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The variational-perturbation method has been applied to the study of correlation effects in the helium
atom. Starting from the Hartree-Fock Hamiltonian as zeroth-order approximation, we have evaluated the
correlation energy through fifth order in perturbation theory. With a ten-parameter trial wave function we
get Eoorr=—0.0419 atomic units, which differs from the exact value by 0.49, and shows the rapid con-
vergence of this type of Hartree-Fock perturbation theory. Comparison is also made with similar calcula-
tions using Hartree or hydrogenic Hamiltonians as starting points.

I. INTRODUCTION

HE problem of finding systematic ways to improve
on the central field approximation has been of
long-standing interest in atomic physics. In particular,
the Hartree-Fock method provides an excellent zeroth-
order approximation to atomic wave functions and
binding energies, from which one would like to find a
reasonably simple way of obtaining the next corrections
to the energies and the wave functions. These correc-
tions are usually called correlation effects, i.e., correlation
energies and correlation corrections to wave functions.
The purpose of this paper is to pave the way for a
discussion of a technique which we hope will be of use
in going beyond the Hartree-Fock method.

We choose the helium atom as a starting point because
in this particular atom extensive theoretical investiga-
tions have been carried out, both “exact” computa-
tions’? and perturbation-theory calculations*— having
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been done with very high accuracy. Another reason for
the choice of helium is that, in discussing many-electron
atoms in a forthcoming paper, we will find it possible
to reduce the problem to a series of two-body problems,
each of which can be solved in principle by the method
of this paper.

In Sec. II, we briefly describe the variational-pertur-
bation method we have used to evaluate the correlation
effects in helium. Section III is devoted to the presenta-
tion and the discussion of the results. It is shown that,
using Hartree-Fock wave functions given by Roothaan
et al.” together with a ten-parameter trial wave function
through fifth order in perturbation theory, the correla-
tion energy is obtained to within 0.49, accuracy.¥We
also discuss the convergence of the Hartree-Fock per-
turbation theory and compare our results with those
obtained by using Hartree or hydrogenic Hamiltonians
as starting points.

II. THE METHOD

Let us consider the Schrédinger equation for the
helium atom,

HY=Ev, (1)
where, in atomic units (a.u.),?
H=—%V12-%V22—2/7’1-—2/1'2—}"1’12_1. (2)

We wish to discuss the possibility of solving this equa-

7C. C. J. Roothaan, L. M. Sachs and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).

8 We neglect the mass-polarization term and use twice the
reduced-mass Rydberg as unit of energy.
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tion starting from the zeroth-order equation
H0¢0=E0¢0, (3)
where H, is the Hartree-Fock Hamiltonian

Hy=—3V1*—3Vs*—(2/r1)— (2/r2)
+2Vd(r1)— Ve(rl)—l—ZVd(rz)— Ve(l'z) .

The spin dependence has been removed by assuming
that H, acts on a symmetric space function times a
singlet spin function. In the expression (4a), the
quantity Vg is the “direct” Hartree-Fock potential,
defined by

(4a)

1

Valx)= / Ay, )

[x—y

whereas V, is the (nonlocal) “‘exchange’” Hartree-Fock
potential which, acting on a given function f(x), gives

1

VA0 /()= eulx) / ot )y (40)
yl|

|x—
The perturbation H, is thus defined as

Hi=H—H,, (5a)

which gives

1
Hy=——2V (1) +V (1) =2V a(r:)+ V o(rs) .

712

(5b)

As we shall see, for our purposes it is particularly con-
venient to use an analytic form for the Hartree-Fock
functions similar to those which have been derived by
Roothaan et al.” We are interested only in the ground-
state energy and wave function, both of which are
known to very high accuracy in helium for the Hartree-
Fock equation” and for the exact Schrédinger equation.?—

We now state briefly the equations of perturbation
theory which we shall utilize. If we write

V= go+X1+Xot- -, (62)

and
E=FEy+E+Eo+- -+, (6b)

where each term is imagined to be of successively higher
order in some small parameter. Then, using Egs. (1),
(3), and (5), one gets the following relations:

(Ho—Eo) ¢o=0, (7a)
(Ho— Eo)Xa+(H1— 1) 00=0, (7h)
n—1
(HO—EO)Xn+H1Xn—1— Z men—m_En‘POZO
m=1
nz2). (7c)

We assume that we are given some solution of the homo-
geneous equation (7a), and we solve the remaining in-
homogeneous equations by a variational method. First,
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we get from (7a), (7b), and (7c)
E1=<<P0[H1|<Po>; (8a)
Ey=(¢o| H1—E1| X1)= — (X1| Ho— Eo | X1}, (8b)
Ey=(X;| Hy— E1|X1)— 2Es( 0| X1), (8¢c)
Ey=—(X3| Hy— Eo|X1)— Eo(X1| X1)—2E3{@o| X1}, (8d)
Es=(Xo| Hi— E1|X5)— 2E2(X1| Xo)— Eg(X1| X1)
—2E3(¢o| Xa)—2E @o|X1). (8€)
We define
Foore= 53 E;. (8f)

=2

The equations for X; and X, may be obtained by varying
the functionals®

Fi[ X ]= (Xs*| Ho— Eo | X2+ 2(X:*| H1— E1| @o) (9a)
and

Fo[ Xt ]= (Xot | Ho— Eo| X2*)
+2(Xs!| Hi— E1| X1)— Eo(Xs!| 0o),  (9D)

where X;* and X,* denote the trial functions to be varied.
Note that in Eq. (9b) X; is assumed to be given and is
not varied. If the expressions F; and F are evaluated
at the stationary solutions X; and X, respectively, then

Fi[X]=—(X;| Hy— Eq|X1), (10a)
and

Fo[ Xy ]=—(Xo| Ho— Eo| Xs). (10b)

By comparison with Eq. (8a), one sees that F1[X;] gives
directly a variational principle for E,. Besides, in the
form (10a), it is clear that Es; must always be negative
for the ground state. Furthermore, the expression
Fy[X,] gives just the value of E, apart from terms inde-
pendent of X., so that we also have a variational
principle for Es.

The method of solving for X; and X, is now clear. We
write a trial solution of the form

Xit=3" CMi(rirarink), (11a)
i=1
Xot=3" CAi(riyrarisk’). (11b)

=1

With these functions, we calculate Fi[X;*] and
Fy[Xst] and regard the quantities {C1!,Cs%,---; %} and
{C3,Cs2,- - - ; B’} as parameters being varied in order to
minimize the functionals F; and F.. This reduces the
problem to one of matrix inversions. For the functions
¥; we have used a set of twelve functions corresponding

9 For a discussion on the choice of functionals, see for example
A. Dalgarno, Advan. Phys. 11, 281 (1962) and references cited
there.
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to all terms through cubic order of the form?

vi= (1/4m)e thsslmyn | (12)

where s=71+7ry, t=7r1—r2, u=r12 and where & (or
similarly %) is a scale factor. Thus, we have to form the
matrices

Mij=s| —5Vi*~

%V22]§[’J’> ) (13&)

CORRELATION EFFECTS IN ATOMS. I.

He 3

where our zeroth-order wave function ¢, is the Hartree-
Fock wave function and

(15)

We have taken ¢y(r) to be given analytically by a func-
tion of the form

err(rs,rs) = oo(ry) eo(rs) .

1

<p0(1‘)—~ ( )1/ Z:l a;y™ieT i, (16)
1 1
Lij= w”'lz_l_r_zw")’ (13b) " Roothaan ef al.” have given wave functions of the form
(16) with N up to 12. Because of the lengthy numerical
1 aspects of the calculation, we fitted the Roothaan’s
L = —1¢5), (13c) function by least squares to a sum of two functions with
712 optimized exponents (i.e., a normalized function of three
variable parameters). We find
Zij=:i| Val¥s), (13d)
@o(r)=(47)"1/2(2.60505¢1-41r+2.08144¢~2-617) . (17)
Eij=i| Vel¥i), 13e . . . .
7= sl Vel ) (139 This function gives values of £, and £, which agree with
Ni={s|¢s), (13f) those calculated with Roothaan’s twelve-parameter
function to a few parts in 104 Moreover, much of the
and the column vectors calculation of the correlation energy was done with a
very accurate four-term Roothaan wave function and
Ri= (| our), (14a)  the results did not differ significantly from those ob-
1 tained with our two-term function (17).
Si= (| — , 14b We now proceed to the calculation of the quantities
W |712| ou) (14b) appearing in Egs. (13) and (14). For completeness, we
list in Appendix I the general expressions for an element
Ti= ;| Val| o), (14c)  of thematrices M, L, L', and N, i.e., we give formulas for
1
M =—— | e7bsstimyn(—1V,2—1V,2)e~tesMrpdr drs (18a)
1672
1 1 1
L™= / e‘%ssltmu"(——-I——>e‘5‘s)‘t"u”dr1dr2, (18b)
1672 71 72
1 1
L'y = / e bsstmyn—e—tosNmpdrdrs (18c)
167!'2 712
1
Ny = f e ksslymyng—YsgMugrdy dr, . (18d)
1672
The expressions for Z, E, R, S, and T are somewhat more tedious. We get
1 1
Zi=—2 0an / / / \bi(rl,l‘g)l//j(rl’rz)ranl"‘nme_(’Yl+7m)T3_~dr1dI-2dr3, (19a)
4 t,m 713
G Z azamf//¢ (rl,l‘z)l//,(l‘2,1’3)1’1"11’3"’"6_7Zrle—7mra—dl‘1dl‘2dl’3, (19b)
7r l,m *13
= Z dzam//3&{(1‘1,1'2)71"17’2"'"6—7"16_7"‘mdrldl‘z, (19C)
7r lm

O E. A. Hylleraas, Z. Physik 54, 347 (1929); 65, 209 (1930).
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1
Si=— Z Qam / / Yi(X1,Ee)r1 ™o me V1 g=Ym—dr drs |

4 tm

1 1
Ti=— 2 ;01010m / / / Wi(r1,Xe)ry Miyg by gt nmg=virig=vkrag=(yrtym)rs—dy  drodrs .

1672 5.k,l,m

In Appendix II, we sketch briefly how to express the
elements of Z, R, S, and T in terms of a few basic
integrals. The only serious difficulty—from the points
of view of both the algebra and the amount of
computational labor involved—lies in the calculation
of the elements of the exchange matrix E. This is
discussed in Appendix III. Thus, having the elements of
the matrices M, L, L', Z, E, and N, as well as those of
the column vectors R, S, and 7', we can now write our
expression for F; [Eq. (9a)] in matrix notation as

Fy=2 (M —2Li+4Z:— EoN )CiCit

4,7

—2 (ERA2Ti—S:)Cit. (20)

Varying the C;!, we obtain the system of linear equations
> (M j—2L;447;i— 2E;;— EoN ;;)Cit
i

=ERA+2T:—S;, (21)

which is solved by matrix inversion. Similar considera-

tions apply to F and the solution for X,. Once {C;'} and

{C:*} are obtained then E, through E; may all be

expressed in matrix notation, and are readily evaluated.

For example,

Ey=3 (Lif —4Zij+2E:;—
]

EiNij)CCt—2Es 3 RCi.

(22)

III. RESULTS AND DISCUSSION

Table I gives the second- and third-order energies E,
and E; as functions of the number of parameters in the
trial function X;, which we varied from one to ten. The
two remaining cubic terms are omitted since in similar
calculations (see below) they were found to contribute
negligibly and also because they increase considerably

TasLE I. Second- and third-order perturbation energy in helium
as the number of basis functions in the trial function increases.

Number Hartree-Fock Hartree Hydrogenic
of terms E, Es E, Es 2

1 —0.025361 —0.003550 —0.033376  0.004400  —0.134826

2 —0.029392 —0.004139  —0.038491  0.004827  —0.146133

3 —0.032770 —0.005001 —0.042860 0.004628  —0.146133

4 —0.034452 —0.005438 —0.045220 0.004747  —0.153503

5 —0.035558 —0.004509 —0.045579 0.004916  —0.156394

6 —0.036852 —0.003647 —0.047134 0.006570  —0.156603

7 —0.036986 —0.003432 —0.047160 0.006626  —0.156627

8 —0.037158 —0.003349  —0.047517 0.007088  —0.156702

9  —0.037164 —0.003298 —0.047545  0.007073  —0.157151

10  —0.037190 —0.003461  —0.047927  0.007059  —0.157151

11 —0.047969  0.007011  —0.157380

12 —0.048041  0.007133  —0.157441

AND C. J. JOACHAIN 146
(194d)
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the computational labor in handling the elements of the
exchange matrix. The terms in the trial function are
added in the obvious order suggested by Table II. For

TasLE II. Sequence of basis functions used in the trial functions.

i t,m,n) i ,m,m)
1 0,0,1) 7 (2,0,1)
2 (1,0,0) 8 (3,0,0)
3 (2,0,0) 9 0,2,1)
4 0,2,0) 10 1,2,0)
5 0,0.2) 11 (10,2)
6 (1,0,1) 12 (0.0,3)

comparison, we show the values of E; and Ej; calculated
using for H, the Hartree Hamiltonian

2 2
Hy=— %Vlz—%vzz————‘l‘ Vd(h)‘l‘ Vd(l‘z) .

71 7o

(23)

Here, in the absence of any exchange matrix, the calcu-
lation was carried out using a twelve-parameter trial
wave function, thus keeping all the cubic terms in it.
We also show the values of £, obtained by starting from
the simple hydrogenic Hamiltonian

2 2
Hy=—3V2—3Vi————.
1 72

(24)

Figure 1 shows a comparison of the zeroth-order wave
function for the Hartree-Fock (or Hartree) case and for
the hydrogenic case. Recall that in the Hartree-Fock
(or Hartree) framework we have E,+E;=—2.86167
a.u. whereas starting from hydrogenic wave functions
one gets Eo+Ei=—2.750 a:u. The value of the scale

TasLE III. Fourth- and fifth-order perturbation energy in helium
as the number of basis functions in the trial function increases.

Number Hartree-Fock Hartree
of terms Ey Es Ey Es
1 0.000689  4-0.000013  —0.000438  —0.000111
2 0.000233  —0.000140  —0.000516  —0.000106
3 —0.000312 —0.000088 —0.000613  —0.000057
4  —0.000629 —0.000113  —0.000790  +0.000004
5 —0.000656 —0.000133  —0.000793  +-0.000001
6 —0.000672 —0.000144  —0.001023  4-0.000110
7 —0.000709 —0.000155 —0.001036 -+0.000122
8  —0.000709  —0.000155  —0.001117  +0.000165
9 —0.000795 —0.000134 —0.001128 -+0.000170
10 —0.001086 —0.000063 —0.001151 +0.000183
11 —0.001177  +0.000214
12 —0.001207 -+0.000240
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TasLE IV. Coefficients of the basis functions for the correlated wave functions. (The scale factors k and k' are such that k=%'=3.72.)

CORRELATION EFFECTS IN ATOMS, I.

He

5

Hartree-Fock Hartree
Coefficient X1 X X1 X2

Cy/k +1.924880 +0.294524 +2.166550 +0.270665X 1071
Co/k —0.314568 X101 +0.682257X10~1 —0.110226 +0.214254

Cs/R? —0.104288 101 —0.124684 X101 —0.950153X102 —0.677986X 1071
Cy/R? +0.685349X 107 —0.446628 X101 +0.319173X 10! +0.311003X 102
Cs/F? —0.148467 +0.551155X10"1 —0.183234 —0.142566X 102
Ce/R2 +0.515117X 102 —0.267843 X101 +0.648630X 1071 +0.711624X 101
Cq/R? +40.106626X 1071 —0.295276XX 102 +0.125427 101 —0.207508x 101
Cs/R? —0.665754X 1072 +0.347408X 103 —0.928131X102 +0.812738X 102
Co/R3 —0.421135%X 1072 —0.671910X 102 —0.130326X 1071 —0.132568X1072
Cr/R? +0.410153X 102 +0.137636X 101 +0.179817X 1071 +0.349211X 102
Cu/R —0.114274 X101 +0.179936X 10!
Cra/ k3 +0.108721X 10! —0.692774X1072

factor & for Table Iis 2= 3.72, which gives the minimum
energy E, for our trial function, although for such a
number of parameters E, is a fairly insensitive
function of £, changing by only 0.29, as £ is varied from
3.36 to 3.72. Since there is no minimum principle for the
third order energy Es, the successive values of £; do not
decrease monotonically as they do for E,. It is also
worth noting that although E, is quite different in the
Hartree-Fock and Hartree methods, and moreover E; is
even different in sign, the sum Ey4E; is very nearly
the same in the two cases. Finally, it is interesting to
remark that, starting from the hydrogenic Hamiltonian
(24), the results we obtain for E in the case of 2, 6, and
12 parameters, respectively, are in complete agreement
with those given by Schwartz.!!

Table I1I gives the values of E4 and E; in the Hartree-
Fock and Hartree cases, as functions of the number of
parameters in the trial function X,. Here we use 2’'=3.72
for the value of the scale factor £’. This value is not
optimal; we estimate that a somewhat smaller value
of ' (around 3.30) would decrease E; by about 2%.
Clearly, E; has not converged as completely as Es, Es,
and E,. We estimate that E,, the dominant contribution
will decrease by about 0.5%, if the number of parameters
in X; were made very large. This would probably be the

1.0 HYDR 1

r (av)
Fi16. 1. Comparison of the radial functions p(7) =7¢o(r), where

@o(7) is either the Hartree-Fock (HF) or the hydrogenic (HYDR)
ground-state radial wave function for the helium atom.

1 C, Schwartz, Phys. Rev. 126, 1015 (1962).

most significant difference between our calculation and
one done with a very extensive trial function. Thus, our
final values for the Hartree-Fock case (with a 10-param-
eter trial function and within the accuracy of our calcu-
lation) are, in a.u.

E,=—0.0372,
E;=—0.0035,
E=—0.0011,
Ez=—0.0001.

This gives for the value of the correlation energy
Eeorr=—0.0419 a.u.

The corresponding values for the Hartree case (with a
twelve-parameter trial function) are, in a.u.

Ey=—0.0480,
Ey=-+0.0071,
Ey4=—0.0012,
Es=-+0.0002,

giving thus also
Eoorr=—0.0419 a.u.

This result differs by 0.49, from the exact value of the
correlation energy,

E%"exa.ct= —0.04205 a.u. ,

obtained by subtracting from the “exact” value of the
total energy given by Pekeris? or Schwartz® the value of
the Hartree-Fock energy found by Roothaan et al.”

In Table IV we give the coefficients of the basis
functions for our best trial functions X; and X., both in
the Hartree-Fock and in the Hartree cases.

Thus we see that the Hartree-Fock equation serves as
a satisfactory starting point for a fairly rapidly con-
vergent perturbation theory. Using terms through fifth
order we get to within 0.49, of the total correlation
energy. Scherr and Knight® in their study of perturba-
tion theory in helium starting from hydrogenic functions
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found that through Es they got (with a hundred- than helium, increasing the number of parameters in
parameter trial wave function) Feorr=—0.04200, i.e., to  this case does not seem worthwhile.

within 0.19 of the correct answer. We believe that if we

added more parameters to our trial functions our value ACKNOWLEDGMENTS

for Eeor would be at least this accurate. However, as

the complication of the problem increases rapidly with We would like to thank Professor K. M. Watson and
the number of parameters in the trial functions, and Professor C. Schwartz for helpful discussions and
since our main interest lies in more complicated atoms comments.

APPENDIX I
A straightforward but lengthy integration, making use of the variables s, ¢, u, gives for Eq. (18a) of the text

Mot 1{[ INvt+nN—nu—my my++n\
" 8Ltk Donbubut v +3) (b ut 3)mtntutot-3)
' nv+nu-+my | my i
" (mut DmtntutrtD) | mbu—Dmbntatrbl)  (nbukD)m-tncbubet3)
2N 4
- ](H—m+n+>\+u+v+3)!+[
(m~u+3)(m+n+u+v+35) 2(m~+u+3) (m~+n-+u+v+3)
I+ n—+v
- - ](l+m+n+7\+u+v+4) !
2m~4-p+ 1) m4n+pt+v+3)  (mAp4-1)(m4p+3) (m+n4-ptr+3)

1 1
+[ - :I(l+m+n+>\+u+v+5)1 , (L)
4(m~+u+1)(m+n+ptv+3)  4(m+p+3)(m+n+uptv+5)

where all the variables are greater than or equal to zero. In the case m=0, u=1 or m=1, u=0 (a case which is not
relevant in this work, because the symmetry of the wave function requires that only even powers of ¢ appear)
the term

mp

(m+u—1)(m+n+p+r+1)

is not well defined. In this special case it should be taken to be zero. The remaining integrals are easily done and give

1 (Hmtnutv+4)!

Lima™=— s (1.2)
2 (m~4-p+1) (m~4-n+pu+v+3)
1 1 1

L’lmn)“"’=‘[ — :|(l-{—m+n+>\+u+v+4) 1, (1.3)
8L (m~4-u+1)(m+n+ptv+2)  (m4p+3)(m+n+uptv+4)
1 1 1

N = —[ — :I(l+m+n+>\+/.t+v—|—5) I, (1.4)
8L (m—4-p~+-1)(m+n+uptv+3)  (m4pt3)(m+-n+p+tv+5)

APPENDIX II

All of the integrals which are necessary for the calculation of Z, R, S, and T can be written in the following
simple form

1 1
fk(l,m,n,a,ﬂ,’)’) =— ‘/‘7’111’2"‘7’3”6—"‘r‘e‘B”e—'y”v—rl2’“(17’1d72d7’3d(€05012)d(COSBla) . (II.I)
4 713

These integrals can be expressed as finite sums of two basic integrals which were defined originally by James and
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Coolidge,"* namely,
V({lma,B)= / dx / dy xleamymeby (I1.2)
0 z

and

W (lmn,a8,7)= [ dux / dy [ dz wle=oryme—Puzre 2. (I1.3)

0 z v

We first write the various quantities f in terms of the functions V and W and finally derive simple expressions
for V and W.

It is clear that any integral with £ even can immediately be reduced to a sum of integrals with £=0. An ele-
mentary integration gives

m!
fo(l,m,n,a,ﬁ,'y) =[;":I[:V(l’ n— 1; Qa, 7)+ V(’I’L, I— 17 Y 0[)]- (114)

When % is odd we find a more complicated relation:

e (R
fk(l’mvn>a:ﬁ77)= Z’ *__[W(l_ 1+j7 m+k+1~j7 %—1, a, Bl 7)+W(m_ 1+j; l+k+1_]> n— 1; 67 a, ’Y)
= k2= )

+I/V(7L, l—2+.77 m+k+1_]7 v &, B)+W(l_1+]7 n— 1’ m+k+1_]’ Y, :8)
+W(m'— 1+]; n, l+k—]; B; Y a)—l_W(n) 7”_1+j) l+k_]: Y5 )8) (1)] ’ (IIS)

where the prime on the summation means that only odd % are to be included.
It is easy to obtain expressions for the functions V and W. For example, if #=0, we get

n! Zn: (m—i—v)!/ B )”

V(m,n,,8)= . IL6
(@+B)™1B7 im0 sl \at (I1.6)
Similarly, if #=0, the function W (/,m,n,0,8,y) can be written as
nl n oy
I/V(l:mynaa7B"Y)= Z _V(l; m+V; o, B'i“'Y) . (117)
™t v=0 p!

Analogous expressions may be derived for #<0. In actual calculations it is very convenient to make use of recursion
relations of the type discussed by James and Coolidge.?
With these functions all the elements of Z, R, S, and T may be written explicitly. For example,

Z12= Z dlam':f1(3, 27 nl+nm+2, k) k; 'Yl+7m)+f1(2) 37 nl+nm+2: k) k; 'Yl+')’m):];
l,m (118)
Z5,12=Z aldmfs(z, 2, mitnnt2,k, k, Yit+vm), etc.,
l,m

where we use the same notation as in Eq. (19a).

APPENDIX III

In writing expressions for the elements of the exchange matrix

Eij= il Vel¥i), (ITL.1)

one encounters integrals of the following type, arising from the action of the exchange operator V,:

1
g(l,m,n,a,ﬁ,'y,a,b)=8— / rilramrste= e BragT3(1 /r15)r12% 93® dry dra drs d(cosfyz) d(cosfes) dors.  (111.2)
s

If a and b are odd, one cannot write an expression in closed form for this quantity. In this case, after expanding in

2 H, M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
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spherical harmonics, one obtains the general expression

w K K-N N S+N—L K’ K'—v » &tv-x /N—L £ IN2 fw—\ £ L'\?
glmmaBy,ab)=2 > > 2 X XX X X ’< )X( )
£=0 0 0 0 0 0 O

N=0 M=0 L=0 L'=£' y=0 u=0 =0 L//=gL'/

(e (2N —2L41) 2v— A+ 1)K K’ (N—3L) | (y— 3N) 122N¥+2—L—)

MU GL) G (K —M—N)W(K'—p—») 2N — L4+1)1(2v—A+1)!
XAW (42M+N+L+L', m+2K+2K' —2M — 2u—N—y+ L' — L—1, n42u-+v—L—L"—2, a, B, 7)
+W(m+2K~42K'—2M —2u— N—y+ L'+ L', L+ 2M+N+8—L'—1, n+2utv—L—L"'—2, 8, a, 7)
+W(n+2u+v+L+L", L+ 2M+N+L'— &—1, m+2K+2K'—2M —2u—N—y—L— 1" =2, v, a, §)
+W(LA-2M+N+L'+ 8, n+2utv— e+ L"—1, m+2K+2K'—2M —2u—N—p—L'—L"—2, a, v, B)
+W(m~4-2K+2K'—2M —2u— N—y+ L'+ L n4-2utv+8—L"—1, L42M+N—L—L'—2, 8, 7, @)
+W (4 2utv+ &+ L", m+2K+2K' —2M —2u— N—p— L'+ L'—1, L+-2M+pu—£—L'—2, 7, 8,a)}, (IIL3)

where

K=(a+1)/2, (I11.4a)
K'=(+1)/2, (TI1.4b)
&'=|e—(N-L)|, (I1L.4c)
L&'=|e—w—N)|, (II1.4d)
and . ) )
(jl I ”) (IT1.4e)
My W M3

is the standard 37 symbol.!* The primes on summations mean that the sum runs in steps of two. The function W
is defined in Appendix II. In practice, the expression (II1.3) will simplify considerably for particular values of a
and b. In this work, because of the form of our trial wave function, only the case ¢=b=1 is needed (i.e., there
was no term involving %2 in our trial function). In that case, we get, explicitly,

l - 1 { Lo I—1)(2K—1)
g( M,1,0,3,7,1, —-J=0 (2]+1)2 = = (2]—4[+3)(2]—4K+3)

KXW (m—2I—2K~+2T+4, I4+2I—1, n+2K—27—2, 8, o, 7)
+W(m—2I—2K+2]+4, n+2I—1,14+2K—27—2, 8, v, a)
W (I—2042T+2, m+2—2K+1, n+2K—27—2, o, B, %)
+W(n—2I42742, m+2I—2K+1, 14+2K—27—2, v, 8, @)
+W(n—2I42742, 1—2K+1, m+2I+2K—27—2, v, o, B)
+W(I— 2042742, n—2K+1, m+20+2K —27—2, a, v, 8)]} . (IIL5)

In practice, it was found that this sum converged very rapidly so that only the first three terms (J=0, 1, 2)

were necessary for our purposes.
With the above notation a typical element of the exchange matrix involving the function g is

k k
Eu=>Y a;amg<n1—|—2, 2, m+2, 5—1—71, k, §+7m> . (I11.6)
I,m

Other terms involving 712 on both sides of the exchange operator can be written similarly in terms of the functions
g. All remaining terms of the matrix E can be written in terms of the functions discussed in Appendix II. It should
be mentioned that in calculating the various functions g, one needs the expressions W (!,m,n,0,6,v) of Appendix II
for negative as well as positive values of 7.

B A, R. Edmonds, Angular M tum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957).




