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This dBBculty does not exist however in most of the
calculations which have been made with a pairing force.
Indeed in these calculations the self-energy terms have,
most of the time, been neglected. Therefore (51) and
(52) become equivalent except for a shift in the chemical
potential.

To end this section we wish to show a more narrow
connection between seniority and quasiparticle number
by proving that the physical states of m quasiparticles
have seniority v in the degenerate case.

We have seen before for two particles that all the
states have the same quasispin, or seniority two, except
the ground state, in complete analogy with the case of
a single j. If we consider now the BCS state and the
states with two quasiparticles we find two states with
the same energy as the ground state: the BCS state and
a combination of pair of quasiparticles. Both have
seniority zero but the combination of two quasiparticles
coupled to 0 is clearly unphysical, "which proves our
statement for the zero- and two-quasiparticle states.
"It has the same energy as the ground state and its components

on the two quasiparticle states are of the form (2;+1)»' which
indicate that this state is nothing but (1V—(BCS(E BCS))

~
BCS).

This argument can be extended without a dBBculty
to the case of four or more quasiparticles.

VI. CONCLUSION

We have been able to show in this paper that the
surface delta interaction provides a very simple scheme
which generalizes for degenerate mixed orbitals the
seniority scheme well known for a (j)~ configuration.
Moreover, we have seen that the BCS method is very
appropriate here since the number of quasiparticles
commutes with the Hamiltonian. All these results are
of course no longer exactly valid when the single-particle
energies are not degenerate.
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The surface delta interaction has been applied in a calculation of the energy levels of isotopes of Pb, Sn and
Ni, Po ", and nuclei belonging to the 82-neutron shell. The Bogoliubov-Valatin method combined with the
Tamm-DancoG approximation has been utilized. In certain cases, exact shell-model calculations have also
been performed. The comparison between the results obtained in these two ways shows that the approxima-
tion method works quite well for the two-particle case. For more than two particles outside closed shells,
the approximation works relatively well only for the 2~+ and 4~+ states. The agreement with experiment is
fairly good in general. For Pb"' the results are even slightly better than those of True and Ford. For Pb~4
and Pb'" it was found necessary to reduce the strength of the interaction about 10oro. In Ni and in the 82-
neutron nuclei the results are fairly good, but in the isotopes of Sn and in Pb" the 2+ and 4+ states lie
somewhat too high.

I. INTRODUCTION
' 'N two recent studies' ' a new interaction has been
~ - proposed to be used in the nuclear-shell theory which
has been called a surface delta interaction (SDI). The
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theoretical basis of this interaction is only partially
understood at present, but it has some interesting prop-
erties when applied to spherical nuclei. In particular it
was shown in Ref. j. that the SDI provides strong
collective effects. In a (s,d)' configuration for example,
the 0+ is lowered much more than in the case of an
ordinary delta interaction. Moreover, spectra approxi-
mately rotational in nature are expected for T=0 states
involving several nearly degenerate orbits. In Ref. 2 it
has been shown by using the quasispin techniques that
the generalized seniority and the number of quasi-
particles (defined by the Bogoliubov-Valatin trans-
formation) are good quantum numbers when the single-
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particle states are degenerate. Another interesting
property of this interaction is its extreme simplicity and
the absence of any radial integrals. Indeed the two-body
matrix elements are simple products of two Clebsch-
Gordan coeS.cients. The strength of this interaction is
actually the only parameter present. All these features
have encouraged us to apply this interaction to the
calculation of the spectra of spherical nuclei containing
identical particles in the active orbitals, i.e., single-
closed-shell nuclei, and primarily to the spectra of even
nuclei. In principle, we should consider those nuclei in
the (s,d) shell. However, since it has been found neces-
sary to consider deformed states as well as spherical
ones' to explain the spectra of 0"and 0", these nuclei

may not be the best examples. Indeed, we have
restricted our calculations to spectra of nuclei for which
there is actually no evidence that the interplay between
deformed states and spherical states has to be taken into
account, such as the nuclides of Z=28, 50, 82 or of
X=82 and 126. Several calculations of the spectra of
these nuclei have been done in the past years by using
either an exact shell-model calculation' ' or an approxi-
mation which consists essentially in a Bogoliubov-
Valatin canonical transformation followed by a diago-
nalization in a finite subspace of quasiparticle states. ' "
Several types of interactions have also been used: the
pairing-plus-quadrupole interaction, "finite-range inter-
actions containing spin-exchange' " " " terms or even
tensor interactions, ' or more realistic" interactions like
the Tabakin force."A large part of these calculations
have therefore dealt with forces in which radial effects,
range effects, and exchange effects have been taken into
account explicitly. It is expected, of course, that the
surface delta interaction gives only a first approximation
and cannot account for all the eGects which are given

by such complicated forces. However, one of the main
aims of our calculation has been to see what features are
common to these "realistic" interactions and the surface
delta interaction and also whether these diferent inter-
actions result in drastic changes in the level spectra. It
was also our aim to test, using that simple interaction,
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the validity of the Tamm-DancoG method in various
cases such as the spectrum of nuclei with two particles
or two holes outside closed shells. In fact we will also
give results concerning the comparison of the Tamm-
Dancoff method with exact calculations of nuclei with
four and six valence particles. Since the Tamm-Dancoff
method gives the exact results for a degenerate system'
the study of the nondegenerate system is of considerable
interest. In the erst part of this paper we will give some
theoretical properties of the two-body matrix element
of a surface delta interaction and we will give the main
formulas which are used in a Tamm-Dancoff (TD)
calculation. In the second part we will discuss the results
of the numerical calculation: the comparison between
Tamm-D ancona approximation solutions and exact
solutions, the comparison of our results with ex-
periment and with those of the previous calculations.
We wiIl discuss also the convergence of the results when
the number of single-particle states included in the
calculation is increased.

Wz, (/, /s, /. /e) = —Ghr, (/, /s)hr, (/, /e),
where

(2/. +1)(2/s+1)- 't'
hz, (/. /s) = (—1)'+~

(2L+1)

(2a)

&((/, /s00
i
LO) . (2b)

'c A. de-Shalit and L Talmi, Nuclear Shel/ Theory (Academic
Press Inc., New York, 1963), p. 218.

"Provided that all the relevant radial wave functions and
integrals are arbitrarily set equal.

II. THEORY

I. Two-Particle Matrix Elements of a Surface
Delta Interaction

In this section we want to briefly review some of the
properties of the matrix elements of a surface delta
interaction. From the practical point of view of calcu-
lating matrix elements, the surface delta interaction can
be considered as a 8 interaction for which one makes the
further assumption that all the radial integrals are
equal. ' The matrix elements of a conventional 8 inter-
action have been given many times in the past Lsee for
example Ref. (14)j. However, they have been usually
given only for the diagonal case. Since we need the
particle-particle and the particle-hole matrix elements
in the quasiparticle formalism, we will give expressions
for both of these in the general case of mixed orbits.
For their derivation the reader is referred to the litera-
ture. "We assume that the interaction is attractive and
of strength G. It can be written as a delta function in
the arIgular coordinates of the interacting particles"

V,&= —4~G3(n, ,) . (1)
Since the SDI is spin-independent, its matrix elements
have a particularly simple form in the L-5 representa-
tion. For a nucleon pair scattering from configuration
(/, /s)r, to (/. /e)r„ the particle-particle matrix element is
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Of course, the symmetry properties of the Clebsch-
Gordan coeKcients require that I +lb and I,+4 both
have the same parity as L.

Equation (2) was already given, in a different notation
in Ref. 1. The j-j coupled matrix elements can be readily
obtained from the above expressions using LS to jj
transformation coefficients. The result is quite similar
to (2) but slightly more complicated

alld

(Sb)

we find for the exchange matrix elements

W&(j jbj dj )—( 1)8+la+ tb+zG&(0l +( 1)8+1G ir) (9)

and thus

hJ(j,jb)=(—)&~+ i[(2j,+1)(2jb+1)/(27+1)7 ~2

x(j.~ —,
' ——,'l~o) (3b)

and

=0 if J=0. (3c)

Incidentally, Eqs. (3) hold independently of the values
of /, etc. , provided only that I,+lb and I,+Id have the
same parity (otherwise W vanishes). It is convenient to
rewrite Eq. (3a) in the form

WJ(j .j bj .j a) = 2Gh J—(j .j b)hz(j .j ~)

X[1+(—1)' "+' '4~(j.jb)4~(s.sd)7, (3a)

where

w 'v.j.,j.j )
= [(1+8.b)(1+8,g)7 '"[1+( 1)—'+"+ 7G&&'l

=—[(I+8.b)(1+8.z)7 hz(j, jb)hz(j, jz)G

if /, +lb+I is even and zero otherwise.
In order to use the BCS method, we need also the

particle-hole matrix elements of the interaction. We use
a notation close to that in previous work" by one of us
(R. A.). The direct particle-hole matrix element is
written here as Hz(j, fb,fj d) As bef.ore, jan, d j b (as
well asj, and jz) are coupled to a resultant J.However,
as is indicated by the tilde, jb and j, are assumed to be
hole states, so that we actually have a pair scattering
between orbits j,j, and j&j&. This matrix element is,
in fact, just the multipole term of rank J in a Slater
expansion. For an SDI, we have

Wz(j .j b,j.j d) =Gz"'+Gz"',
and

&~(i.ab, Z i ~)= 2G~"' (11a)

(—1)b= (—1)&a+tb+9a A+~ (Sb)

and b,~=1 if the particles are in the same orbit jt', =l~,
j = j&, and 0 otherwise. In the former case, we have

(j,') &~——(j,') J if J= even,
=0 if J=odd.

The phase (—1)'+'b in the two-particle wave functions
is a consequence of our definition of the two-particle
states.

The antisymmetrized matrix element is a linear com-
bination of direct and exchange terms:

W"(. . . .)= [(I+~.)(1+3")7-"
x[w,(j.j.,j.j )+(-1) w, (&.&.,„~.)7. (~)

where G&') is the product of G and the two factors h J
and G&" is the term involving the P's.

So far we have only considered the direct matrix
element, i.e., used nonantisymmetrized wave functions.
For two identical particles, the properly antisym-
metrized wave function is

(j.jb)."=[2(1+~.b)7 I [(j.jb).+(-I) (jbj.).7, ( )

where

(/~jb I gg)(1)a+l~+lb+J2G&(0) (11b)

There is also an exchange particle-hole term which we
write as Kz(j,gbj, jz). Again, j,and j b (and also j, and
jz) are coupled to a total J. This time j b and j z are the
hole states. For the SDI, and indeed any spin-inde-
pendent interaction, it has been shown'6 that

& V I ».~ )=w U.~,~'.I ). (12)

As we have seen, the antisymmetric particle-particle
matrix element is equal to the direct particle-hole term
and indeed both are separable. This property simpli6es
greatly the two-particle calculations as shown in Refs. 1
and 2. In general, there is no very simple relation be-
tween the nonantisymmetrized particle-particle and
particle-hole matrix elements, except for special con-
figurations for which GJ&" vanishes, e.g., if j =j, and J
is even. For this case HJ=2G~ ', i.e., the direct particle-
hole matrix element is twice the nonantisymmetrized
particle-particle matrix element, as was remarked by
8elyaev. "

It should be pointed out that this behavior is quite
the opposite of what is found for a long-range interaction

Now since

h V j.)=(—1)' 'bhz(j. jb)

16 R.. Arvieu and M. Veneroni, Compt. Rend. 252, 670 (1961).
» S. T. Belyaev, Selected Topics iN Ngcleur Theory (Inter-

(ga) national Atomic Energy Agency, Vienna, 1963),p. 331.
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h, (j.jb) = t.b(2j.+ 1)'&2, (13)

such as the quadrupole force, for which H~ is considered
but E2 and G2 are generally neglected. When J=0, the
matrix elements Go are equivalent to those of a pairing
force since, in this case

neglected, have here only the effect of shifting the
chemical potential. In other words these terms can be
ignored exactly if one is not interested in quantities like
the absolute ground-state energy or the separation
energy. Indeed, the self-energy terms which have to be
added to the single-particle energies have the form

li'o(j.j.,j.j.)=(—G/2)L(2j. +1)(2j.+1)]'" (14) „.=(—G/2)p [H,(j,g„j j,) &,(j—,f.,j f )]
=H«(j aga)2cj c) +ok(Xa)j c/ c) ~ (15)

C)C

X V.'[(2j.+1)/(2j.+1)]"' (16)

2. Two-Quasiyarticle Matrix Elements of a
Surface Delta Interaction

In this paper we want to use the surface delta inter-
action for the calculation of the spectra of single-closed-
shell nuclei. For nuclei having two particles outside of
(or missing from) closed shells an exact shell-model

calculation can be carried out, without much difficulty.
In that case the interaction matrix is constructed by
just a,dding to the matrix (10) the single-particle energies.
The eigenvalue problem can be solved by a numerical
diagonalization or by a graphical procedure since it is a
Cooper pair-type problem for each value of the total
angular momentum J.

For nuclei having more than two particles outside
closed shells, the surface delta interaction does not
represent a very big simplification if one still wants to
treat that problem exactly since the main problem is the
construction of the four-particle energy matrix in terms
of the two-body matrix elements. However, there is still
a very simple numerical treatment applying the Bogo-
liubov-Valatin canonical transformation to construct a
set of quasiparticle states and diagonalizing the inter-
action in the two-quasiparticle basis (Tamm-Dancoff-
approximation states, as in Refs. 10—12).

First of all the equations which determine the I's and
e's, the coefficients of the Bogoliubov-Valatin canonical
transformation, are the same as those for a pairing force,
except that the self-energy terms, which are generally

~.= (—G/2) ~V (18)

independent of the state u. This self-energy term leads
to a to/al energy shift of

—2~GEO (18a)

[D=g,(j;+si) is the total pair degeneracy) or —-', GQ

per particle. This result was also derived in Ref. 2 by a
different method. Since p enters in the combination
«,+p,—l&, where «, is a single-particle energy and X is
the chemical potential, we see that introducing p has no
effect on the u's, the v's, and the quasiparticle energies,
since p can be absorbed in X by the replacement A,

—+ X—p.
This is a very reasonable result since even with a finite-
range interaction the self-energy terms vary smoothly
with the number of particles. " "

The quasiparticle representation having been defined,
we can calculate the matrix element of the total inter-
action between two-quasiparticle states. The general
expression for the interaction matrix between two quasi-
particles in states ab coupled to J, interacting and going
to cd, can be written as follows:

By using (14) and (15) and the auxiliary condition fixing
the average value of the number of particles in the
system,

P, v, '(2j,+1)= lV,

we obtain

~J(j .jbjj d) = (U.jb)dIH —»
I (j jd)d) —(BCS IH —»I BCS)

= (&.+&b) &..~bd+ [(1+~.b) (1+/i.d)) '"
X {(uaubucud+VaVbVcVd)[+ J(j.j bj jd)+(—1) FZ(j .j bj dj,)]'
+(u,vbu, vd+v, ub Vud)[Hz(j, gb, gjd)'Kd(j,gbj,gd)]-

+(—1) ( ua,VbV+udVaubu)c[VHd(jd, jbjdj )—Ed(jamb jdg, )]). (19)

This expression simplifies greatly for an SDI. Using equal. The coeflicients of the Gd&'& terms are u'+v'=1
Eqs. (4), (9), (11),and (12), we can rewrite the quantity while the coefFicient of Gz& & vanishes. We obtain the
in brackets as follows: very simple result:

{ )= (ucuc+'VaVc) (ubud+V bVd)GZ'
+(ubu, +vbv. )(u.ud+v. vd)( 1)'+"+ GJ&"—

(u.vb v.ub)(u, v—d v,ud—)Gd&'&. (20—)

I'Z(j.j bj,j d) =%.+&b)b..»d Ghs(j.j b)hd(j.jd)—
X[(1+B.b) (1+&lcd)]

—"', (21)

which is just the matrix element for two particles in-

In the degenerate case, all u's and thus also all v's are creased by the quasiparticle energies (which should be
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equal if the s's and v's are). This is an independent check
of the result mentioned in Ref. 2 that the two-quasi-
particle energy matrix is the same as the two-particle
lnatrix, which coincides with the seniority-two matrix
when all the single-particle energies are degenerate. For
J=O, it is thus found that the matrix (21) has an eigen-
value equal to the energy of the BCS state. The com-
ponents of this state in the two-quasipartic1e basis are
simply hp( j,j,)= 2j,+1. Clearly, this is the spurious
state associated with the nonconservation of the number
of particles. It turns out here that this state, which can
be written as

(E.,—(cV)) i BCS), (22)

is an exact eigenstate of H —XÃ since
~
BCS) is, itself,

an eigenstate.
Of course, since the number of quasiparticles com-

mutes with H —XA, it is readily verified that the ran-
dom-phase approximation (RPA) is exactly equivalent
to the Tamm-Dancoff approach in the degenerate limit.
This may be seen if we write the matrix of the RPA in
the usual form:

8
5—Q —Z)

(23)

The expression for Q is similar to that for I' given above
except for the absence of single-quasiparticle energies.
For an SDI, we obtain

L(1+~. )(1+~")O'"Q.(j.j j.j.)
= (Qgvg —vgQg)(Q6va —v6sa)Gg~ ~

+(S6V.—VVS,) (Q.Vd —V.Sa) (—1)'+"+ Gg "&

—(Q~V 6 VgQ6) (Qg—Vd —VgSd)Gg ~, (24)

which vanishes in the degenerate limit.

III. NUMERICAL CALCULATIONS

1. Descriytion of the Calculations

The surface delta interaction has been used to calcu-
late the spectrum of single-closed-shell nuclei. We have
made the usual assumption of taking into account only
the interaction between the valence particles, protons
or neutrons, filling the incomplete shell. Two kinds of
calculations have been made.

(A) Exact shell-model calculations have been carried
out for nuclei having two particles or two holes outside
closed shells (Ni", Te'", Pb"', Pb'" Po'") and, in two
other cases, for nuclei having four and six neutrons
(Nj60-62)

(B) The Bogoliubov-Valatin canonical transforma-
tion followed by a diagonalization in the subspace of
two quasiparticles has been done for the following even
nuclei: Ni" "(Z= 28), Sn'" ' '(Z = 50), Pb"~"6(Z=82),
Xe"', Ba'", Ce'4' Nd'4'(cV= 82) and also for Pb'" and
Po'". Therefore, part (A) of this calculation can be used

as a test of the validity of the approximations used in
(B) for the same nuclei and the result of this comparison
can be extrapolated to draw some conclusion about
nuclei for which an exact diagonalization has not yet
been done, like the Sn isotopes for example. In the
calculation made in (B) some pairing properties, viz.
even-odd mass differences and the quasiparticle states
of odd nuclei, have been calculated on the basis of the
pure quasiparticle model. As was pointed out in Sec. II,
the u's and n's and the quasiparticle energies, and there-
fore the above pairing properties, are the same as those
calculated with a pairing interaction. However, our
results differ from those of Kisslinger and Sorensen
(KS)' in two respects:

(1) In their first calculation KS did not use a pure
pairing interaction but added a quadrupole force which,
treated in the lowest order, modifies the one-quasi-
particle energies. This effect is completely absent in our
work since the pairing part of a SDI is exactly a pairing
force. Nevertheless we think that this introduces only
minor differences with respect to the first KS calculation.

In their second paper KS used for the odd nuclei a
much more involved treatment, since they coupled the
one-quasiparticle states to the quadrupole "phonon" of
the even core. This method is outside the scope of our
work. A coupling between the one-quasiparticle states
and the three-quasiparticle states does exist. "We be-
lieved, however, that it is weaker for single-closed-shell
nuclei, in particular for the SDI.

(2) For all the nuclei we have used parameters slightly
different from KS, for example, the single-particle
energies were extracted from more recent theoretical
work or more recent experiments. In view of the simi-
larity of these results with those of KS our results will

be given for the sake of completeness but not discussed.
The surface delta interaction contains only a single

parameter, the strength of the interaction. This param-
eter can be adjusted by fitting the odd-even mass differ-
ences and the one-quasiparticle spectrum of odd nuclei,
and then the spectrum of even nuclei can be calculated.
However, for some cases we found it most convenient
to adjust the strength by fitting the energy of the first
2+ as in the lead isotopes and to look afterwards after
the other properties.

As was said in the Introduction, there have been
already several calculations on the single-closed-shell
nuclei using the quasiparticle model as a basis. One can
find in the literature detailed discussions concerning the
usefulness of this model for interpreting the experi-
mental results, e.g., ground-state spins of odd nuclei. In
the following treatment we will emphasize only what is
new in our calculations, what can be said about the
approximations which are used, what are the properties
of a surface delta interaction considered as an effective
interaction, what is the need of using more realistic
interactions which contain a radial and a spin depend-
ence. Except in a few cases we will not give references to
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TABLE I. Single-particle states, energies and strength of the SDI used in the calculations published here. The strength noted as SDIa
was used with a pure SDI. The one noted as SDIb was used in SDI minus pairing (see text). The last column on the right shows the
method used in determining the parameters from experiment.

Nuclei

Z=28, Ni

Z=50, Sn

Z=82, Pb

N=82

Pp210

Pb210

Single-particle
states

2p3/2
2', gr

2p1/2

2d 5/2

1gz/2

2(f3/2

1h11/2

2',
1&13/2
3p3/2
2 f6/s
3pl/2

1g?/2
245/2
2d 3/2

3$1/2
1h11/2
1hg/2

1hg/2
2fv/2
1213/2

2gg/2
1~11/2
1$15/2
3d3/2
4S1/2
2gz/2
3d3/2

Single-particle
energies
(MeV)

0
0.78
1.08
0
0.2
2.1
3.2
3.2
0—0.72—1.45-1.78—2.35
0
0.75
2.9
3.4
2.6
5.4
0
0.90
1.62

0
0.77
1.41
1.56
2.03
2.47
2.52

Source of
single-particle

energy

exp.

exp.

exp.

exp.

Strength
4'-G

0.48a

0.23a
0.414b

0.14a
(0.154 for

Pbsl6) s

0.2 a
0.28b

0.159a

0.092a

Method for determining
the strength

Qdd-even mass differences

Qdd-even mass differences
and odd nuclei

Best Gt for the 21+ in
all the isotopes

Qdd-even mass difference

Fit of the 21+

Fit of the 21+

& Arvieu et al. (Ref. 10).
~ Reference 11.

the experimental work (the reader is referred to Refs.
8 to 12).

The single-particle states used, the values of the
strength of the forces, and the way this strength has
been determined, are listed in Table I.

2. Comyarison Between the Exact Calculation and
the Tamm-Dancoff Approximation

(a) Ttoo Particle Problem-

In Fig. 1 are plotted the theoretical excitation energies
of the levels of spin 0+, 2+, 4+ up to 4 MeV in Te's',
Ni", and Pb"'. In the last case the 5—has also been
plotted. The Tamm-Dancoff calculation (Bogoliubov-
Valatin method plus diagonalization in the subspace of
two quasiparticles) is denoted as TD, and can be com-
pared to the exact calculation. It is seen that there is a
very good over-all agreement, especially for the lowest
levels and in particular for Te'" and Ni". However, for
the highest levels in general and for Pb"', the agreement
becomes poorer in absolute value. For example, for the
third excited 0+ in Pb"' there is a difference of 500 keV
between the two calculations. This is an upper limit but
differences of the order of 200 keV are frequent. This

disagreement is not neglected but it shows that a very
accurate fit of the experimental results by a Tamrn-
Dancoff calculation does not make very much sense for
the highest levels. More optimism seems justified for the
lowest states such as the ffrst excited 2+.

A similar study has been made for Pb and Po
and confirms the preceding conclusions (see Fig. 2), also
for states of high angular momentum and opposite
parity 5—,7—,9—.

(b) Polr aed Six Particles

In Fig. 3 are plotted the spectra of Ni", Ni", and
Ni" up to 3.5 MeV. Tamm-DancoG and exact calcula-
tions have also been performed in these cases. " It is
seen that again the 2i+ energy changes only slightly
when one goes from the exact to the approximate calcu-
lation, and that the first excited 4+ seems also qvite
well described. However, it does not seem to be possible
any more to set up a precise correspondance between
the highest states. Indeed large energy differences can

"Vfe are grateful to Dr. Edith Halbert and Dr. J. B. McGrory
of Qak Ridge National Laboratory for carrying out the exact
calculations for Ni" and Ni"
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FIG. 1. Spectrum of the SDI for two particles or two holes
outside closed shells. An exact diagonalization has been performed
as well as a BCS + Tamm-Dancoii approximation (noted as TD).
The 0+, 2+, 4+ MeV have been plotted up to 4 MeV. In Pb~'
the 5—has also been calculated. See Table I for the parameters
of these calculations.

exist. There is, for example, a 900-keV diGerence in Ni"
between the energy of the first excited 0+ in the two
calculations, and of 700 keV between the energies of the

FIG. 2. Same as Fig. 1 but for Pb ' and Pp . In that case 3—,
5—,7—,9—have been calculated and plotted as well as 0+,
2+, 4+, &+

second 2+. Moreover, there is an important change in

the number of levels. In Ni" there are 14 excited states
of spin 0+, 2+, or 4+ below 3.3 MeV in the exact
calculation, whereas the TDA gives only 9 levels. There-
fore, as was already found by the Argonne group, for
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2+ 4+— 0+ 4+—

FIG. 3. Spectrum of the SDI for
two, four, and six particles outside
closed shells in the Ni isotopes
from an exact diagonalization and
with the Tamm-Dancoff method.
The spectrum of Ni" has not been
calculated exactly. Note the vari-
ation in the number of levels
between 1.5 and 2.5 MeV when
one goes from the exact calculation
to the TD method.
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these nuclei, there seems to be an important effect of the
seniority four (or if one prefers, of the four quasi-
particles) in the region of the spectrum above the 2i+
and the 4i+. If the agreement is poor for certain levels,
the possibility that it would be better in some cases still
remains. For example the 2s+, 24+, 4s+, 4s+ have
energies which differ by the order of 200 keV from one
calculation to the other. It would then be necessary to
compare the wave function of these states to see whether
this correspondence has sense or not. This comparison
has not yet been made. It should be emphasized that the
Tamm-Danco6 method gives exact results in the limit
of degenerate subshells, and that on this basis, as was
said before, it is plausible that the coupling between
states which differ in the number of quasiparticles
should be weaker for the SDI in the nondegenerate case
than for other interactions. This argument leads us
to a conclusion which conhrms Argonne's: The Tamm-
Danco6 method has the greatest validity for the Grst
2+ or the first 4+, but one has to be very careful in
classifying higher states as two-quasiparticle (q.p.)
states. At this point one should remark that no attempt
has been made yet to justify the calculation of states of
high angular momentum and of negative parity, such as
5—,7—,9—on the basis of a two-q. p. model for more
than two particles. There is still a possibility for these
states of being well approximated in that way. The
interaction energy is weaker in odd-parity states since
there are fewer ways of forming such states out of the
available orbits.

3. Comparison with Experiment

Two kinds of calculation have been carried out in the
present study. Firstly a calculation with a pure delta
interaction. In several cases (8=28 and 82 nuclei) this
was found sufhcient to account for both the pairing
properties and the energies of the first 2+ and of some
other states. In the other cases (8=50, and 1V= 82) all

these properties could not be Qtted at the same time by
a pure SDI. When the gap was at the right place the
2+ was found to be too high. Therefore we have tried
to increase the quadrupole effect in a very simple way.
We subtracted from the SDI a pairing force, and ad-

justed the difference between the SDI strength and the
pairing strength so as to get the same pairing properties
as before. The strength of the SDI was chosen so as to
obtain the first 2+ at the right energy. This procedure
is admittedly somewhat arbitrary, but it is interesting
to see how much the strength of the SDI needs to be
changed to improve the Gt to the data. This percentage
can indeed be roughly viewed as a measure of all the
neglected e8ects: radial, range, spin exchange, tensor
effects, and core polarization. From the numerical point
of view this calculation is very simple. Once the Bogo-
liubov-Valatin canonical transformation has been per-
formed and the quasiparticle energies have been found,
the strength between quasiparticles is just taken as a

free parameter and several successive diagonalizations
for different strengths can be performed by keeping
constant the q.p. energies and the u's and e's and by
multiplying the other terms of the 2-q.p. matrix. This
procedure had of course to be done for each angular
momentum and the sensitivity of all the energy levels
to this calculation had to be investigated. The calcula-
tions with a pure SDI will be denoted either as SDI or
SDIa, the calculations with a surface 8 interaction minus
pairing will be denoted as SDIb.

Spectrum of Pb

2 — 4+—
2+—

2+~
4++~

4+, 2+—

Q+~
2+

2+
4+

2+
Q+

Q+-
Experiment

0+—
SDI

Exact

Q+-
SDI

Ta mm
Oancoff

0+—
T. F.

Exact

FIG. 4. A few levels of Pb" can be compared here with experi-
ment. The exact calculation with a pure SDI has been done (with
a strength adjusted to trt the 2i+ energy) and also the TD
approximation. The last column on the right shows the results by
True and Ford who have used a Gaussian interaction.

(a) Lead Isotopes

Because of the lack of a precise measurement of odd-
even mass differences throughout the lead isotopes we
have preferred to adjust the strength using only the
even isotopes.

First we studied the level scheme of Pb"' by means
of an exact calculation. We adjusted the strength of the
SDI to fit exactly the excitation energy of the 2i+.
When the other levels 0+, 2+, 4+, 5—were compared
to the experimental ones it was found that an excellent
agreement existed (Fig. 4), in fact, slightly better than
the one obtained by True and Ford4 (for the second 2+
for example). However, the SDI of the same strength
could not 6t the energy levels of Pb"' "' as well. In
order to get a fit for all the even lead isotopes with a
single SDI, we decreased slightly the strength of the
SDI from 0.154 to 0.140. The Gt which we have been
able to obtain in this way (Fig. 5) is quite reasonable,
the largest disagreement with experiment being of the
order of 150 keV. This agreement is therefore of the
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FIG. 5. Comparison with experiment of
some levels of the lead isotopes. For A &206,
the column noted SDI is the result of the
Tamm-Danco8 method. Dotted strips repre-
sent calculated two-quasiparticle energies.
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4+—4+2+—
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I
— 0+—
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9-

4+4+—
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0+" ":: 4+4+—

9-
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4+

9-
5-

0+,2+
4gwk"ol

0 — 0+—0+—
SDI exp.

206Pb

Q+—Q+
SDI exp.
2o4 Pb

0+ — 0+
SDI exp.
202 pb

Q+ -- — — Q+
SDI exp.

2oop b

same order as the one obtained with the True and Ford
interaction. ' "&b~

Next, the spectra of the odd lead isotopes were calcu-
lated on the basis of one-quasiparticle excitations
(Fig. 6). Our results are not very different from those of
Kisslinger and Sorensen, who had already obtained a
very good Ijt for the states pg/s ps/2 fs/2 lies/s with a
lower strength for the pairing interaction (4mG=0. 111
instead of 0.140).

Our wave function of the ground state of Pb"' can
be also compared to the wave function derived by
Mukherj ee and Cohen" from stripping experiments
(Table II). These authors have stated that the actual
coniguration mixing in the ground state was much
larger than expected from the calculation by True and
Ford. It turns out that our wave function agrees much
better with experiment than the True and Ford wave
function, especially when the strength is adjusted to it
the energy levels of Pb"' (4a.G=0.154). This results

2.0-

7/2-

O)f
Ch

Theoretical

9/2
O 7/2
+ 13/2+
X 1/2

3/2
5/2

1.5-
7/2-

from the fact that the SDI has a much larger coherence
in its nondiagonal elements.

It could be argued that the agreement we have for
these isotopes, and especially for Pb"', is not very
significant since the states in these isotopes are not
really collective ones. This argument has indeed some

truth in it, since many states are only very slightly
affected by the interaction. Therefore to 6nd good agree-
ment for these states is only a test of the goodness of the
pure shell model. This is the case for the 2s+, 2s+, 4~+,

ALE D. Absolute value of the amplitude of the two-hole
configurations in Pb20'. The column noted as experiment is taken
from Ref. 19, the one noted as Gaussian gives theoretical ampli-
tudes extracted from Ref . 4. The last two columns give these
amplitudes in the present work with a pure SDI and two diferent
strengths. The last line gives the overlap of the theoretical wave
function with the experimental one.

I3/2- 0
1.0- +

I3/2-

7/2-

7/2-

Two-hole
configuration Kxpt.

SDI SDI
Gaussian (4s.G=0.154) (4sG=0.140)

0.5-
3/2-

I3/2-

13/2-

(PI I2)

(f~/s) '
(P3g2)

(63)2)
(f7/2)

~
Overlap

0.730
0.444
0.345
0.345
0.173

0.865
0.308
0.376
0.122

0.941

0.741
0.474
0.382
0.333
0.185
0.997

0.794
0.437
0.256
0.295
0.161
0.992

"' P. Mukherjee and B. Cohen, Phys. Rev. 127, 1284 (1962).

5/2--

I/2-
LI

205

3/2-
X

I/2-s/2-~
203 201

I/2-

199 A

FIG. 6. Odd isotopes of Pb. One-quasiparticle levels calculated
with a SDI. The results are in fact the same as those of a pairing
force with same strength, but for which one neglects the self-
energies.
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Exp. even-odd moss diff.

--- Theor. even-odd mass diff.

X 5/2-
0 I/2-

3/2-—Theor, level

l.5—

X

I.O—

0.5—
3/2-

5/2-— 3/2-
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5/2- x
—s/2 —~ s/2-~

59 6l

x
t/2-
5/2-

65
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I/2-
65

FIG. 7. Odd isotopes and odd-even mass differences in Nj.
One-quasiparticle levels calculated with a SDI. The energies of
the 3s1/2, 2d3~2, 1611/2 are plotted with the left scale. The odd-even
mass differences LRef. 10(a)] are plotted above with error bars.
The corresponding scale is on the right.

"R.K. Mohindra and D. M. Van Patter, Phys. Rev. 139, 274
(1965).

4s+ states. The calculation attains its full significance
when one considers the states which are most strongly
affected by the residual interaction. We must, of course,
not consider here the 2+ since its energy was artificially
fitted. However the 0+ ground state and the 0+ first
excited states are both strongly affected by the inter-
action. We can then consider it very encouraging that
the excitation energy of the first-excited 0+ is in agree-
ment with experiment and also that the excitation
energy of weak collective states, e.g. 5—,with respect
to a strongly perturbed ground state is also in good
agreement.

(b) Nicket Isotopes

For the Ni isotopes we followed the usual procedure
of fixing the strength by 6tting odd-even mass differ-
ences and odd nuclei. We have been able to obtain good
results for the spectra of the odd isotopes of Ni (Fig. 7).
It is then extremely satisfactory to see that the energies
of the first 2+ and the erst 4+ compare also very well
with experiment" whether calculated exactly or simply
by the Tamm-Dancoff approximation (Fig. 3). (We
have not, however, calculated the exact results for Ni".)
It is not possible here to get an accurate description of
the higher 0+, 2+, 4+ (or even 3+) states. The
Tamm-Dancoff method gives results in poor agreement
with the exact calculation and the distribution of levels,

for example in Ni", does not agree with experiment. "
Other calculations have been done on the Ni isotopes' "
with much more involved interactions. These calcula-
tions are in some ways more successful than ours or the
one of Ref. 10(c). A very good accuracy has been ob-
tained for some properties like the states of "seniority"
0 or 2 or the spectrum of Ni", but the errors can be very
big also for the states of seniority four. This shows that
the problem of the higher states of Ni isotopes is still
open and probably that the core excitations should be
included in some way.

To conclude this part we must say that the interaction
between the quasiparticles coupled to 2+ has in this
case a very large effect on the energy of the first 2+. In
Ni", for example, the lowest 2-q.p. energy is 2.6 MeV,
first-order perturbation theory gives a first 2+ at
2.3 MeV, the diagonalization lowers this state down to
1.36 MeV (the experimental energy is 1.33). A conven-
tional 8 function acting throughout the nuclear volume
presumably gives a much higher energy, as was already
shown in Ref. 1 for some idealized configurations.

l.5—
X
+
0

Exp. even-odd mass diff
Theor. even-odd mass diff.
Theor. level
3/2+
I I /2-
I/2+

1.0—
I I/2-
3/2+

0.5 — x

+
I I/2-
3/2+

I I /2-
3/2+

I/2+

I /2+

I/2+

I I/2-, 3/2+
I/2+ I/2+ I/2t. I/2+ & II/2-

l3/2+
II/2- „ II/2-
I3/2+ I3/2+

I I3 I I5 I I7 I I 9 l2 I l23 I25 A

Fn. 8. Odd isotopes of Sn. See captions of
Figs. 6 and 7 for the notations.

s' N. Auerbach, Nucl. Phys. 76, 321 (1966).

(c) 2'itt Isotopes

The strength here has been adjusted in the same
manner as in the preceding case. The single-particle
energies being taken from a previous calculation, ' ~'&

we have fitted the odd-even mass diBerences and the
one-quasiparticle states d3~2, h~~~2, s~~2 in the odd iso-
topes (Fig. 8). However, the 2i+ turns out to be too
high in the subsequent calculation of the even isotopes.
Indeed the maximum error can be as big as 1 MeV
)Fig. 9(a), (b), (c)g. It turns out that some other states
like 4+, 5—,7—lie also too high compared with experi-
ment. The situation is thus very different from that in
the nickel isotopes. Here the e6ect of the interaction
between quasiparticles is much smaller. The following
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I'IG. 9.Experimental and theoretical spectra in tin isotopes. The
Tamm-Dancoff method has been used throughout these cases. In
the calculation denoted as SDIa a pure surface delta interaction
has been used. In the calculation denoted as SDIb the pairing part
of the interaction has been kept constant and the interaction
between quasiparticles has been increased by about 70% (see
Table I) to Iit the 2&+ energy.
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numbers for Sn"' are very characteristic: the lowest
two-q. p. energy is around 2.86 MeV in this nucleus.
First-order perturbation theory brings a 2+ at 2.70
MeV only, and the diagonalization of the residual inter-
action lowers the 2+ to 2.13 MeV. (Experimentally,
it is 1.21.)

The calculation with the interaction SDI minus pair-
ing allows, of course, much more reasonable results, but
it is necessary to increase the strength of the SDI by
70% to lower sufficiently the 2+.This procedure lowers
simultaneously the whole spectrum but the 2i+ is by
far the most sensitive of all. In Sn"' when the 2i+ is
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--- Theor. even-odd mass diff.—Theor. level
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II Exp. (spin unknown)
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certainly be reduced by using a finite-range interaction
as was done by several authors. However, since they
have not succeeded in getting the energy of the 2+ with
good accuracy, and since they have been obliged to use
anomalous values of the triplet odd interaction to im-
prove the fit, it can be said that this assumption hides
also a large part of core excitation.
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FIQ, 10. Qdd-even mass differences and odd nuclei for X=82
nuclei. See Figs. 6 and 7 for explanations of the calculation.

lowered by 960 keV, the 4i+ is lowered by 400 keV, the
first-excited 0+ by 160 keV, the 5i—by 460 keV, the
7—by 260 keV (in other nuclei the last figures can be
smaller). Then a more reasonable agreement with experi-
ment is obtained for all these states )Fig. 9(b)$.

As mentioned before, increase of the SDI by 70%
seems to account for all the effects which have not
been included (e.g. , core excitations). This figure could

(d) Isotorres of /V=SZ

In this case the SDI gives very similar results to those
of the Sn isotopes. This was also the case for the calcu-
lations with a Gaussian interaction. "Once the strength
of the interaction has been determined by Gtting the
odd-even mass differences (Fig. 10) the 2+ is found 200
to 300 keV higher than experiment, which may appear
as a more acceptable result LFig. 11(a), (b)j.The per-
centage of increase of the strength of the SDI is then
only 38'Po. Here also it was found by Rho that a larger
value of the triplet odd-even singlet ratio had to be
introduced (larger than 1) to account for the 2i+
energy.

(e) SPectrum of Pb'" and Po"'

Only a few experimental levels are known in these
two nuclei: a 2+, 4+, 6+ in both of them and a 5—in
Po'". There are essentially two main points to be noted
(from Fig. 12). First the impossibility of fitting the
excitation energy of both Po'" and Pb"' with the same
strength. Pb"' and Po'" require a very similar strength
for fitting the 2i+ energy (with, however, different
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FIG. 11.Experimental and theoretical spectra in even isotones of X=82. The notations are the same as in Fig. 9.
Here it has been necessary to increase the strength by about 35%. (See Table I.)
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numbers of single-particle states), but Pb'" needs a
much smaller strength. This is illustrated in Table III.
This illustrates the fact that the interaction is really an
effective interaction or at least that a more subtle de-
pendence of the interaction with respect to the single-
particle states is needed. The second fact which supports
this conclusion is the only fair 6t of the 4+ and the 6+
in both of these nuclei, compared to the almost perfect
6t obtained in Pb"'. Indeed in Pb'" the 4+ and the 6+
are, respectively, 200 keV and 250 keV too low. In Pb"'
the largest deviations with respect to the experiment
are only a few tenths of keV. These deviations are, how-
ever, very reasonable. Note also that the 5—in Po2'0

is accurately described.

+0.154
+0.159
+0.092

Experimental
energy

Pb206

0.803
0.834
0.580
0.803

Po210

1.13
1.18
0.53
1.18

Pb210

1.75
1.80
0.794
0.794

TABLE III. Excitation energy of the first 2+ for several
strengths of the interaction in an exact two-particles (or two-
holes) shell-model calculation. Each strength fits the energy of the
2&+ in one of these nuclei. Note that Po"' and Pb~' require a
similar strength but that Pb" needs a much smaller one. All the
energies are in Me&.
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(5

6+
4+

typical 6nite-range effect. The monopole component is
much more important with respect to the other com-
ponents as far as the range of the interaction increases.

In particular, the diagonal elements of the interaction
are much larger. In Sn"', for example, the lowest
two-q. p. energy is 2.80 for a SDI, 2.60 for a Gaussian.
The first-order perturbation theory lowers the state
down to 1.46 MeV for a SDI, to 1.2 MeV for a Gaussian.
(The diagonalization of the matrix lowers the state
further, 0.52 MeV in the erst case, but to —3 MeV
in the second case.) It turns out that these states are
mainly spurious. (The spurious state is an exact
eigenstate of the two-q. p. matrix at zero energy in

TABLE IV. Lower excitation energies of Pb ' and Sn~, The case
of Pb" is an exact shell-model calculation with the SDI. The first
column includes 7 single-particle (s.p.) states; in the second one,
three of the s.p. states have been neglected. The case of Sn"' is a
Tamm-Dancoff calculation with 8 or 5 single-particle states. In
each case the strength of the interaction has been modified to get,
in the first case the same 2&+, in the second one the same quasi-
particle energies (these have not been listed here).
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FIG. 12. Spectrum of two particles outside Pb' with a SDI,
and comparison with experiment. An exact shell-model calculation
has been performed here.

4. Comparison with Previous Calculations

In Fig. 13 are plotted the level spectra of Pb ",Sn',
Ce'", and Ni". The results of a SDI are compared with
some of those of previous calculations trespectively,
Refs. 10(b), 10(a), 11, 10(c)$ in which a Gaussian inter-
action was used. For Sn'" and Ce"' the results are those
for SDI minus pairing. One can note the big similarity
between the two calculations. The most notable diGer-
ence is that the 6rst-excited 0+ lies consistently much
lower when a Gaussian is used. The fact is particularly
striking in Sn'" and in Ni" but not so important in
Pb"'. (The calculation of the 0+ for the 1V=82 isotones,
e.g. , Ce'4', was not done in Ref. 11.) This seems to be a
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FIG. 13. Comparison of the SDI
with a Gaussian interaction (see also
Fig. 4) and with experiment for each
region studied. The calculations noted
as Gaussian are extracted from Ref.
10(a) for Sn'I, 10(b) for Pb", 10(c)
for Ni' from Ref. 11 for Ce'~.
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the degenerate case, as pointed out in the first part. ) A
similar explanation can be used for the differences be-
tween the physical first 0+ states.

However, despite the fact that a finite-range inter-
action accounts better for the first 0+ excited states in
Sn isotopes, for example, this systematic effect does not
necessarily support the assumption of such a finite-
range interaction. Our previous study shows that these
0+ states are poorly given by the Tamm-Dancoff
approximation.

From these results it can be deduced that none of the
interaction used can be excluded, if one allows the sub-

traction of a certain amount of pairing to the SDI.
More accurate calculations and a more systematic use
of the wave function, as in Ref. 22, have to be made.

S. Renorxnalization of the Strength

To complete this discussion we will present the results
of a calculation which shows that in two cases, Sn'"
and Pb'", an increase in the strength of the interaction

2' N. K.. Glendenning and M. Peneroni, Phys. Letters 14, 228
(1964); R. Arvieu and E. Salusti, Nucl. Phys. 66, 305 (1965).
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can simulate very accurately for most of the levels an
increase in the number of single-particle states one could
take into account (Table IV). These calculations were
not only done for the two nuclei quoted above, but for
all the Sn isotopes with the same results (in all cases
with a pure SDI). For Sn the following states were
added to the one plotted in Table I, with the following
single-particle energies:

e(1gg(g) =—3.97, g(1hgig) =+8.23, g(2'�(g)=+7.74,

deduced from the Nilsson spectrum. In the case of Pb'"
the states 4s~~2, 2g7/2 and 3d3~2 were subtracted from
those plotted in Table I.The results from Table IV show
then that the spectrum of lowest states, once con-
veniently normalized, depends only on the few single-
particle states nearest to the Fermi surface for a SDI
in the two-quasiparticle formalism. %ould these results
still hold in a more exact calculation including core
excitations and the neutron-proton interaction? This is a
very interesting question, the answer to which would give
much information concerning the effective interaction.

IV. CONCLUSIONS

The SDI has been used to calculate the spectra of
nuclei which can be treated in terms of identical particle
configurations like the single-closed-shell nuclei. The
spectra have been calculated by the BCS+Tamm-
Dancoff method, but in some cases an exact shell-model
diagonalization has also been performed. The compari-
son between the two sets shows that the approximation
method works quite well for the two-particle case. How-
ever, for more than two particles outside closed shells,
the approximation works well for the 2i+ or the 4i+
but not so well for the other states as already pointed

out. ' Therefore for the following the emphasis should
be put more on the 2i+ and the 4i+ and therefore on
the ability of the interaction to fit both the even-odd
mass differences and the energy of these states. This has
been seen possible for Ni and Pb isotopes, but not for
Sn or for the isotopes of X=82. It shows that in the
nuclei which are well described by few configurations of
the shell model the SDI is able to give a similar (or even
better) agreement with experiment than other inter-
actions. In Sn and in the .7=82 nuclei it confirms that
some more studies have to be made concerning core
excitation. In Ni isotopes the agreement for the 2i+
energy is quite surprising. Indeed it has been seen that,
contrary to the case of the Pb isotopes (for which, how-

ever, an exact calculation has still to be done), the
highest states are poorly fitted even by a very com-
plicated interaction. " Some core excitation is needed
therefore and it might also have been expected that
this core excitation be needed to explain also the
first 2+. It seems that the SDI acts in a particular
coherent way for this set of —,'—,—,

' —,2 —orbitals,
much more coherently than for the set —,'+, gg+,
11/2 —in the Sn isotopes. In the last cases it seems that
finite-range interactions give slightly better agreement.
It is hoped that the SDI can be used in the future in
shell-model calculations. It can serve at least as an
excellent tool to understand simply the geometrical and
most coherent effects of the interaction. Since in some
cases an exact solution is easily found' it can also serve
to test new approximation methods of the shell model
which would replace an extended diagonalization.
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