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A Cini-Fubini-like representation is assumed to describe low-energy meson-meson interaction. The
spectral densities are determined by iteration from nonlinear integral equations given by unitarity. For
bootstrap calculations, Breit-Wigner-type functions are proposed as a zero-order approximation. An
approximate determination of the resonance parameters can be achieved through a best-fit condition be-
tween the zero and first-order approximations in the resonance region. Such calculations take into account
crossing symmetry exactly but unitarity approximately. An application is given for the p-meson bootstrap
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and a symmetric-shaped amplitude is obtained with m,=450 MeV and I',=40 MeV.

I. INTRODUCTION

T has been realized that different approximations in
low-energy meson-meson interactions lead to very
different quantitative results. The nonuniqueness of
the solutions of equations, and the use of intuitive
arguments in order to retain some solutions (for which
crude approximations are considered) and to reject other
solutions, raise the question whether we are not prac-
tically dealing with different mathematical models for
the same physical system.
To find the scattering amplitude, one employs the
following general principles:

1. relativistic invariance,
2. analyticity,

3. unitarity,

4. crossing symmetry.

Usually, the first three principles are taken into
account exactly, the last one only approximately.
In this paper, another approach is proposed, in which
approximations are made only in unitarity.

In Sec. IT the present situation in low-energy w-m
scattering is examined and the different approxima-
tions are compared. In Sec. III a crossing-symmetric
Cini-Fubini-like representation [which in fact is a
modified one-particle exchange (OPE) model] is postu-
lated for the low-energy scattering amplitude. Such an
amplitude is made plausible by a study of the low-
energy elastic scattering of identical scalar mesons. The
single spectral densities involved in the representation
are determined by the unitarity condition, which leads
to nonlinear integral equations. To solve these equa-
tions, an iteration program is proposed, which starts
with Breit-Wigner-type functions corresponding to dif-
ferent partial-wave resonances. The three parameters
of the Breit-Wigner functions are determined by
bootstrap-like conditions.

In Sec. IV, the proposed method is applied to the
p-meson bootstrap. Confining ourselves to the first
iteration, we obtain an almost symmetric shape for the
partial-wave amplitude with m,=450 MeV and I',=40
MeV.

*In partial fulfillment for the requirements of the doctoral de-
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II. THE PRESENT SITUATION IN LOW-
ENERGY =-= SCATTERING

The best studied example of meson-meson inter-
action is the 7-m case. We shall consider this case in
more detail to illustrate the actual situation. Two main
directions can be discerned in this field:

(1) A strictly low-energy point of view, i.e. computa-
tion of low-angular-momentum phase shifts and dif-
fusion lengths, the necessity for a resonance in the =1,
J=1 partial wave being a guide in the choice of the
adequate solution. In this kind of calculation, the role
of the s wave in the crossed channel is considered to
be essential. The approximation methods used are,
respectively:

(a) the ND~! method,—3
(b) the inverse-amplitude method,*7
(c) the differential approximation.®—10

We shall not enter here into the description or
criticism of these methods.? We should like to observe,
however, that the solutions which depend on at least
one parameter (the coupling constant \) are not in-
compatible with the rather poor experimental data on
phase shifts.”"!! As to the p resonance, the results are
rather contradictory. In some works the resonance
emerges as a consequence of the arbitrary parameter
choice,” with m,=500 MeV, I',=70 MeV, or “is in-
stalled in the right place by hand,'9” its width being
I';=40 MeV. In addition, the differential approxima-
tion leads to the conclusion that the physical mecha-

1 G. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
(1; 6%) Chew, S. Mandelstam, and P. Noyes, Phys. Rev. 119, 478

#J. S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961).

4. W. Moffat, Phys. Rev. 121, 926 (1961).

5B. H. Bransen and J. W. Moffat, Nuovo Cimento 21, 505
(1961) ; Phys. Rev. Letters 6, 708 (1961).

¢ B. H. Bransen and J. W. Moffat, Phys. Letters 8, 145 (1962).
(1;6I§3/ungsik Kang, Phys. Rev. 134, B1324 (1964); 139, B126

8 A. V. Efremov, V. A. Mescheryakov, D. V. Shirkov, and H. Y.
Tzu, Nucl. Phys. 22, 202 (1961).

¢V. V. Serebryakov and D. V. Shirkov, Fortschr. Physik 13,
227 (1965).

10 D. V. Shirkov, International Center for Theoretical Physics,
Report No. 2/36, 1965 (unpublished).

11 J. Hamilton, P. Menoti, G. C. Oades, and L. J. Vick, Phys.
Rev. 128, 1881 (1962); H. J. Schnitzer, ibsd. 125, 1058 (1962).
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nism of the p resonance is not a self-sustaining one, but
requires a strong attraction in the crossed channel with
I=0. The problem of the existence of the scalar o
dipion resonance, which recently has received some
attention,!2:13 is still an open one,!* and the same is true
of the ABC anomaly.15-16

(2) The bootstrap-type calculations neglect completely
the s wave in the crossed channels, and their main pur-
pose is to obtain a resonant-type amplitude for the
I=1, J=1 partial wave with correct values for the
p-meson mass and width. The approximation methods
involved are:

(a) the ND—! method,'7-18

(b) the determinantal method,®
(c) the fixed-angle method,?°
(d) the VG~ method.?

By all these methods, strongly asymmetric shapes for
the resonance amplitude are obtained, in sharp con-
tradiction with experiment. Moreover, the width of the
p resonance is very large (600 MeV in the determinantal
method) as compared with the experimental value
T',exp=124 MeV. A rather singular result has been ob-
tained in an approximate version of the inverse ampli-
tude,?? where a small width I';=45 MeV has been ob-
tained. We shall return later to the discussion on the
resonance position.

Let us discuss the approximation methods considered
above, confining ourselves to the first two, which have
been better studied.

The ND-! and the determinantal approximations
with various inputs in the left-hand cut (LHC) have
been compared in nonrelativistic potential scattering
with the true solution of the Schriodinger equation.23-24
Taking the Born approximation to compute the L.H.C.
(i.e., doing what we do in bootstrap calculations), the
two approximations and the true solution do not
generally agree, nor do they disagree in a systematic
way. In addition, it may happen that in the ND~! ap-
proximation the output solution is quite near the Born
input, giving rise to a bootstrap su: generis, both values
being far from the correct one.

In the relativistic case, besides the problem of

21,. M. Brown and P. Singer, Phys. Rev. 133, B812 (1964).

1S, H. Patil, Phys. Rev. Letters 13, 261 (1964); L. Durand
IIT and Y. T. Chiu, 4bid. 14, 329 (1965).

¥ J. Fischer, International Center for Theoretical Physics,
Report No. 2/25 1965 (unpublished).

15 N. E. Booth and A. Abashian, Phys. Rev. 132, 2314 (1963).

16 D. Atkinson, Phys. Letters 9, 69 (1964). S. Ciulli and G.
Ghika, #bid. 11, 336 (1964).

17 M. Bander and G. L. Shaw, Ann. Phys. (N. Y.) 31, 506 (1964).

18 A. Morel, Nuovo Cimento 38, 1649 (1965).

® F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
(1;0615_>I). Burkhardt and G. P. McCauley, Nuovo Cimento 38, 872

2 J. Franklin, University of California Radiation Laboratory
Report No. UCRL-12482-T, 1965 (unpublished).

2 G. Q. Hassoun and K. Kang, Phys. Rev. 137, B955 (1965).

2 M. Luming, Phys. Rev. 136, B1120 (1964).

% P. B. Kantor, Ann. Phys. (N. Y.) 33, 196 (1965).
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uniqueness of the ND~! equation for a given input,2’
we are not at all sure that in doing an iterative calcula-
tion (i.e., reintroducing the output solution as an in-
put, and so forth) the final solution does not depend on
the initial input. On the other hand, it is interesting to
mention that an attempt to improve the input forces,
taking into account the second order Born approxima-
tion in the L.H.C., may not give bootstrapping solu-
tions at all.2s

We also must stress that the aim of a bootstrap
philosophy is to build a parameter-free theory. How-
ever, in the ND~! method with an approximate input,
the solutions are sensitive to the subtraction point in
the dispersion relation for D. Also, in order to get the
proper threshold behavior of the output amplitude, a
cutoff parameter is necessary to assure the convergence
of the integrals. The value of the cutoff parameter is
determined by the condition of obtaining the correct
mass of the resonance. Indeed, one can argue that such
a parameter may represent, in some sense, the effect
of the high-energy region, otherwise neglected. It is,
however, difficult to think what physical interpreta-
tion might be given to the cutoff parameter, when it
varies by an order of magnitude with small changes of
the input width.'” Such arguments have driven some
people to state that the ND~! approach is not an ade-
quate mathematical device for the bootstrap concept.?’

To obtain a better agreement with experiment,
efforts have been made to consider the effect of closed
inelastic channels,? or to solve the one-channel problem
with inelastic unitarity.?® Some improvement has in-
deed been obtained, the theoretical value for the reso-
nance width being 500 MeV, or 250 MeV with a smaller
asymmetry for the amplitude. One may however ob-
serve, that such a strong effect of the closed inelastic
channels (especially the 77-rmw one) may be a conse-
quence of the systematically overestimated width and
of the fact that the position of the resonance is fixed
with the aid of the cutoff parameter in a region where
large inelastic effects are to be expected. The effect of
inelasticity may be quite different, and possibly in
stronger contradiction with experiment, for “strictly
low-energy solutions” considered under point (1) where
smaller masses and widths are involved.

Ending these considerations, we observe that the
possibility of neglecting the s and d wave in computing
the parameters of the p resonance may be a result of
the determinantal approximation, so that in a better
approximation their role could become essential.

With a view to getting some idea of what is really
fundamental in the results mentioned above, and seeing
that they do not represent merely the properties of the

% G. Frye and R. L. Warnock, Phys. Rev. 130, 478 (1963).

26 J, L. Gervais, Nuovo Cimento 34, 1347 (1964).

27 P, S. Isaev, International Center for Theoretical Physics
Report No. 65/62, 1965 (unpublished).

28 J. R. Fulco, G. L. Shaw, and D. Y. Wong, Phys. Rev. 137,
B1242 (1965).

2 P, W. Coulter and G. L. Shaw, Phys. Rev. 138, 1273 (1965).
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different approximations, we shall examine another type
of calculation in which relativity, analyticity, and
crossing are taking into account correctly, and unitarity
only approximately. In this direction, some efforts have
already been made.®

To find such a model, we still had in mind the idea
that low-energy physics is strictly governed by ex-
change of particles, resonances, and perhaps antibound
states and the belief that this idea must be included in
the model itself. It should be mentioned that an analo-
gous point of view is adopted in the new strip approxi-
mation, where one assumes that Regge trajectories de-
termine the scattering amplitude for not too high-
momentum transfers,®! and writes down equations for
the Regge trajectories.

To achieve such a program, we postulate a low-
energy expression for the amplitude, which is crossing-
symmetric and possesses the proper analytical proper-
ties, but which implies only spectral densities of a single
variable. With the aid of unitarity we obtain nonlinear
integral equations for spectral densities. These equa-
tions are then solved by iteration. We believe essen-
tially that the iteration must start with Breit-Wigner-
type functions, which, even corrected by unitarity, will
perhaps maintain a symmetric form near the resonance
position. It is indeed possible that if one began the
iteration with some other functions, owing to the non-
linearity of the equations, other solutions would be
possible.

III. USE OF CINI-FUBINI REPRESENTATION
FOR A BOOTSTRAP PROGRAM

In order to obtain an approximate expression for the
scattering amplitude with the desired properties of
crossing and analyticity, we shall use a Cini-Fubini
representation.’? Assuming that for low energies the
scattering process take place through the exchange of
particles, resonances, and perhaps antibound states,
the expression for the scattering amplitude is obtained
by writing down only exchange Feynman graphs, in-
cluding all the resonances we know from experience
to exist. The rules for calculating the exchange of un-
stable particles are analogous to those for stable-
particle exchange, the only difference being that the
pole term 1/(m?—s—ie) must be replaced by /"[o(s")/
(s’"—s—ie)]ds’. The spectral density p(s") must be de-
termined by the general principle not used until now
(i.e., unitarity), and is assumed to have a Breit-Wigner
shape near the resonance positions.

We shall develop the method for the simplest case of
elastic scattering of identical neutral scalar mesons of
unit mass, and shall return to the 77 interaction in the

# J. Fischer, Czech. Academy of Sciences, 1964 (unpublished).

#G. F. Chew, Phys. Rev. 129, 2363 (1963); G. F. Chew and
C. E. Jones, dbid. 135, B208 (1964)

3 M. Cini and S. Fubxm, Ann Phys. (N. Y.) 10, 352 (1960); D.
Amati and S. Fubini, Ann. Rev. Nucl. Sci. 12, 359 (1962).
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following section. Of course, the method can be usefully
extended to the general two-particle interaction, in-
cluding spin and internal symmetries.

One can easily see that the exchange of /=0, 2,---
spin resonances gives the following expression for the
invariant amplitude (for simplicity, we shall not con-
sider the exchange of stable particles):

1 repu(s’
A(s,t,u)=3 vs'Pi(z,)— Pt )ds'
1 wJs §—s
= put')
+Z thPl(Zt)— —dy
s U=t
1 = pu(ed)
+> uulP;(zu)—/ pz,( duw', (1)
l wJas U—U

where s, {, # are the usual Mandelstam variables, and
z; and »; are, respectively, the cosine of the c.m. scat-
tering angle and the c.m. squared momentum in
the ¢ channel [for instance s=4(v,+1); z,=141/2v,
=—(14u/2v,)].

We must stress that the low-energy amplitude (1)
postulated here, may in fact be justified for very low
energy® by an argument which for /=0 coincides with
that of Cini and Fubini.32 From the fact that the double
spectral functions have the property:

p(x,y)=0 if 4<w, y<16,

the Mandelstam representation for the amplitude may
be written as

A(s ) =as(s,tu)Fau(s,tu) +au(stu) (2)
where

(s ) =— f — f dyp(x,y)<———+;——> 3)
4 ;v— -

Using the Heine expansion in Legendre polynomials,
we have:

! Pi(z,)0i 1 4)
y—t 2v, Zl: e Q( +_u,>

which is valid for |z,| <|1+4y/2v,|. Taking into ac-
count that y> 16, one can see that the range of validity
of the expansion (4) is %, t<16 or %, > 16. An analogous
expansion may be used for 1/(y—u). Then for

Is],1e],|u| <16 ®)

the expression (3) for a(s,t,u) may be written as

as(s,tu)=

2 [+ (—1)"]Pu(z)

T, 1

00 dx 00 3 y
x / — [ 6 dyp(x,y)Qz<1+2Vs) ©)

# By “very low energy” we mean the elastic region, while by
“low energy”’ we mean the range of energies where the scattering
takes place through the exchange of resonances.
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and we have analogous expansions for a.(s,/,#) and
au(s,t,u).

We shall now assume that the spectral density
p(x,v) is such that the convergence domain of the ex-
pansion (6) is larger than the elastic region (5). We shall
not make any concrete assumption about the domain of
convergence, but we expect it to be valid only in the
resonance region. In other words, we assume that in the
integral (3) regions with y>>16 are important.

We express the Legendre function of the second kind
by the hypergeometric function

Qu(1/z)=[="2(+1) /T (I+3)](z/2) "+
XF(GIH1, 5143, 143,28 . (7)
For

Z=[1+2y/(s—H >0+ 1)(+2)/2(214-3), (8)

which is fulfilled in the range (5) for not too high angu-
lar momentum, one can retain the first term from the
expansion in z? of the hypergeometric function and
obtain

Qi(1+y/2vs)=[x'2(1+1) Y/ T(+3)]
X (s/9)H (14 20,/y)71 (9)

Assuming now that

(s—4)/2y<L(+1)! (10)
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we get from (9) and (6):
Qi(14y/2v,) =[x 214+ 1)1/ T(+3) s/ 9) (11)
as(s,/,u)=—£— > [14+(—=14] ¢!
202 ] rG+3)
© dx *  pxy)
XvstPy(z:) | —— dy—l: , (12)

4 X—SJ1e y

and analogous expansions for a:(s,t,#) and au.(st%).
Denoting

1! ©  p(x,y)
= o g )]ﬁ e 1Y

and using the expressions (2) and (12), we find the
postulated amplitude (1). From the above considera-
tions we expect that the amplitude (1) is valid in the
resonance region where not too high angular momenta
are involved.

For the determination of the spectral densities pi(x)
we shall use the partial-wave unitarity in one of the
channels. As usual, we shall consider the s channel:

1
ImAz(S)='1g'[Vg/(Vs+1):|l/2!AI(S)Iz. (14)

From the expression (1) we have

ImA(s) =v.lpu(s) ,

1 r~pus) ° (15)
ReA;(s)=u8’<—P/ ds'+Y. Kw(s,x)pp(x)dx> R
r Jg §'—s v ),
where
1 ! PI(ZS)PI’((4V8+4)/V3(1—zs))[1+%V8(1_ZA)]l’
Kw(s,x)=—— dzs. (16)
R 2+ 2v,(1—3,)
We can easily see that have
~ S22 2 9
lim 1w (5,4 = const. an pi(s)=(1/16m)v 112 p,%(s)+c:?], (19)
va0 where ¢; has the form
The condition of unitarity gives then the following 1 ous) w
system of nonlinear integral equations for p;(s): c=-P / ds'+3 Kuw(,=0, x)py(x)dx. (20)
Val Vs 1/2 " ! ’ ' )
pz(5)=——< ) {p *(s) lati is sati
o\t 1 1 The relation (19) is satisfied by
) pi(s)=(ci?/16m)v, 1112, (21)
1 oopl(s ) 0 2
+| P / - ds'+3 / K w(s,x)py(x)dx:, } . (18)  From the relations (15) we then obtain
T 4 $—S§ 2
ImA (s)~(ci/16m)w 2412 (22)

Let us assume that we know the solution of the system
(18) and consider some properties of this solution.
Taking into account the relation (17) for »,— 0, we

ReA z(S)ECzVsl y

giving the correct threshold behavior.
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On the other hand, considering the limit for » — in
Eq. (18), we can see that for />0 we have no solutions.
We have come to the known result that the peripheral
model is not compatible with unitarity for high ener-
gies.3 In fact, for high energies, the approximation (11)
is surely wrong and the amplitude (1) is not valid.
Thus, the integral Eq. (18) cannot give p,¢ for high
energies, where the p; must be given empirically or a
cutoff in the integrals must be made.

To solve Eq. (18), an iteration program must be
constructed. The zero-order approximation is chosen
to assure a pole in the second Riemann sheet. Two
alternatives appear to be simplest:

pi@(s)=gi/[(s—m)*+v],
zl[(s_4)2l+1/s]1/2
(s—m®) 72 (s—4)21/s]
The starting functions are to be introduced in the right-
hand side of Eq. (18) to compute p;"(s) and so on.
Since we are interested in obtaining a correct solution

especially in the resonance region, we determine the
free parameters g;, v;, and m, from the conditions

Red ;©(u2)=0 (24)
[where Red ;' is obtained by inserting p; in (15)7],

1P () =p (w2, (25)

d? 1 a? 1
o) i)
ds*\p;V(s) smp?  dS? Pl(o)(s) s=p1®

where w;? is the solution of the equation

A /vyt 1\1/2
_[< ) ImAl“’)(s)}=
ds Vs

For narrow widths, we have, of course, u;2=m;% These
conditions correspond to the usual bootstrap conditions,
i.e., equality of the input and output masses, coupling
constants, and widths. We mention that, instead of the
conditions (26), we could consider

(23a)

P10 (s)= (23b)

and

@7
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8,p 5P dp &P Th B

.00 Fpa Py Bps  <py o Pu

F16G. 1. p-meson exchange diagrams for the process 7 — 7.

which, with the idea that the solution is symmetric,
would give almost the same result as (26).

We may also observe that if we confine ourselves to
the first iteration, as in usual bootstrap calculations,
the integrals in (18) are convergent and no cutoff
parameters are necessary. At the same time we men-
tion that for any starting function which vanishes at
vs=0, the function p;*) has the correct threshold be-
havior [if p;®(0)70, this assertion is wvalid for
P,

The eventual advantage of the input (23b), for which
p®(0)=0, is that we can expect that on fixing the
parameters in the resonance region, p;¥ will not be too
far from p,, even at the threshold.

To illustrate the method proposed in this section, we
shall consider the problem of the p meson.

IV. APPLICATION TO THE p-MESON
BOOTSTRAP

We now consider the application of the present
method to the simple one-channel example of a self-
consistent p-meson bootstrap in the p wave of the ==
system.

Following Chew and Mandelstam, we express the
elastic scattering amplitude in terms of invariant
amplitudes:

<p1)a; P?;Bl T( —037; _’p4,6>=6¢1156%5‘4 (s,t,u)

+ 5.,'755,53(8,1,14)-}- 50,,535'7C(S,Z,u) . (28)

Considering the exchange diagrams of Fig. 1 and using

the Sec. III recipe, i.e., replacing pole terms by spec-
tral representations:

p(f’)
PP (uiP+y) =p O (W’ v1) (26") m2—ax—1ie ——)/; ¥ —x—ie
or
pr P (u—=v1)=p @ (uil—v1), (26")  we obtain
p(u')
A(s,tu)= (s—u)/ df—— —}-(s—l)/ d'———,
t'—t—1ie w—u—ie

B(s,t,u)= (t—s)/ dy/'——— (—u)/ ds'———
4 w—u—ie s'—s—ie

C(st,u)= (u—s)/ df——— -I-(u—l)/ ds'——
V' —it—1ie

4
# F. Salzman and G. Salzman, Phys. Rev. 125, 1703 (1962).

p(s")
(29)

p(s")

4 S —S—’té
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20 ot

Vs

I-’(V0)=_

6
A

0r- a

/-]

1 2 Y

Fic. 2. Solutions of the equations: (a) Red1© (u?) =0;
(b)  (@/ds?)(1/pD) gy —(tf‘/dsz)(l/p"”). -5 (© pW ()
=p®(u+y); and (d) p®(pP—v)=p©® (u2—v). The point 4
corresponds to m,=450 MeV, I';=40 MeV.

We then compute the partial wave with /=1, I=1
corresponding to the p quantum numbers:

1 1
A= / d5.5.[B(rez)—Clonz)].  (30)
—1
Introducing the expressions (29) into (30) we obtain:

8r
ImA,'(v,)= —é-usp(4+4v,,) ,

(31)
Red.'(v,) =/'“ dxp(x)L(x,vs),
where ‘
L(x,s) = (44 8v,+2)vs
X+ 20, 4y, 8v, 1
B G Bl el
Using the elastic-unitarity condition:
ImAy'(vs) = (1/16m)[ve/ (vi+ 1) 12| A1'(we) |2 (33)
and denoting
p(ra)=p(4+4,); L/ p)=L{A+4/,v.), (34)
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we get the nonlinear integral equation:

Vs 1/2

) 5(0.)
1

3/ b N\ o oy
+_( ) [ / dv’ﬁ(v’)L(v’,u.)]. (35)
81['2 Va+1 0

To solve Eq. (35) by iteration, we have used the input
(23a). The equation (25) gives the known relation be-
tween the coupling constant and the width,'® while
Egs. (24) and (26), which are solved numerically, de-
termine the values of the p-meson mass m, and width
T,=v,/m, For completeness we have also tried re-
placing Eq. (26) with Egs. (26") and (26”); the re-
sults are shown in Fig. 2. The usual bootstrap equa-
tions (24), (26) have the following solution: m,=450
MeV, I',=40 MeV. Equation (26") gives the same re-
sult, while the curve representing (26”') is near the
solution point, so that a near-symmetric solution for
AW is to be expected. The input 5©®(»,) and the output
P (v,) solutions are shown in Fig. 3, while the modulus
of the partial-wave amplitude and ReA!® are shown
in Fig. 4.

We can see that the amplitude has the required
property of symmetry near the resonance. The values

PO

F16. 3. The zeroth- and the first-order approximation for the
spectral density (m,=450 MeV, I',=40 MeV). The solid curve
represents p~®)(»); the dashed curve, p=© ().
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-20t

Fi1G. 4. The zeroth-order solution for the modulus and the real
art of the partial-wave amplitude. The solid curve represents
A1 (y)|; the dashed curve, Re4 1@ (»).

of the mass and of the width are near those of Kang??
(m,=350 MeV, I' ;=45 MeV) and not very far from
those of Baldzs® (m,=560 MeV, I',=126 MeV). Now
if we are optimistic, we can assume that, if such different
methods of approximation give about the same results,
they must express something about physics, but we can

3 1. Baldzs, Phys. Rev. 134, B1315 (1964).
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be pessimistic and think that it is a numerical accident.
Our hope is that the latter is not the case.

V. CONCLUDING REMARKS

We have assumed a Cini-Fubini-like representation
for the low-energy scattering amplitudes, implying
single-variable spectral densities. These spectral densi-
ties must be determined by iteration from nonlinear
integral equations given by unitarity. In these calcula-
tions analyticity and crossing symmetry are treated
exactly, while unitarity is treated only approximately
through an iteration program. The iteration starts with
Breit-Wigner expressions which assure the convergence
of the integrals in computing the first iteration, giving
use to a sui generis cutoff. In computing the parameters
of the resonances or studying different models, we can
probably confine ourselves to this first iteration, as in
usual bootstrap calculations. Further iterations would
make it necessary to consider a cutoff procedure more
seriously.

Applied to a crude model of the p resonance, a sym-
metric form for the amplitude was obtained with
m,=450 MeV, I',=40 MeV. Consequently, we can
conjecture that if the present calculations have some-
thing to do with reality, and if small widths are ob-
tained, an even more approximate one-particle-exchange
form for the amplitude can be taken into considera-
tion: the sum of the exchange terms with complex
propagators whose parameters are to be determined
from the partial-wave unitarity in the resonance re-
gion through equations of the type (25)-(27).
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