
OBSERVATION OF M ICROWAVE SCATTERING

where P, is the scattered power, I';„, the incident
power, and no the plasma density. The 0. thus cal-
culated is in the order of 10 '4 cm', i.e., about 10'
times larger than 0-0 6.7X10 cm', the Thomson
cross section. As is known, the latter is an upper limit
for the cross section of electromagnetic scattering from
an equilibrium plasma.

This large value of r of course results from the
presence of a strong driving term (the dc voltage be-
tween the electrodes) which continuously replenishes the
bump in the ion distribution function, and thus pro-

duces a high level of the excitation in the unstable modes.
In addition, it may be observed that the geometry of

the setup favors the detection of strong scattered sig-
nals, because the optical ray-path corresponds to the
whole length of the plasma.

I wish to thank Professor B.Brunelli for his constant
interest in the present experiment, and Dr. F. Kngel-
mann and Professor K. Levi for helpful discussions
and critical reading of the manuscript. I am especially
indebted to Dr. F. Magistrelli for her encouragement
and many contributions.
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Ion-ion repulsion in a liquid metal is regarded as the principal factor determining the ionic arrangement.
This interaction is idealized in a hard-sphere model; the known solution of the Percus-Yevick equation
for this model gives a simple closed form for a(E) (the liquid structure factor) which depends only on the
effective packing density of the Quid. This fact enables us to make an estimate for the resistivities of most
liquid metals for which model potentials are available. Agreement with experiment is generally good, particu-
larly when the potential is known to be accurate. The sensitivity of the resistivity to the depth of the model
potential well is indicated.

I. INTRODUCTION

ECENTI.Y, considerable interest has focused on
liquid metals as a possible source of information

on the interactions within their solid counterparts.
Crystalline metals have obvious simplicity of structure,
with considerable simplification yielded in some prob-
lems by the use of group theory. Yet the same structural
simplicity often gives rise to severe problems in de-
ducing the ion-electron interactions within a solid. One
has only to reQect on the consequences of umklapp con-
tributions to scattering processes to realize that invert-
ing, say, the electrical resistivity to give the electron-
photon interaction or the effective electron-ion po-
tential is a formidable problem.

At first sight the irregular arrangement of ions in the
liquid would seem to increase these di%.culties. This is
not so, however, since the liquid structure factor a(E),
which is needed in the determination of transport
properties, is directly observed in x-ray and neutron-
diffraction experiments. If a(K) is known, some proper-
ties of the condensed state may be elucidated. For

*Supported by the Advanced Research Projects Agency through
the Materials Science Center at Cornell University, and by the
Directorate of Chemical Sciences, U. S. Air Force OfBce of
Scientilc Research.

example, Ziman, ' and Bradley et cl.' deduced an average
band gap for some metals from a knowledge of the re-
sistivities in the molten state. The Ziman theory of
transport properties for liquid metals is remarkably
successful when both the interference function and the
electron-ion interaction are known in some detail. The
success of the theory appears to rest on two facts. First,
all structural effects are separated into the interference
function, which is taken from experiment. ' Second, the
Born approximation on which the theory is based is
accurate if calculations are carried out consistently with
free-electron-like pseudo wave functions. These wave
functions are plane waves orthogonalized to the core
states, and satisfy a wave equation where the effective
ion-electron potential is small enough to be considered
a perturbation. Since the matrix element V(K) is further
reduced by the factor fa(K) j'" in the evaluation of the
momentum-transfer integral (see below), the scattering

~ J. M. Ziman, Phil. Mag. 6, 1013 (1961).' C. C. Bradley, T. E. Faber, E. G. Wilson, and J. M. Ziman,
Phil. Mag. 7, 865 (1962).

s It has been pointed out by G. Baym (Phys. Rev. 135, A1691
(1964)g that a similar approach to transport properties can be used
in a solid. At present the structure factors for solid metals are not
suQiciently well determined.
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problem is brought into the region of validity of the
Born approximation, namely a(E)s'(E)«EP.

Model potentials for ion-electron interaction, intro-
duced by Cohen4 for the alkali metals, have recently
been reined and extended by Heine and Abarenkov. '
Applicaton of these potentials' ~ to the evaluation of
liquid-metal resistivities has indicated that the inter-
ference functions are not always known with sufhcient
accuracy. In computing the transport integral, a(E) is
required in the range 0&aC&2k + and thus includes the
forward-scattering region in which experimental difB-
culties are encountered.

The interference function enters the formal theory of
electrical resistance as follows. Consider a metal with
X ions in a volume 0, or number density n=E/Q. In
the liquid state all scattering is supposed to be confined
to a spherical Fermi-energy shell. In the relaxation time
approximation the solution of the Boltzmann equation
for the relaxation time yields'

1/r p =spn27r d8 sm8(1 —cos8)o (kg&8),
0

where o (k~,8) is the differential scattering cross section
per scattering center and vg is the carrier velocity at the
Fermi surface, vz ——Ikey/m . Ziman's theory uses the
Born approximation to determine 0-. This in turn
requires the square of the matrix element, in the plane-
wave representation, of the model or pseudopotential
scattering the electrons:

Here

and

I &kl I'lk') I-'= I(kl 2 ~(r—r'-) Ik') I-'
iona

=Pa(E)v'(E) .
K=k' —k

u(I")=N 'I P exp(sK—r;,a) I,.'
iona

The resistivity p may now be calculated from

1/p =Z(ne'/sn*) rp,

where Z is the number of valence electrons per atom.
The purpose of this paper is to point out that for the

calculation of resistivities, the known solution of a

' M. H. Cohen, J. Phys. Radium 23, 643 (1962).' V. Heine and I. Abrenkov, Phil. Mag. 9, 451 (1964).
II Lorna J. Sundstrom, Phil. Mag. 11, 657 (1965).

A. 0. E. Animalu, Phil. Mag. 11, 379 (1965).
S„.N. I".Mott and H. Jones, The Theory of the Properties of Metals

and Alloys (Oxford University Press, New York, 1936), p. 262.

is the liquid structure factor, depending only on the
ionic arrangement. Since the scattering occurs on the
(spherical) Fermi surface, we have E= 2k p sin(8/2), and
hence

( me )2 ~ 2ks'

~aZ (E)e(Z). (1)
rsp (2srh9 kp' p
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Fro. 1. Structure factor u(E) for a fluid of hard spheres accord-
ing to the Percus-Yevick equation. The dotted, dashed and full
lines are appropriate to packing densities of 30, 40, and 50%.

simple model Quid provides a liquid structure factor of
suScient accuracy (Sec. II). In Sec. III this result is
used in calculations with available model potentials.
The eGects of changes in the liquid structure factor and
in the model potential are indicated. For sodium and
rubidium, we also compare the temperature dependence
of the resistivity predicted by the model potentials.

9 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
J. K. Percus, Phys. Rev. Letters 8, 462 (1962).

'0 G. S. Rushbrooke, J. Chem. Phys. 38, 1262 (1963).
n A. A. Broyles, S. U. Chung, and H. L. Sahlin, J. Chem. Phys.

37, 2462 (1962).
"M. S. Wertheim, Phys. Rev. Letters 10, 321 (1963).
» E. Thiele, .J. Chem. Phys. 39, 474 (1963)."L.S. Ornstein and F. Zernike, Proc. Akad. Sci. (Amsterdam)

17, 793 (1914).
I' This was pointed out to one of the authors by Professor M. H.

Cohen.

11. THE LIQUID STRUCTURE FACTOR

Of the existing theories of the liquid state, the theory
of Percus and Yevick' has proved to be the most suc-
cessful, both on the grounds of self-consistency between
the pressure and compressibility equation of state for
hard spheres, "and in the agreement with machine cal-
culations for Lennard-Jones fluids. " The usefulness of
the Percus-Yevick integral equation for the pair dis-
tribution function is the greater since a rigorous solu-
tion, for the special case of a Quid of hard spheres, has
been given independently by %ertheimI2 and by
Thiele. "Both the methods of these authors permit the
liquid structure factor for this model Quid to be ob-
tained directly. The result (given below) follows im-
mediately from Wertheim's Eqs. (2), (4), and (5) and
the definition of the direct correlation function. "
Alternatively, '5 elementary manipulation of Thiele's
Eq. (10) from one-dimensional Laplace transform to
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Fro. 3. X-ray-diffraction data for indium (Ref. 17) compared
with Percus- Yevick theory g =0.45.

three-dimensional Fourier transform, with the use of
his Eq. (2), yields the same result, namely

a(Ea) = (1—nc(Eo)} ', (3)

The parameters a, P, and y are functions of a packing-
density parameter p, the fraction of total Quid volume
occupied by the spheres:

ri = (~/6)no',
n= (1+2')'/(1 —g)4

e=-6~(1+v'2)'/(1-. )',
y = (1/2) rf (1+2')'/(1 —ri)'

The evaluation of c(Eo) is immediate so that the struc-
ture factor for a Quid of hard spheres is expressed in
terms of elementary functions.

This structure factor is shown in Fig. 1 for three
densities, where 30, 40 and 50% of the volume is
occupied by the hard spheres. Although the Percus-
Yevick equation shows no singularities for p(i, the
region beyond z=~/3%2=0. 74 is unphysical, since the
Quid then has a packing density greater than that of
the close-packed solid.

In Figs. 2 L(a)—(c)$ the theory is compared with the
experimental data of Gingrich and Heaton" for the
alkali metals, and in Figs. 3 and 4 with data for indium
due to Ocken."It is apparent that up to and including
the major di8raction peak, the structure factor is well
reproduced by the model Quid. "More remarkable is"¹S. Gingrich and LeRoy Heaton, J. Chem. Phys. 34, 873
(1961)."H. Ocken (private communication).' It is encouraging to note that the Rb data, considered by
Gingrich and Heaton to be the most accurate, is in best agreement
with the theory.

where 0 is the hard-sphere diameter and the direct corre-
lation function in momentum space is given by

sins E0.
c(Eo)=—4so' ds s' (n+Ps+ys') . (4)

p sEO

0 In, l70oC, cr =2.90K

r l2b

O

I I
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FIG. 4. The indium data of Fig. 5 compared with the theory
for q =0.47. Slightly better agreement is apparent.

'9 K. Furukawa, Rept. Progr. Phys. 25, 395 (1962).~ Two semi-metallic elements, Se and Te, will not be considered
here because there is evidence (see Ref. 19) for the formation of
rings or chains in their liquid state.

the fact that in this model the alkali metals are seen
to be of essentially the same packing density, or that
they are simply scaled versions of each other. With
regard to other liquid metals, we have made rough com-
parisons of the hard-sphere fluid a(E) with all the data
reviewed by Furukawa. "There is often lack of agree-
ment between the various experiments, but in all the
metals we shall consider' it is possible to obtain a good
representation of the liquid structure by choosing a
packing density of between 40 and 50%%u~. Where no
data exist, namely, for Be, Mg, Ca, Ba, Si, and As, we
shall still assume this to be true. For the polyvalent
metals the resistivity is not highly sensitive to variations
in a(E), while for the alkali metals rather accurate data
is available, which further is well 6tted by the theory.
These two circumstances make it possible for us to com-
pare the resistivities predicted by several model po-
tentials for the ion-electron interaction in the metallic
state.

Returning to the interpretation of the rather sur-
prising agreement between experimental liquid struc-
ture and what amounts to the simplest nontrivial model
Quid, we must conclude that the arrangement of ions in
liquid metals can be taken to be determined largely by
the ion-ion repulsions. For short-range correlations,
corresponding to larger momentum transfers in scatter-
ing, the details of the ion-ion interaction become im-
portant, as can be seen by the progressively greater
deviation between theory and experiment after the 6rst
peak. Concerning the "hard" cores, we know that they
correspond to the combined e8ect of the repulsion due
to overlap of core wavefunctions, and the ion-ion
Coulomb repulsion. The latter is screened by the Fermi
gas of electrons. Because of the sharpness of the Fermi
surface, however, the screening is not complete and
there is a long-range oscillatory component in the ion-
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ion interaction, as discussed by Johnson, Hutchinson
and March. "These authors showed that the magnitude
of this interaction is of the order of the thermal kinetic
energy of the ions, so that its effect on the structure of
the Quid is small compared to that of the short-range
repulsion, which is of the order of rydbergs.

For long wavelengths (small momentum transfer)
the structure factor is dificult to measure by diGraction
experiments, but the limit is known thermodynami-
cally: a(0)=mkTXr, where X& is the isothermal com-
pressibility. Measurements of Xp are available for
sodium, "giving ekTXp=0.024 at 1.00'C. The theoreti-
cal hard-sphere value is readily found from Eqs. (3),
(4), and (5):

(6)

For g=0.45, which is our 6t to the sodium data,
a(0) =0.025. We can conclude that in this model the
net contribution to the compressibility from the ion-ion
oscillatory interaction and from the electron gas is
surprisingly small in sodium. This is made the basis of
the temperature-dependence calculations for sodium in
Sec. III. The situation in the polyvalent metals (corre-
sponding to much higher electron densities) is somewhat
different. For example, lead at 327'C has Nk TXr=0.0086
using the compressibility value of Gordon" (implying
a value rt=0.56) while the neutron-diffraction data of
Sharrah et al.'4 is better described by a curve with
p=0.45. The resistivity of the polyvalent metals is not
sensitive to the long-wavelength region (E 0) of the
liquid structure factor and the discrepancy here intro-
duces negligible error.

IIL MODEL POTENTIALS AND LIQUID-
METAL RESISTIVITIES

We now turn to the matrix element s(E) appearing
in the integrand of Eq. (2). As discussed by Ziman' and
others' what we require is the Fourier transform of the
total effective electron-ion interaction (including screen-
ing by the conduction electrons) for scattering of elec-
trons on the Fermi surface. It is still an extremely diK-
cult problem to calculate this quantity from first princi-
ples with any degree of precision. Consequently, the
potential is generally, and conveniently, presented in a
model form which includes in a simple parametric way
all the salient features dictated by the physics of the
situation. Thus, in the quantum defect method of
Ham, '5 and Brooks and Ham '6 information on the form

~ M. D. Johnson, P. Hutchinson and N. H. March, Proc. Roy.
Soc. (London) A282, 283 (1964).

n LsqNQ Metals Hastdbook LSodium (NaK) Supplement) (U. S.
OfBce of Naval Research in cooperation with the Atomic Energy
Commission, Washington, D. C., 1955).

~ R. B. Gordon, Acta Met. 7, 1 (1959).~ P. C. Sharrah, J. I. Petz, and R. F. Kruh, J. Chem. Phys. 32,
241 (1960).

~' F. S. Ham, Solid State Phys. 1, 127 (1955).
s' H. Brooks and F. S. Ham, Phys. Rev. 112, 344 (1958).

of the potential in the solid is obtained from spectro-
scopic data pertinent to the free atom. Themethod
evolved from the observation of Kuhn and van Vleck"
that all the information necessary for constructing the
potential in a metal is contained in the logarithmic de-
rivative of the radial wave function at the ion core. This
quantity is closely connected with the phase shifts
associated with the core and can also be related to the
quantum defects in the Ritz energy formula which are
determined from the spectroscopic energy levels. Heine
and Abarenkov's approach is not dissimilar. The
apparent cancellation of the potential in the core space
which results from orthogonalizing the conduction-
electron wave function to the metallic-core functions is
replaced by a sequence of square wells (the pseudo wave
functions now being plane-wave-like). Each well is
labeled by an index I appropriate to the s,p, etc., shells
of the core. Its strength as a function of energy is de-
termined again by matching the first of its own level

system to the observed levels of the free atom.
The over-all success of these methods depends to a

large extent on the accuracy of the extrapolation and
the choice of the core radius. For a single metal, Al, the
possible errors were mostly eradicated by a further re-
finement imposed by the requirement that the model
potential c(E) pass through points on the curve deter-
mined by Fermi-surface studies. " For this particular
case the resistivity of the liquid metal given by Eq. (2)
Lusing the experimental a(lt. )) was in good agreement
with experiment. "Heine and Abarenkov's model cal-
culations of c(E) gave reasonable agreement in Al, as
they did in the alkali metals and Zn, Hg, Tl, Pb, and
Bi.6 In some cases, the discrepancies were put down by
Sundstrom to be due to experimental uncertainties in
tt(K) particularly in the near-forward scattering region
Lsee Fig. 2(b)].

In its original formulation, Heine and Abarenkov s
model potential incorporated linear first-order screening
of the bare electron-ion potential. A correction is made
for exchange in Sham's'~ modification of Hubbard's
approximation. More recently Animalu' has included
nonlocal dielectric screening of the model potential and
has undertaken similar calculations of the resistivity of
the liquid metals. For polyvalent metals there appears
to be a slight improvement over Sundstrom's values,
but the conclusions about the uncertainties in a(E)
remain.

We have evaluated the resistivity of the liquid metals
listed in Table I with the Heine-Abarenkov potentials"

"T.S. Kuhn and I. S. Van Vleck, Phys. Rev. 79, 382 (1950).
~8 N. W. Ashcroft and Lorna J. Guild, Phys. Letters 14, 23

(1965).
re L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).
30 These are taken from Ref. 6, Table II. Although referred to

by Sundstrom and by us as Heine-Abarenkov potentials, they
were calculated by Animalu and Heine. Local screening was em-
ployed.
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TABLE I. Comparison of liquid-metal resistivities: Twenty-three liquid metals are considered. Column 2 gives the temperatures
(in 'C) for which the calculations apply. The next seven columns are resistivities in pn cm. Here p, so=the experimental resistivity at the
temperature indicated, ps=p LSundstrom (Ref. 6) with Vnx and the experimental g(X)g, px=p I

Animalu (Refs. 7 and 31) with Vases
and the experimental a(E)j, pnz=p LV&x with the theoretical a(1C), v=0.451, pnzz=p LVrrsa with the theoretical a(K), v=0.45$.
Azz and A&xi show the change in resistivity produced by a change in the theoretical a(E'). For the alkalis the change shown is for s
increased from 0.45 to 0.46. In the polyvalent metals the change corresponds to q increasing to 0.50. Column 10 lists the hard core-radii
(in atomic units) calculated using the known number density of the liquid and assuming a packing density of 45%. Column 11 lists the
Heine-Abarenkov model potential radius (Ref. 31), and columns 12 and 13 give, respectively, the well depth Ao (a.u. ) and the change
AA (a.u.) which will bring the HA-predicted resistivity into agreement with experiment.

Meta

Ll
Na
K
Rb
Cs
Be
Mg
Ca
Ba
Zn
Cd
Hg
Al
Ga
In
Tl
Si
Ge
Sn
Pb
As
Sb
Bl

l Temp.

180
100
65
40
30

1284
650
851
710
420
330—20
660
30

156
303

1410
937
410
400
817
640
300

pexpt

25
9.6

13.0
22.0
36.0

~ ~ ~

27.4
~ ~ ~

~134
37.4
33.7
91
24.2
25.8
33.1
73.1

~71
~73

48
95

~ ~ 0

113.5
128

p8

17.4
9.4

31.7
13.9
12.7

pA

24.7
7.9

22.9
10.2
9.7

~ ~ ~

77.2
24.5 26.7

~ ~ ~

37.1

~ ~ ~

58.4 63.6

~ ~ ~

109

44.0 37.2

pHA

15.7
9.5

16.2
27.2
36.0

~pHA

—0.7—0.7—1.1—1.6—2.1

18.6
~ ~ ~

—0.3

20.6
~ ~ ~

—3.9

73.5
~ ~ ~

—1.4

25.1 +0.2

17.1
5.3
7.5
8.1
9.1

24.6
19.2
15.5
15.4
16.6
20.1
33.7
19.2
28.3
30.4
57.9
28.8
40.8
34.8
69.8
61.7
58.2
87.5

—0.7—0.4—0.5—0.6—0.6
+2.4—0.4
+0.2

04—15—3.2—5.7—3.4—5.4—5.1—2.8—3.4—2.2—3.0—0.7—2.5—17—1.0

pHm ~pH~@

2.55 2.8
3.10 3.4
3.84 4.2
4.07 4.4
4.47 4.8
1.87 2.0
2.65 2.6
3.28 2.6
3.70 3.4
2.25 2.2
2.56 2.6
2.61 2.6
2.39 2.0
2.40 2.4
2.70 2.4
2.77 2.4
2.50 2.0
2.61 2.0
2.76 2,0
2.88 2.1
2.53 2.0
2.83 2.0
2.93 2.0

Ao

0.336
0.305
0.240
0.224
0.205
1.01
0.78
0.54
0.45
0.99
0.88
0.97
1.38
1.44
1.32
1.44
2.08
2.10
1.84
1.92
2.71
2.42
2.38

0.055—0.001
0.006
0.007
0.0

0.01

0.14

0.07

0.11

(pub) and the Animalu-Heine modification" of this
potential (pHaa). Examples of these potentials are given
in Fig. 5. It is apparent from the differences between
p«and pH&& that the resistivity is very sensitive to
changes in the potential s(K) near E=2k+, especially
in metals of low valence. In all cases we have used a
theoretical a(IC) corresponding to a packing density of
45% and have indicated the change Dp obtained when
this density is varied. For the special case of aluminum,
the resistivity is evaluated with Ashcroft's" potential,
which is known from Fermi-surface studies to be correct
near E=2kp. We have taken the effective mass to be
unity for all metals. To sufhcient accuracy, the re-
sistivity corresponding to an effective mass of m* can
be obtained from the values in Table I by multiplication
by (m*/m)'. For comparison, we have also listed the
published results of Sundstrom' and Animalu, ~ which
were obtained with the experimental liquid structure
factors.

Table I also lists a series of hard-core radii for the
liquid metals, obtained from of= (or/6)no'=0. 45. These

' A. Q. E. Animalu, Solid State Theory Group, Cavendish
Laboratory, Cambridge, England, Technical Report No. 3, 1965
(unpublished), and A. O. E.Animalu and V. Heine, Phil. Mag. 12,
1249 (1965). These potentials are tabulated for volumes appro-
priate to the solid. Although we have converted them to the
volume and ky corresponding to the liquid, we have not allowed
for small variations in the potential parameters due to their
energy dependence. The Cd figures given in Table I refer to a
corrected potential tak.en from Solid State Theory Group, Caven-
dish Laboratory, Cambridge, England, Technical Report No. 4,
1965 (unpublished).

"See Ref. 28.

radii are generally slightly larger than nearest neighbor
distances in the solid. They correspond to the distance
at which the ion-ion interaction becomes large in com-
parison with the thermal kinetic energy of the ions.
Thus "hard" in this context is on the scale of kT rather
than of rydbergs. The values of o/2 agree well with the
radii at which the ion-ion potentials deduced by Johnson,
Hutchinson and March" become large and repulsive.

In Table II we present the alkali-metal resistivities
calculated with the Cohen potential

sc(r) = —A, r(Rsi
=—Ze'/r, r) Rior.

TABLE II. Liquid-metal resistivities for the Cohen potential.

Metal

Na
K
Rb
Cs

A (Ry)

0.424
0.435
0.451
0.410

Zsi(ao) ~/2 (uo)

2.1
3.2
4.6
5.5

3.10
3.84
4.07
4.47

pe~pt

9.6
13.0
22.0
36.0

pc

7.9
8.8
94

11.3

The parameters A and R~ were calculated by N. Wiser
by fitting the lowest s and p levels of the single valeiice
electron to those determined from atomic spectra. We
have screened this potential in the way suggested by
Heine and Abarenkov. The effective mass for the liquid
metals is again taken to be unity.

In the calculation of the temperature dependence,
we have followed. different procedures for sodium and
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FIG. 5. Model potential for
sodium and aluminum as func-
tion of the momentum transfer
E. The full lines are the origi-
nal Heine-Abarenkov (Ref. 6)
potentials and the dashed lines
are the same potentials as
modilied by Animalu (Refs. 7
and 31). All of the curves
drawn are appropriate to
atomic volumes just above the
melting point.

UJ
tO

N

)

.0

.2
X = K/2kF

.6 .8 I.O

rubidium. For Na the variation of compressibility with between the ions separated by a distance 0. of the order
temperature is known experimentally, " and we have of kT.
determined the parameter tf by fitting a(0) =n ' to Finally, we have calculated the change in well depth
nkTXT. The results are given in Table III and Fig. 6.

TABLE III. Temperature dependence of the resistivity
of liquid sodium.

T('C) e(A. 3) 22k TXT p = (7r/6) na3 tr(A) pexpt pC pHA pHAA

l8—

100
160
200
240
300

0.0243 0.0240
0.0239 0.0289
0.0237 0.0323
0.0234 0.0359
0.0231 0.0414

0.456
0.437
0.424
0.413
0.396

3.30
3.27
3.25
3.23
3.20

9.6
11.7
13.1
14.5
16.6

7.6 9.0
9.1 10.7

10.3 12.1
11.4 13.3
13.6 15.4

5.0
5.9
6.6
7.2
8.3

l6-

l4—

We note that the hard-core diameter decreases by only
about 3% as the temperature increa, ses almost by a
factor of 2. For Rb, compressibility data is not
available. The neutron-diffraction experiments were
performed at four temperatures, however, and we have
determined the parameter rf by fitting u(E)to give the'
correct height, aMAx, of the structure factor. The results
are given in Table IV and Fig. 7."The variation of 0-

with temperature is similar to that obtained for Na,
being such as to keep the screened Coulomb repulsion

TABLE IV. Temperature dependence of the resistivity of liquid
rubidium. The variation of liquid-metal density with temperature
is taken from the INtermational Critical Tables (McGraw-Hill Book
Company, Inc., New York, 1933), Vol. I, p. 102.

l2—

Cohen - Wiser

0
P.nimalu

O~

T('C) n(A ') amax g = (1r/6) no3 o (A) pexpt pc pm. pHAA

40
160
240
360

0.0108
0.0103
0.0100
0.0096

2.61
2.13
2.01
1.82

0.459 4.33 22.0
0.412 4.24 33.0
0.395 4.22 40.5
0.365 4.17 52.0

8.7 25.4 7.5
13.9 36.1 11.7
16.8 41.1 13.8
22.8 50.9 18.1

33 Liqlid Metals Haridbook (U. S. OfBce of Naval Research in
cooperation with the Atomic Energy Commission, Washington,
D. C., 1952).
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FIG. 6. Temperature dependence of the resistivity of liquid
sodium. The experimental points (solid squares and triangles) are
taken from the Liquid Metals Handbook, NaK Supplement
(Ref.)22) The~resistivities for the various model potentials are
evaluated from compressibility data, as described in the text.
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FIG. 7. The temperature dependence of the resistivity of liquid
rubidium. The experimental points (solid squares and triangles}
are taken from the Liquid Metals Handbook (Ref. 33} and from
Sundstrom (Ref. 6}.The resistivities for the model potentials are
calculated from neutron-diffraction data as described in the text.

of the Heine-Abarenkov potential required to reproduce
the experimental resistivity. This serves the double
purpose of indicating the sensitivity of resistivity to the
well depth, and, possibly, of being made the basis of a
correction of the HA potential in conjunction with a
calculation of the effective mass. The unscreened HA,

potential has the form

eH~(r) =—A s—(A s—A s}Ps—(A t—A s}Pr, r &Esr
=—Ze' r,

Here 2'g is a projection operator selecting out the lth
partial wave from the electron wave function. We have

added to this potential a term —AA (r&Rsr), screened
in the manner described by HA, and adjusted AA so as
to give the correct resistivity. The results are given in
the last column of Table I. The changes are significant
only in the case of Li and Zn.

IV. SUMMARY

We have seen that a simple expression for the struc-
ture factor of the hard-sphere Quid follows immediately
from the known solution of the Percus-Yevick equation.
Agreement with experimental determinations of liquid
metal structure is satisfactory. Assuming similar struc-
ture in metals for which data does not as yet exist, we
are able to calculate and compare resistivities of metals
for which the election-ion interaction has been esti-
mated. The results indicate that, both in magnitude and
in temperature dependence, the resistivities predicted
by the Ziman theory and employing Heine-Abarenkov
potentials are close to experiment. Kith the exception
of Li and Zn, the resistivities calculated with m*=m
are all correct to better than 25%.The correction of the
potentials for nonlinear screening (HAA) destroys this
good agreement, and indicates the extreme sensitivity
of the resistivity to small changes in the potential —a
point which has recently been stressed by Wiser. 34
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