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Correlation Effects in Atoms. I. Helium*
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The variational-perturbation method has been applied to the study of correlation efkcts in the helium
atom. Starting from the Hartree-Pock Hamiltonian as zeroth-order approximation, we have evaluated the
correlation energy through fifth order in perturbation theory. Kith a ten-parameter trial wave function we
get E„„=—0.0419 atomic units, which differs from the exact value by 0.4% and shows the rapid con-
vergence of this type of Hartree-Fock perturbation theory. Comparison is also made with similar calcula-
tions using Hartree or hydrogenic Hamiltonians as starting points.

I. INTRODUCTION

HE problem of finding systematic ways to improve
on the central field approximation has been of

Iong-standing interest in atomic physics. In particular,
the Hartree-Fock method provides an excellent zeroth-
order approximation to atomic wave functions and
binding energies, from which one would like to find a
reasonably simple way of obtaining the next corrections
to the energies and the wave functions. These correc-
tions are usually called correlatiort sects, i.e., correlation
energies and correlation corrections to wave functions.
The purpose of this paper is to pave the way for a
discussion of a technique which we hope will be of use
in going beyond the Hartree-Fock method.

%'e choose the helium atom as a starting point because
in this particular atom extensive theoretical investiga-
tions have been carried out, both "exact" computa-
tions' ' and perturbation-theory calculations' ' having
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been done with very high accuracy. Another reason for
the choice of helium is that, in discussing many-electron
atoms in a forthcoming paper, we will find it possible
to reduce the problem to a series of two-body problems,
each of which can be solved in principle by the method
of this paper.

In Sec. II, we briefly describe the variational-pertur-
bation method we have used to evaluate the correlation
effects in helium. Section III is devoted to the presenta-
tion and the discussion of the results. It is shown that,
using Hartree-Fock wave functions given by Roothaan
et al. ' together with a ten-parameter trial wave function
through fifth order in perturbation theory, the correla-
tion energy is obtained to within 0.4% accuracy. (We
also discuss the convergence of the Hartree-Pock per-
turbation theory and compare our results with those
obtained by using Hartree or hydrogenic Hamiltonians
as starting points.

II. THE METHOD

Let us consider the Schrodinger equation for the
helium atom,

where, in atomic units (a.u.),s

H= ——,Vr' —s Vs' —2//rr 2/rs+rrs '. —

We wish to discuss the possibility of solving this equa-

7 C. C. J. Roothaan, L. M. Sachs and A. W. Weiss, Rev. Mod.
Phys. 32, 186 (1960).

'We neglect the mass-polarization term and use twice the
reduced-mass Rydberg as unit of energy.
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tion starting from the zeroth-order equation

Hog p=&ohio, (3)

The spin dependence has been removed by assuming
that Hp acts on a symmetric space function times a
singlet spin function. In the expression (4a), the
quantity V& is the "direct" Hartree-Pock potential,
defined by

1
U.(x)=

p o'(y) o o(y)dy, (4b)

where Ho is the Hartree-Pock Hamiltonian

Ho = —s V'i' ——,
' V's' —(2/rg) —(2/rs)

+2Vg(rt) —U, (rg)+2Ug(rs) —U.(rs) . (4a)

Ecorr= P K ~

4=2
(Sf)

we get from (7a), (7b), and (7c)

Er=(o o[Hr[ p o&, (Sa)

Es=(o o[Ht —Ex[xt&= —&Xr[Ho —Eo[Xt&, (Sb)

Eo= &Xr IHr —Et [Xr&—2Ep(p o
I
Xr&, (Sc)

E4= —(Xp
I
Ho —Eo Ixr& —Ep(xt

I
Xr&—2Eo&p o I

Xi&, (Sd)

Es= &Xs IHr —Er
I
Xs&—2Ep&X~

I Xp) —Eo&Xr I X~&

—2Eo&p p I
Xp&—2E«p p I

X~&. (Se)

We define

E~I:Xt'3= &Xt'IHo —Eo
I
X&'&+2(Xr'IHt —Et[ wo& (9a)

The equations for Xl and X2 may be obtained by varying

whereas V, is the (nonlocal) "exchange" Hartree-Fock.
potential which, acting on a given function f(x), gives

1
U (x)f(x) =

o o(x) o o*(y) f(y)dy.

The perturbation H1 is thus defined as

and

E,LX, g=&x, IH, —E, [x, &

+2&xs'IHt —Et[xt&—Ep&xp'I qp) & (9b)

which gives

H1= H —HP, (5a)
where Xl' and X2' denote the trial functions to be varied.
Note that in Eq. (9b) Xr is assumed to be given and is
not varied. If the expressions Fl and Ii2 are evaluated
at the stationary solutions Xl and X2, respectively, then

Hl —2 Ug(rt) +V,(rt) —2 Vg(rp)+ V (ls) ~ (5b)
r12

and

ErLXi) = —&Xr
I
Ho —Eo

I
Xt&, (10a)

and

+= o o+Xr+Xs+ (6a)

As we shall see, for our purposes it is particularly con-
venient to use an analytic form for the Hartree-Pock
functions similar to those which have been derived by
Roothaan et al. ~ We are interested only in the ground-
state energy and wave function, both of which are
known to very high accuracy in helium for the Hartree-
Pock equation' and for the exact Schrodinger equation. ' '

Ke now state briefly the equations of perturbation
theory which we shall utilize. If we write

(10b)

By comparison with Eq. (Sa), one sees that F,LX,) gives
directly a variational principle for E2. Besides, in the
form (10a), it is clear that Es must always be negative
for the ground state. Furthermore, the expression
PsLxsf gives just the value of E4 apart from terms inde-
pendent of X2, so that we also have a variational
principle for E4.

The method of solving for &1 and X2 is now clear. We
write a trial solution of the form

E=Eo+Et+Ep+ (6b)

where each term is imagined to be of successively higher
order in some small parameter. Then, using Eqs. (1),
(3), and (5), one gets the following relations:

xl 2 C~V'(rt r2 F12 ~)
i=1

X2 Q C It (rrrsr12~) ~

(11a)

(Hp —Ep) pp= 0,

(Hp —Ep)Xr+ (Hr —Er) (pp
——0,

n—1

(Hp —Ep)X +Hrx t g E X E (po=0
m=1

(7a)

(7b)

(n~ 2) . (7c)

We assume that we are given some solution of the homo-
geneous equation (7a), and we solve the remaining in-

homogeneous equations by a variational method. First,

With these functions, we calculate E~I Xt'j and
FpLxs'] and regard the quantities {Cr','Cp', , k) and
{Cto,Cps, ; k'} as Parameters being varied in order to
minimize the functionals Fl and Ii2. This reduces the
problem to one of matrix inversions. For the functions

P; we have used a set of twelve functions corresponding

9 For a discussion on the choice of functionals, see for example
A. Dalgarno, Advan. Phys. 11, 281 (1962) and references cited
there.
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P,= (1/4n-) e
—l"s'tmu",

=r~o and where k (or
. Th, h

t=r1—r2, N=r12 an
rm thesimilar y i1 k') is a scale factor. us,

matrices

(13a)

Pock wave

r, = ro. (15)«w(4&ro) = Fo(ri) po(ro .

r to egivb iven analytica y yll b a func-We have taken po(
tion of the form

ap"'e ~' .
(4m)"' *=~

o r)=

z;;=(y,
l
v. lp;&,

E,,=(y, l v. ly, &,

and the column vectors

Z;=(1t, l q»&,

1
~'= 8'I —1«F&,

r12

T'= O'I 1'.
I v»&,

ave iven wave functions s of the form
2. Because of the lengthy numerica

aspec s o
ares to a sum o two

ol 1ze1' d function of threeoptimized exponents i.e.,
meters). We n

This function gsves valuesofEoand ~w i
's

twelve-par

arne
terated with Roothaan s13f)

10Mew arts in
the correlation ene

tion andR h f
1 hu

eed to the calculation ofh

(14c) of the matrices M, 1., I.', an, i.e.,

Xpv
1 '—-'V' ')e l's"Vu"drgdro,8 ' S"s't"u"(—-'V' '——, e ~

16m2
(18a)

Xpv

16x2
*'s"t"u"drqdr2,

1 1
~
—~28Sltmln

kr, r i (18b)

) tltvL l

1
~
—-', sS tmlne ' ' "—e "s~tl'I"dr1dr2,

~12
(18c)

Xpv
imn e "st Nel m n —)ssxtp~vdr dg (18d)

ewhat more tedious. We getorZ E,, R 5 and T are son1ew a mThe expressions for

1
Z +Pm

4&z,

1
r n'+n~e (~'+~~)"'—dr1dr2drs,0'(r~, r2)A(ri, r2)ro""""e (19a)

1
Eij= 2 &l&m

4~ t, m

1
3

—~i 1 —~m ~df1dfy nip nag4'(, )A(, o (19b)

1
Z adam

4x &,

""e ~'"'e o'™odrqdro,4' (rl r2 rl r2~™e (19c)

Ph sik. 54, 34P ', 7 (1929);65, 209 (1930).10 E A. Hyllerzas, Z. P y
'
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I
S~= Z +t&ns

4~ t,m
P;(r~, r2)r&" r2""e ~'"'e ~""' dr~dr2,

~12
(19d)

Z
$Q~"-p', k, l, m

1
f,(r~,r2)r~ "~r2""r3"'+"~e»"'e»"'e &&'+&"&"' d—r~dr2dr3

~13
(19e)

In Appendix II, we sketch briefly how to express the
elements of Z, E, 5, and T in terms of a few basic
integrals. The only serious difficulty —from the points
of view of both the algebra and the amount of
computational labor involved —lies in the calculation
of the elements of the exchange matrix E. This is
discussed in Appendix III. Thus, having the elements of
the matrices 3I, L, L', Z, E, and E, as well as those of
the column vectors R, S, and T, we can now write our
expression for Fq t Eq. (9a)j in matrix notation as

+z =Q (3E;, 2L„;+4Z—;; 2Eg Eol—Ve)C,'—C '
s ~ 17

—2 P(EgR,+2T;—5 )C' (20)

the computational labor in handling the elements of the
exchange matrix. The terms in the trial function are
added in the obvious order suggested by Table II. For

(l,m, N)

(0,0,1)
(1,0,0)
(2,0,0)
(0,2,0)
(0,0,2)
(1,0,1)

7
8
9

10
11
12

(l, mn)

(2,0,1)
(3,0,0)
(0,2,1)
(1,2,0)
(1,0,2)
(0,0,3)

TABLE II. Sequence of basis functions used in the trial functions.

comparison, we show the values of E2 and E3 calculated

arying the P, we obtain the system of linear equations

Q(M;; 2L;,+4Z,; 2E—;,—EO1V;;)C—,'
=EgR~+2T; 5, , (21)—

which is solved by matrix inversion. Similar considera-
tions apply to F& and the solution for X,. Once fC,') and
(C;2) are obtained then E2 through E5 may all be
expressed in matrix notation, and are readily evaluated.
For example,

2 2
Ho ————,

' Vg' ——,'V'2' — — +Vd(r~)+ Vq(r2) . (23)

Here, in the absence of any exchange matrix, the calcu-
lation was carried out using a twelve-parameter trial
wave function, thus keeping all the cubic terms in it.
We also show the values of E2 obtained by starting from
the simple hydrogenic Hamiltonian

Ea Q(L; —4Z;;+2E@———EyA';;)C C,'—2E2 Q R,C

(22)

jVO
————V'1' ——V'2' ————2 1

2 2
f1

(24)

III. RESULTS AND DISCUSSION

Table I gives the second- and third-order energies E2
and E3 as functions of the number of parameters in the
trial function ~1, which we varied from one to ten. The
two remaining cubic terms are omitted since in similar
calculations (see below) they were found to contribute
negligibly and also because they increase considerably

Figure 1 shows a comparison of the zeroth-order wave
function for the Hartree-Fock (or Hartree) case and for
the hydrogenic case. Recall that in the Hartree-Fock
(or Hartree) framework we have E,+E~ —2.86167——
a.u. whereas starting from hydrogenic wave functions
one gets Eo+E~= —2.750 a.u. The value of the scale

TABLE III. Fourth- and fifth-order perturbation energy in helium
as the number of basis functions in the trial function increases.

TABLE I. Second- and third-order perturbation energy in helium
as the number of basis functions in the trial function increases. Number

of terms
Hartree-Fock

E4
Hartree

1
2
3

5
6
7
8
9

10
11
12

—0.025361—0.029392—0.032770—0.034452—0.035558—0.036852—0.036986—0.037158—0.037164—0.037190

-0.003550—0.004139—0.005001—0.005438—0.004509—0.003647—0.003432—0.003349—0.003298—0.003461

Number Hartree-Fock
of terms E2 &3

Hartree

0.004400
0.004827
0.004628
0.004747
0.004916
0.006570
0.006626
0.007088
0.007073
0.007059
0.007011
0.007133

—0.033376—0.038491—0.042860—0.045220—0.045579—0.047134—0.047160—0.047517—0.047545—0.047927—0.047969—0.048041

Hydrogenic

—0.134826—0.146133-0.146133-0.153503—0.156394—0.156603—0.156627-0.156702—0.157151-0.157151-0.157380—0.157441

2
3
4
5
6
7
8
9

10
11
12

0.000689
0.000233—0.000312—0.000629—0.000656—0.000672—0.000709—0.000709—0.000795—0.001086

+0.000013—0.000140—0.000088—0.000113—0.000133—0.000144—0.000155—0.000155—0.000134—0.000063

—0.000438—0.000516—0.000613—0.000790—0.000793—0.001023—0.001036—0.001117—0.001128—0.001151—0.001177—0.001207

—0.000111—0.000106—0.000057
+0.000004
+0.000001
+0.000110
+0.000122
+0.000165
+0.000170
+0.000183
+0.000214
+0.000240
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TABLE IV. Coefficients of the basis functions for the correlated wave functions. (The scale factors k and k' are such that k= k'=3.72.)

Coefficient
Hartree-Pock Hartree

C1/k
Cg/k
C3/k'
C4/k'
Cs/k'
C6/k~
Cr/k'
Cs/k'
Cg/k'
CIP/k'
Cii/k'
Cig/k'

+1.924880-0.314568X10-1—0.104288X 10 1

+0.685349X10 '
—0.148467
+0.515117X10 ~

+0.106626X10 '
—0.665754X 10 2

—0.421135X10 '
+0.410153X10 ~

+0.294524
+0.682257X10 '
—0.124684X10 i
—0.446628X10 i
+0.551155X10 '
—0.267843X10 '
—0.295276X10 '
+0.347408X10 3

—0.671910X10 '
+0.137636X10 '

+2.166550—0.110226—0.950153X10 ~

+0.319173X10 ~

—0.183234
+0.648630X10 '
+0.125427 X10 '
—0.928131X10~
—0.130326X10 '
+0.179817X10 i
—0.114274X10-'
+0.108721X10-i

+0.270665X10 '
+0.214254-0.677986X10-i
+0.311003X10 '
—0.142566X10 '
+0.711624X10 '
—0.207508X10 '
+0.812738X10 '
—0.132568X10 '
+0.349211X10 '
+0.179936X10 '
—0.692774X 10 '

factor k for Table I is k =3.72, which gives the minimum
energy E2 for our trial function, although for such a
number of parameters E& is a fairly insensitive
function of k, changing by only 0.2'Po as k is varied from
3.36 to 3.72. Since there is no minimum principle for the
third order energy E3, the successive values of E3 do not
decrease monotonically as they do for E2. It is also
worth noting that although E2 is quite different in the
Hartree-Pock and Hartree methods, and moreover E3 is
even different in sign, the sum Es+Es is very nearly
the same in the two cases. Finally, it is interesting to
remark that, starting from the hydrogenic Hamiltonian
(24), the results we obtain for Es in the case of 2, 6, and
12 parameters, respectively, are in complete agreement
with those given by Schwartz. "

Table III gives the values of E4 and E5 in the Hartree-
Fock and Hartree cases, as functions of the number of
parameters in the trial function &2. Here we use k'= 3.72
for the value of the scale factor k'. This value is not
optimal; we estimate that a somewhat smaller value
of k' (around 3.30) would decrease E4 by about 2%%uo.

Clearly, E5 has not converged as completely as E2, Ea,
and E4. We estimate that E2, the dominant contribution
will decrease by about 0.5%%uo if the number of parameters
in X& were made very large. This would probably be the

1.5

most significant difference between our calculation and
one done with a very extensive trial function. Thus, our
6nal values for the Hartree-Fock case (with a 10-param-
eter trial function and within the accuracy of our calcu-
lation) are, in a.u.

Es= —0.0372,

E3=—0.0035,
E4= —0.0011,
55= —0.0001.

This gives for the value of the correlation energy

E„„=—0.0419 a.u.

The corresponding values for the Hartree case (with a
twelve-parameter trial function) are, in a.u.

giving thus also

E2= —0.0480,

Es=+0.0071,
E4= —0.0012,
Es=+0.0002,

E„„=—0.041.9 a.u.

This result differs by 0.4% from the exact value of the
correlation energy,

1.0—

CL

0.5—

0
0

r (a.v.j

"C. Schwartz, Phys. Rev. 126, 1015 (1962).

FIG. 1. Comparison of the radial functions p(r) =r&4(r), where
&0(r) is either the Hartree-Fock (HF) or the hydrogenic (HYDR)
ground-state radial wave function for the helium atom.

E„„'"'=—0.04205 a.u. ,

obtained by subtracting from the "exact" value of the
total energy given by Pekeris' or Schwartz' the value of
the Hartree-Pock energy found by Roothaan et al. '

In Table IV we give the coefficients of the basis
functions for our best trial functions X~ and X2, both in
the Hartree-Pock and in the Hartree cases.

Thus we see that the Hartree-Pock equation serves as
a satisfactory starting point for a fairly rapidly con-
vergent perturbation theory. Using terms through fifth
order we get to within 0.4%%u~ of the total correlation
energy. Scherr and Knight' in their study of perturba-
tion theory in helium starting from hydrogenic functions
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found that through E& they got (with a hundred-
pararneter trial wave function) E„„=—0.04200, i.e. , to
within 0.1% of the correct answer. We believe that if we
added more parameters to our trial functions our value
for E„„would be at least this accurate. However, as
the complication of the problem increases rapidly with
the number of parameters in the trial functions, and
since our main interest lies in more complicated atoms

than helium, increasing the number of parameters in
this case does not seem worthwhile.
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APPENDIX I
A straightforward but lengthy integration, making use of the variables s, l, u, gives for Eq. (18a) of the text

1 1X+lv+ n'A np mv- —
Xpv

8 (m+ p+1)(m+n+ p+v+3) (m+ p+3) (m+n+ v+v+3)

nv+np+mv

(m+p+1) (m+n+ p+v+1) (m+ p —1)(m+n+p+ v+1) (m+p+1) (m+n+p+v+3)

(l+m+n+X+ p+v+3)!+
(m+ p,+3)(m+n+ p+ v+5) 2(m+ p,+3)(m+n+ p+ v+5)

(l+m+n+X+ p+v+4)!
2(m+p+1)(m+n+p, +v+3) (m+p+1)(m+p, +3)(m+n+p+v+3)

(1+m+n+~+p+v+5)!, (I 1)
4(m+p+1)(m+n+p+v+3) 4(m+p+3)(m+n+p+v+5)

where all the variables are greater than or equal to zero. In the case m=0, p= 1 or m= 1, p= 0 (a case which is not
relevant in this work, because the symmetry of the wave function requires that only even powers of l appear)
the term

(m+ p —1)(m+n+ p+v+ 1)

is not well defined. In this special case it should be taken to be zero. The remaining integrals are easily done and give

1 (l+m+n+X+p jv+4)!
Limn "'=—

2 (m+ p+1)(m+n+ p+ v+3)
(I.2)

1 1
'A pv (l+m+n+ X+p+ v+4)!,

8 (m+p+1)(m+n+p+v+2) (m+p+3)(m+n+p+v+4)
(I.3)

1 1
~gjT )!,pv— (l+m+n+X+p+v+5)! .

8 (m+p+1)(m+n+p+v+3) (m+p+3)(m+n+p+v+5)
(I.4)

APPENDIX II

All of the integrals which are necessary for the calculation of Z, R, 5, and T can be written in the following
simple form

1 1
fg(l, m, n, n,P,y) =— rq'r2 r3"e "'e e"'e ~" rq2 drqdr2drad(cos8q2)d(cos—8/3) .

4 r13

These integrals can be expressed as finite sums of two basic integrals which were defined originally by James and
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Coolidge, "namely,

and

V(l,m, n,P) = dx dyx~e y e», (II.2)

W(/, m, n, n,P,y) = dx dy ds x'e ~~y~e—»s~e- (11.3)

We 6rst write the various quantities f& in terms of the functions U and W and Anally derive simple expressions
for V and lV.

It is clear that any integral with k even can immediately be reduced to a sum of integrals with 4=0. An ele-
mentary integration gives

fp(l, m, n, n,P,y) = LV(l, n 1,—n, y)+ V(n, l 1, y, n—)j.
m+i

When 4 is odd we find a more complicated relation:

a+s (k+ 1)!
fs(l, m, n, a,p,p) = p' pV(/ —1+j, m+k+1 Z, n —1—, n, p, p)+W(m —1+j,i+k+1 j, n 1—, —p, n, &)

~'=~ j!(k+2—j)!
+ W(n, l 2+j, m—+k+1 j, &, n, P)+—W(l —1+j,n 1, m—+k+1 j, a, p& P)—

+W(m 1+j—, n, l+k j,P, p, n—)+W(n, m —1+j, l+k —j, p, P, n) j, (II.S)

where the prime on the summation means that only odd k are to be included.
It is easy to obtain expressions for the functions V and O'. For example, if m 0, we get

n! ~ (m+v)! p )"
V( m, nn, )P=

(&+P)m+1Pn+1 v=0 p l B+PJ

Similarly, if n 0, the function W(l, m, n,n,P,y) can be written as

m!
W(l,m, n, n,P,y) = Q —V(l, m+ p, n, P+y) .

&ngj. „

Analogous expressions may be derived for m&0. In actual calculations it is very convenient to make use of recursion
relations of the type discussed by James and Coolidge. "

With these functions all the elements of Z, R, S, and T may be written explicitly. For example,

Z» ——g a~a [f&(3, 2, n~+~ +2, k, k, y~+y )+f&(2, 3, n&+n +2, k, k, y&+y„,)],
$, tn

Zs, ~s= P a~a~fs(2, 2, n~+n„+2, k, k, y~+y ), etc. ,
l fn

(II.8)

where we use the same notation as in Eq. (19a).

APPENDIX III

In writing expressions for the elements of the exchange matrix

~' =O'I V.I&)

one encounters integrals of the following type, arising from the action of the exchange operator V, :
(III.1)

1
g(l, m, ,n ,o,Py, ab)= — r~'rs rs"e "'e ~"e ""'(1/r~s)r~s'rss' dr~ drs drs d(cos8») d(cos8») dq». (III.2)

Sx

If a and b are odd, one cannot write an expression in closed form for this quantity. In this case, after expanding in

~ H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
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spherical harmonics, one obtains the general expression

go N K N-N v+N LK—' K' v—v 2+v—x Y—L g I )0 fv
g@m,~, ,P,v, ,b)=Z 2 Z Z'

! xl
z=o N=o sr=0 L=o Lg v' v=0 gg 0 x=o L"=egg 0 0 0g 4 0 0 0 g

(21V—2L+ 1) (2 v —2K+ 1)E!E'!(1V—-',I)!(v ——',X)!2'N+'"

y( l)N+g
M!p, !(-',I.)!(-',X)!(K—M—1V)!(K'—tt —v)!(21V—L+1)!(»—X+1)!

)&(W(l+2M+N+2+L', m+2K+2K' —2M —2p —1V v+L"—L 1,—n+—2p+v 2—L"——2, n, P, y)
+W(m+2K+2K' 2M 2—p IV—v+—I."+—L', L+2M+IV+2 L' 1,—tt+2—p+v 2 L"—2—, P, n—, y)

+W(e+2p+v+2+L", L+2M+IV+L' 2 1, —m+—2K+2K' 2M 2—p 1V—v —L —L"—2—, y, n—, P)

+W(L+2M+X+L'+2, e+2p+v —2+L"—1, m+2K+2K' 2M 2p—IV —v —L' —L"—2, n—, y, —P)

+W(m+2K+2K' —2M —2p —Ã—v+L'+L", e+2p+v+2 L" 1, L—+2M—+1V—gg —L'—2, P, y, n)

+W(ts+2p+v+2+L", m+2K+2K' —2M —2p, —1V—v —L"+L'—1, L+2M+p 2, L' —2, y—, P, n—)), (III.3)

where

and

K=( t+t1)/ 2,

K'= ( b+1)/2,

z'=!z—(1V—L)!,
2"= lz —(v —X)l,

!
(jt js jan

ml m2 1n8

(III.4a)

(III.4b)

(III.4c)

(III.4d)

(III.4e)

is the standard 3j symbol. "The primes on summations mean that the sum runs in steps of two. The function g
is de6ned in Appendix II. In practice, the expression (III.3) will simplify considerably for particular values of a
and b In this .work, because of the form of our trial wave function, only the case a=b=1 is needed (i.e., there
was no term involving I in our trial function). In that case, we get, explicitly,1» (2I—1)(2E—1)
g(l,m, n, n,P,y, 1,1)= P

z=o (2J+1)s z-0 rr=o (2J 4I+3)(2J —4K+3)—
)& [W(m —2I—2K+2J+4, 1+2I 1, re+2K 2J—2, P, n, y)' — —

+W(m 2I 2—K+—2J+4, n+2I 1, 1+2K—2—J—2, P, y, n)

+W(t 2I+2J+2, m+2I —2K+1, tt+2K —2J——2, n, P, 7)

+W(N 2I+2J+2, m+2I —2E+1, /+2K 2J——2, y, P, n)—

+W(ts 2I+2J+2, J—2E+1—, m+2I+2K 2J 2, y, n, P)— —

+W(1, 2I+2J+2, n ——2K+1, m+2I+2K 2J 2, n, y, P))—. —(111.5)

In practice, it was found that this sum converged very rapidly so that only the erst three terms (J=0, 1, 2)
were necessary for our purposes.

%ith the above notation a typical element of the exchange matrix involving the function g is

ttL„ra,a. g~ w, +gg, n„g-g, —gpss, g, -t=.
p, „). (III.6)

t gN ( 2 2

er terms involving r» on both sides of the exchange operator can be written similarly in terms of the functions
g. A]]. remaining terms of the matrix E can be written in terms of the functions discussed in Appendix II. It should
be mentioned that in calculating the various functions g, one needs the expressions W(l,m, e,n,p,v) of Appendix II
for negative as well as positive values of e.

"A. R. Edmonds, Augulgtr Moguoutugu zu Quuutuggt 3fechgtuscs (Princeton University Press, Princeton, New Jersey, 1957).


