compact subalgebra is
U(1)].

(b) For G—=SU(3) we may have two G~ algebras
corresponding to the two possible E subalgebras—
SO(3) and U(2). Denoting the SU(3) generators by
l+, U+, V+, I*, and Y, we may consider the SO(3)
subalgebra:

(gi qgj ]=CD gs ~

Lg;"g,"]=C;,'g~".

The "diagonal" subalgebra G~ is then defined by

(18)

(19)

(27)

Clearly
gs =gs +gs

Lg', g ]=C"g. .

(20)

"This relation eras 6rst noticed and discussed by Lipkin and
Meshkov, Ref. 7.

We can now divide the operators of G into two sets

(22)

We can now start from SU(3)SU(3) and de6ne

z;~=@,'+x,",
Qi =Q' —Q/'.

The operators E';~, Q,
~ form an SU(3) algebra.

(28)

(29)
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Another W-type SU(3) which may have physical
application can be constructed by identifying the sub-
algebra IC with the isospin-hypercharge U(2) or with
the U-spin electric charge U(2). In the framework of
the coplanar SU(3)SU(3)"' we can construct in this
way an SU(3) subalgebra whose generators are

Wg+ Wg I* W, V+ W,V, U+, U, V.

Under this subalgebra the 5" =0 states of p+, co, p
form an SU(2) triplet'~ which can be used for calculat-
ing coplanar processes.

In the framework of the nonchiral U(3)SU(3) one
might also consider a W-type SU(3) algebra de6ned by

I+, I, I' go V+) y0V, yoU+, yoU, I'.

Such an algebra might be a good symmetry even in the
presence of the usual SU(3) symmetry breaking since
only the isospin-hypercharge U(2) subgroup is common
to this SU(3) and the ordinary SU(3)."

(c) In the case G=—SU(6) we can construct Gw

algebras in various diGerent ways, corresponding to the
following possible subalgebras E:
U(5) SU(4) 3SU(2) U(1)

SU(3)g SU(3)g U(1), SO(6), Sp(6) .

We are interested in the case K—=SU(3)SSU(3)8U(1)
since this is the algebra of all generators belonging to
both SU(6) s and SU(6) w. This SU(3)SU(3) may be
considered as the collinear subgroup of SU(6)s" Lto
be distinguished from SU(6)w which is the collinear
subgroup of U(6)SU(6)]. The explicit expression for
the transformation between SU(6)s and SU(6)w is
obtained by using the method of Sec. II and is dis-
cussed in detail in the next section.

V. SU(6)w AND SU(6)s

Both SU(6) w and SU(6) s are subgroups of the non-
chiral U(6)U(6). We denote the sets of SU(3)
quantum numbers L(X,u)II, F] for the two U(6) groups
by A, and h.;, respectively, and the total SU(3) quan-
tum numbers Lthose of SU(6)s or SU(6) w] by A. It
is a priori clear that the transformation between
SU(6) w and SU(6)s conserves, in addition to S*=W*

"The two commuting SU(3) algebras are defined by (i~TV,)X,
=1, 8 where X are the usual SU(3) generators.
"cu is the singlet-octet mixture which includes no strange

quarks; u = {gg)an1+(g$)cog.
"This possibility is considered by S. Coleman (private com-

munication)."D. V. Volkov, JKTP Letters 1, 129 (1965). This SU(3)
SSU(3) is defined by the matrices (1~0,)) .

=M, all the quantum numbers of SU(3). Furthermore,
it can mix states of diferent SU(6)s representations
only within the same U(6) U(6) multiplet which we
denote by (u„u;). We, therefore, start our analysis by
considering all states belonging to the (u„u;) repre-
sentation of the nonchiral U(6) U(6), which have the
same values of A and M Le.g., all octet states with
M'=0 in the (21,21)].We then follow the procedure of
Sec. II. All the considered states can be labeled by the
following sets of quantum numbers:

I Q) ~C) SQ) ~C) 9) +Q)

pa) I"e) I S) 4) S) M)
III. p q) p y) p Q') A.) lV) M)

where p8 and p, ~ are the dimensionalities of the repre-
sentations of SU(6)s and SU(6)w, respectively, and
n„n-„P) p are additional quantum numbers which may
be needed for distinguishing between two identical
SU(3)SU(2) representations within the same SU(6)
multiplet. It is convenient to denote the set of quantum
numbers (A„S„M„n,) by R, and the set (A;,S„M;,0.;)-
by E-,.

The transition between the sets I and II is then given
by the usual SU(6) Clebsch-Gordan coeKcients20:

~R s "ss'(u~ usA M) = (u,R.; u.Rslus~-P) (30)

The transition between the sets I and III is given by
the same coeKcients multiplied by (—1)s~~~:

I3s,s,I'ww&(uq, u;,A,-M)

=( I)'~ '(u.R—.'uPsluwAWv) (31)
Finally,

(cuue A M)

= E (—1)' ~'(u Aalu. R.;ueR;)

X (u,R, ; u ,R, lu AWy) -(32-)

or, in matrix notation C=AtB.
The simplest nontrivial C matrix is the 2X2 matrix

obtained for the SU(3) singlet, M= 0, quark-antiquark
system. In this case (us, S) obtains the values (35,1)
and (1,0) and the explicit form of C is

Csss"ww(6, 6,1,0) = 1—bsw. (33)

Namely, the S=O, SU(6)s singlet is a W=1 state in
the 35 of SU(6)w and the S=1 state of the 35 of
SU(6)s is a W=0 SU(6) w singlet.

~ J.C. Carter, J.J. Coyne, and S. Meshkov, Phys. Rev. Letters
14, 523 (1965); 14, 850 (1965); C. L. Cook and G. Murtaza,
Nuovo Cimento 39, 531 {1965).These tables include the explicit
coefficients for the products 351356, 3535, and 5656.


