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Perturbation Methods in Dispersion Theory*
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A complete perturbation method for N/D calculations in potential scattering is presented. This method
agrees with the Dashen-Frautschi method in first order. It is shown that in cases where resonant states are
shifted by the perturbation into bound states the effect is not of 6rst order and the Dashen-Frautschi method
is therefore inadequate. Some possible utilizations of the perturbation method are outlined.

I. INTRODUCTION

~)ISPERSION theory calculations have given many
successful results in strong interaction physics.

Recently the works of Dashen and Frautschi have
opened a new held of applicability of dispersion theory
by introducing a first-order perturbation method to
1V/D calculations. ' This method, hereafter referred to
as the D.F. method, was applied to electromagnetic
corrections to strong interactions, and to the theory of
5U3 symmetry breaking. ' There are, however, draw-
backs in all 6rst-order perturbation calculations. Unless
a complete perturbation expansion is available one has
no way of estimating the importance of higher order
terms. The convergence of a perturbation expansion
can also be investigated when a complete perturbation
series is available.

In this paper we will exhibit a perturbation series for
1V/D calculations in potential scattering. Our method
is almost identical to that of Blankenbecler and
Goldberger. ' This method coincides to 6rst order with
that of Dashen and Frautschi. The importance of
higher order terms will be investigated. We expand the
difference between the unperturbed and perturbed
partial-wave scattering amplitude as a ratio of tw'o

power series in X, the strength of the perturbation. 4 This
type of expansion will be shown to have a dehnite ad-
vantage over the simple power expansion which does
not converge in most of the interesting cases. The
reason for this is that whenever the unperturbed ampli-

*This research was supported by the U. S. Atomic Energy
Commission.
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tude has a bound-state pole, which is shifted slightly by
a perturbation, the change in the amplitude near the
bound state is in6nite. High-order terms will be shown
to play a crucial role in the physically important case
when the unperturbed solution has a bound state or a
resonance close to the unitarity threshold. In this case
even a small perturbation can change the resonance into
a bound state or vice versa. This effect cannot be repro-
duced correctly by the D. F. method, since it is not a
Qrst-order effect in the expansion of the scattering
amplitude. In our method the change of a resonance
into a bound state stems from the 6rst-order expansion
of a denominator in ). The change in energy of the
bound state can therefore be of 6rst order in X. Physi-
cally, such a case occurs in the SU3 breaking calculation
of the decuplet, where the E~ is above threshold in the
Xm channel and below threshold in the ZE channel.
Section II outlines the perturbation method. An N/D
type equation is derived for the perturbation in the
partial-wave scattering amplitude. In Sec. III the per-
turbation solution in the case where the unperturbed
problem has a bound state is investigated. A Castillejo-
Dalitz-Dyson (CDD) pole is shown to be necessary and
an approximation based on this pole is outlined. The
case where threshold effects become important is dis-
cussed in Sec. IV, a simple effective-range example is
discussed as an illustration. It is shown that the Grst-
order D.F. approximation cannot reproduce physical
results when a resonance is shifted into a bound state
and vice versa. In Sec. V some applications of the per-
turbation method are discussed. The perturbation
method is employed to improve standard approximation
methods used in 1V/D calculations.

Im1VO(s) =Do(s) Imbo(s) on the left,

ImDO(s) = —p(s)1VO(s) on the right.

(&)

(2)

II. THE PERTURBATION METHOD

In this section we will consider the perturbation of a
partial-wave scattering amplitude caused by a change
in the left-hand-cut discontinuity. Ke will not consider
the possible changes in the right-hand phase space
factor. This restricts our method to potential scattering
and some relativistic cases. We assume that we have
solved the ao Xo/Do equation for the ——unperturbed
problem.
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Now introduce a small change in the discontinuity on
the left-hand-cut: X Imb~. We can write the perturbed
scattering amplitude a(s) as a sum of two terms, and
define uI by

a(s) ao (s)+ay (s) (3)

On the left-hand-cut a(s) satisfies

Ima(s) = Imbo(s)+X 1mb'(s) . (4)

On the right-hand-cut the unitarity relation holds.
Unitarity can be written for a&

Imd(s) = n—(s)p(s) on the right, (13)

higher terms would have only a right-hand-cut. More-
over the discontinuity on the nth term in this power
expansion of f(s) can be expressed in terms of the first
n —1 terms. This approach is troubled by lack of con-
vergence whenever the unperturbed problem has a
bound state, as one can easily convince oneself. '

We will therefore utilize the usual 1V/D approach and

put f= nd ' where n and d satisfy the equations:

Imn(s) =d(s)ADO'(s) 1mb~(s) on the left, (12)

I ai(s) =p(s)Lao*(s)ai(s)+ai*(s)ao(s)+ Iai(s) I'3. (5) where

On the left-hand-cut, the discontinuity of a& is given by p(s) =p(s) ID (s) I-'.

Ima, (s) =X 1mb'(s) . (6)

f(s) =DP(s)ag(s) .

We now observe that as a result of unitarity

ao(s) = (1/p)e's'~ sinb (s)

and that the phase of Do' is given by

DQ'(s) = ID (s) I'e ""~

(7)

These equations hold on the right-hand-cut. Substi-
tuting Eqs. (7), (8), and (9) into (5) and (6) we obtain
for

Equations (5) and (6) can now be used as a basis for
finding a~. This is, however, rather inconvenient since
the discontinuity of a& is connected through equation (5)
to both the real and imaginary part of c&. In order to
overcome this di%culty we will consider the function

f defined by

Since the right-hand side of Eq. (12) is small, one can
use the determinantal method in solving for n(s) and

d(s) in Eqs. (12) and (13).The method gives n and d

as power series in X. The function f will therefore be a
ratio of two power series in X, and will converge in cases
when the simple power series diverges.

III. PERTURBATION IN THE PRESENCE
OF BOUND STATES

Equations (12) and (13) are not suflicient in general
to determine the functions n and d because of the CDD
ambiguity. When investigating the solutions of our
equations in cases where the unperturbed solution ao
has bound-state poles, we will show that introduction
of CDD poles naturally arises.

Assume therefore that ao has a bound state at s= so.

D(so) = 0.

p(s)
Imf(s) =

I f(s) I' on the right
IDo(s) I'

(10)
We know that u~ should have a pole at s= so, with a
residue of opposite sign to that of ao, so that the two
poles cancel and the perturbed problem solution a(s)
has no pole at so. This means that

Imf(s) =ADO'(s) 1mb'(s) on the left. (11) f(so) =0 (15)
We will use these fundamental equations in order to
calculate f(s) We notice .that these equations are
identical in form to the standard partial-wave S/D
equations, and can therefore be treated by the X/D
method. The fact that the left-hand discontinuity is
presumably small will enable us to treat the problem
by some approximation method or as a power series in
X. We notice also that the function p got replaced by
pIDOI ' which is large in the neighborhood of a reso-
nance of the unperturbed problem, we will return and
investigate the physical significance of this point in

Sec. IV.
The simplest approximation procedure which comes

to mind is based on the fact that the right-hand side of
Eq. (10) is quadratic, whereas the right-hand side of
Eq. (11) is linear in X. An expansion of f as a power
series in X is therefore natural. The first term in the
power series would result from the left-hand-cut, and

The zero in f(s) should be simple so that upon dividing
by D02(s), a& will have a simple pole at so. The easiest
way of introducing a zero into f(s) is by introducing a
pole into d, at s= so. Such a CDD pole would have the
desired effect on f without introducing additional
singularities into the scattering amplitude. Physical
consideration require thus, a particular way of resolv-
ing the CDD ambiguity for Eqs. (12) and (13).When-
ever the unperturbed solution has several bound states,
several CDD poles can be added to d(s) without addi-
tional complication. Ke now exhibit the integral equa-
tions for n and d, assuming that only one CDD pole is

' hen ap(s) has a pole at s = sp, a(s) will have a pole at a slightly
shifted location, such a pole will come about from the noncon-
vergence of the power series for f. In addition, the Nth term in this
expansion will have a pole of order n —1 at s =$0.

'L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,
453 (1956).



N. KUGLE R

necessary.

n(s) =).
Do'(x) 1mb, (x)d(x) dx

(16)

perturbation extends to the neighborhood of s= sp, and
use as a first approximation

d(s) =1+n/(s —so) . (22)

n p(x)oi(x) dx
d(s) =1+

s—sp g x—s 7I

(17)
This causes no difhculty with the analyticity because
of the vanishing of Imago(s) at the pole of d(s). Substitut-
ing this into Eq. (16), we obtain

The parameter o, is 6xed by the conditions on the
residue of u~

where

n(s) =I(s)+aP(s) I(so—)](s so) —', — (23)

where R is the residue of ao and D (so) is the derivative
of Do(s) at s= so. This gives for a

I(s) =
XDo'(x) Imb, (x) dx

(24)

a = —(oo (so) )/(RLDo'(so)]') . (19)
The value of n is now fixed by considering Eq. (23) at
s=so and using Eq. (19) for n. This gives

%e are now' in a position to recover the Dashen-
Frautschi results. This is done by using a Grst-order
iteration procedure for N(s). Substituting d(s)=1 in

Eq. (16) and neglecting the integral term in Eq. (17),
we obtain

d(s) =1-
RP7o'(so)]' s—so

XDo'(x) Imbi(x) dx
(20)

x—sp

The solution for the existence of a bound state at s= s~

is d(si) =0, giving

sz—so=
Rt:Do'(~o)]' z,

) Do'(x) Imbi(x) dx
(21)

which is identical to the D.F. result. Using the conven-
tional terminology we can say that the D. F. result is
obtained by the "one-half-order" determinantal ap-
proximation. We can proceed and iterate Eqs. (16) and
(17) as is usually done in the determinantal procedure
the number of iterations depending on the accuracy re-
quired of our calculation. If both e and the integral on
the right hand side of Eq. (17) turn out to be small we
note that d{s)will be close to one except at the neighbor-
hood of (s= so) where the denominator (s—so) causes a
large change in d. This denominator will cause d(s) to
have a zero near s= so, this zero in d(s) corresponds to
the shifted bound state. The smaller a is, the smaller is
the energy shift of the bound state. The sign of e de-
termines the direction of the energy shift o.&0 corre-
sponding to tighter binding.

In some perturbation problems the integral on the
right-hand side of Eq. (17) can be small and therefore
negligible with respect to 1. The pole term near s=sp
can however be important even when a is very small.
This term is important, for small o,, mainly near s=sp.
One should therefore include the pole term in d(s),
especially in cases where the left-hand cut due to the

n= —I(so)/(RPDo'(so)]'+I'(so) ) . (23)

The importance of this CDD pole approximation
depends on the size of I'(so) in comparison with
RDo'o(so) The CDD. pole approximation outlined above
may be an important improvement to the D.F. approxi-
mation; its validity is restricted however to cases where
the right-hand-cut in d(s) is unimportant. There are
cases where such a right-hand-cut can be of importance
even for small perturbations; these will be the subject
of the next section.

IV. IN'FLUENCE OF THE UNITAlRITY CUT

In the last section we have treated the perturbation
expansion in the cases when the unperturbed solution
has a bound state, neglecting the right hand unitarity
cut in d(s). It is clear that d(s) will play a more im-
portant role when the unperturbed solution has a reso-
nance, and especially if this resonance is close to the
elastic threshold. ~ When dealing with resonances where
no bound states are present the introduction of CDD
poles into d(s) is unnecessary and one can solve the n/d
equations in a standard iteration manner. One should
note that the function ii(s) defined in Eq. (13) which
replaces the standard unitarity discontinuity will be
large at the point where the unperturbed problem has
a resonance because of the appearance of ~Do(s) ~' in
the denominator. The D.F. method disregards com-
pletely the right-hand-cut in d(s) because its effect on
f(s) is only through terms higher than first orders in X.

In order to exhibit qualitatively some features of the
case when a resonance exists near threshold we will
treat the extremely simple example of an efFective range

7 This point was noted by Dashen and Frautschi, Phys. Rev.
131, 1318 (1965), footnote 9.

I (so) is the derivative of I at the point so. Substituting
this value of a into Eq. (22), we obtain for the bound
state energy sj.

si—so ——I(so)/(RLDo'(so)]'+I'(so) ) . (26)
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approximation. ' The advantage of this example is that
in spite of its simplicity it is well suited to the descrip-
tion of phenomena near threshoM. We will consider the
case where the left-hand-cut consists of a single pole at
s= —1 having the residue X. In this case Xo(s) and
Do(s) are given by:

Xo(s) =2k(2+X) '($+1) ',
Do (s)= 1—2X (2+) ) '(1—i4 s)—'.

We note that, for X=2 Do(0) vanishes and therefore
the unperturbed problem has a pole at s=0. Consider
a case X 2 and introduce a perturbation ) —+X+g.
The D.F. approximation will give

This function clearly has no pole near S=O and there-
fore all it can do is shift the location of the resonance.
The 6rst determinantal approximation for n and d can
be easily obtained in this case. Since X&2 and the un-
perturbed problem has no bound state, no CDD pole
is necessary. In this 6rst determinantal approximation

rs(s) = fn. p. (s),
d (s) = 1—4g (2+X)-'L (2—X)—(2+X)il s]-'.

It is easy to see that the right-hand-cut can become
important indeed for X=2, even when g is small.

The smallness of the perturbation is therefore not an
assurance that we can use first-order perturbation
theory for f(s) The fun. ction d(s) can have a zero cor-
responding to a bound state when

&) (2-X)+-,'(Z-2)o,

which can be very small for X=2. Only when X=2 is
this approximation expected to be valid. In this region
the bound state energy is

il s =+(4s+4(X——2)+ P.—2)'j(2+X) '. (30)

The D.F. method cannot reproduce this bound state
when it starts moving out of the unitarity cut since it is
not of erst order in X in the expansion of f. It is also
interesting to note that in this case, 4

~
s ~, for the bound-

state energy is of first order in & and our perturbation
method reproduces this feature correctly.

The case outlined above has an exact correspondence
to Schrodinger perturbation theory. There, the presence
of the continuum near a bound state makes 6rst-order
perturbation inadequate.

'H. Goldberg LNuovo Cimento 40, 8243 {1966)g has con-
sidered the difference between the Nn and Np '5 scattering length
due to electromagnetic corrections. He used the D. F. method,
and an effective range approximation. His results do not agree
with those of H. P. Noyes who used a Bargmann potential which
reproduces the same analyticity properties. These calculations
show deviation from linearity in the input even when the per-
turbation is less than 1% of the unperturbed potential. This can
be understood in the light of the importance of unitarity cuts in
this case, where a virtual state appears near threshold. I am
grateful to H. P. Noyes for pointing this out to me and for in-
forming me about his results.

When partial waves higher than the s wave are
treated, the function p(s) will behave as s'+'~' near
threshold; this can reduce the importance of resonances
near threshold.

The qualitative discussion presented above and the
simple effective-range perturbation example lead us to
the conclusion that in cases where threshold effects may
be important, the D.F. method is insufFicient for treat-
ing perturbations in spite of their apparent smallness.

S(s)= D(x) Imb(x) dx
(31)

p(x)S(x) dx
D(s) =1-

@ S—S
(32)

The approximation of these equations is usually ob-
tained by substituting some crude approximation for
D, D(x), into the right-hand side of Eq. (31).This gives
as a 6rst approximation

1Vo(s) =
D(x) Imb(x) dx

X—S
(33)

Do(s) is then obtained by substituting Xo into the right-
hand side oi Eq. (32). In the determinantal approxima-
tion one uses the asymptotic form of D(x)

D(x) =1.
The improved methods of Roy and Blankenbecler' sub-
stitute a more realistic function for D(x). Their method
for potential scattering uses

D(x) = (s"'—$)/(s'"+c), (35)

where b is the location of the bound state and c is an
adjustable parameter. Thus D(s) has the advantage of
having the same behavior as D(s) both near the bound
state and at infinity, and of also having the same ana-
lyticity properties as D(s). For further details on this
method, especially on its relativistic version, the reader
is referred to the work of Roy and Blankenbecler.

' S. M. Roy and R. Blankenbecler, Ann. Phys. (N. Y.) 35, 314
(1964).

V. SOME APPLICATIONS

In this section we outline possible utilizations of the
perturbation method in X/D calculations. The pro-
cedure we adopt is that of solving the original equations
for X and D in some approximation and then making
use of the perturbation method for improving the ap-
proximation. We are using the fact that many approxi-
mate methods for solving the N/D equations retain the
main virtue of these by producing a scattering ampli-
tude which obeys two particle unitarity exactly at the
expense of mistreating the left-hand singularities.

The original 1V/D integral equations are
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Xp(s) and Dp(s) obtained from the above method
satisfies unitarity exactly. On the left hand cut the dis-
continuity of ap= leap/Dp is given by

Imap(s)=D(s)Dp '(s) Imb(s) . (36)

If D(s) is close to Dp(s), this will be a small perturbation
and we can therefore proceed to use a perturbation
method where the left-hand-cut input is determined by
Eq. (37). The use of the C.D.D. pole approximation
may be advantageous in this case.

We can also use this expression in order to introduce
a variational method for solving the E/D equations.
Since we have an arbitrary function D(s) at our dis-
posal, we can fit D(s) so that the first-order shift in
bound states is small. Our purpose is to minimize the
function I(s) defined by Eq. (24). In our case

I(s) = Dp(&) EDp(&) —D(&)g Imb(x) d&
(38)

This function which determines the lowest order cor-
rections to bound state energies can be minimized by
making D(x) close to Dp(x) in the region where Imb(x)
is large. The function I(s) is important also in cases dis-
cussed in Sec. IV where the right-hand-cut in d(s) is
crucial, since it is essentially the 6rst determinantal
approximation to I(s).

The above approximation method could be used in
conjunction with our perturbation method even in
relativistic calculations. The reason for this being that
no change in the right-hand side discontinuity is neces-
sary for this approximation method and thus the 1V/D
perturbation problem is identical to the nonrelativistic
problem which we have discussed.

We can therefore define the perturbation XImbj as the
difference between Imb(s) and Imap(s) on the left-hand
cut.

X Imbq(s) =L1—D(s)Dp '(s)$ Imb(s) . (37)

VI. CONCLUSION

We have exhibited a complete perturbation theory
for the 1V/D equations in nonrelativistic potential scat-
tering. This method works as well in relativistic cases
when the right-hand-cut discontinuity p (s) is unchanged
by the perturbation. First-order calculations are identi-
cal to the D.F. method but in some cases higher order
corrections are essential. These include most of the
SU3-breaking calculations where thresholds play an
important role in the calculation of mass shifts and
coupling constant shifts. The method outlined above
could be used as it is in calculating the eGects of far-
away discontinuities on the left-hand-cut, such as con-
tributions from high-order Born approximations. Some
other uses for practical X/D calculations are given in
Sec. V.

One drawback of our method is that we have assumed
that Ima& on the left-hand-cut is given. Generally,
Ima& is given by the distorted-wave Born-approxima-
tion of the perturbing potential and is not easily calcu-
lated. This point is related to the criticism of the D.F.
method by Rim. m In practice, however, one assumes
the left-hand-cut to be given by a first-order Born-
approximation, and in spite of the bound states this
may be a reasonable approximation. The generaliza-
tions of our method to many channels and to relati-
vistic calculations are essential before the octet en-
hancement calculations can be treated with the inclu-
sion of right-hand singularities. These will be the subject
of future research.
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