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Recent advances in the technology of fast-response thermal detectors and their application to the measure-
ment of short-time thermal transport effects have made it expedient to make some theoretical estimates with
which the experimental results may be compared. A dispersion relationship between the applied frequency
of thermal oscillation and its associated wave vector is therefore derived. This relationship, besides involving
the diffusion constant of the medium through which the thermal transport is proceeding, depends on three
new parameters—two characteristic times and a characteristic length. Formulas are presented for these
parameters in terms of the appropriate averages over the phonon energy spectrum of the microscopic inter-
action rates which govern the transport. Hence, from measurements of the thermal dispersion and the
parameters which govern it, further information on these microscopic rates can be deduced.

I. INTRODUCTION

ONSIDERABLE progress has been made recently

in the technology of fast-response thermometers.
In particular, alloy-film superconducting bolometers'—?
—or resistance thermometers—have been fabricated
which have submicrosecond response times. This
technology has been further stimulated by theoretical
conjectures on the existence of second sound in solids.*7
Fast bolometers were employed to search for this
phenomenon.?

In the light of this new technology we wish to explore
theoretically the question: What new information, if
any, can we gather by utilizing the dimension of time
in making thermal measurements? Presently, one
measures equilibrium or steady-state thermal parame-
ters such as heat capacity or thermal conductivity as
functions of temperature. The nature of the microscopic
scattering processes obtaining during transport is
deduced from the latter through a computer-aided
curve-fitting process.®1% The usual procedure utilizes
formulas for thermal conductivity®* involving the
relaxation times for various processes. Computations
are made employing expressions for these relaxation
times involving adjustable parameters. These parame-
ters are varied to get a best fit to experimental results.
Since at low temperatures these times may exceed
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microseconds, the motivation in the present exposition
is to explore theoretically the possibility of utilizing
fast thermometry to get more definitive and direct
estimates of these times. Several recent computations®:1%
have indicated that there is information obtainable
from boundary or size dependence when the scattering
mean free path becomes large. Since experimentally, it
is far more inconvenient to vary size than to vary rate,
it seems expedient to investigate the analogous situation
for thermal time effects.

In the following, the transport conditions that obtain
when the temperature is allowed to vary rapidly with
time will be explored. The scale of thermal time vari-
ations characterized by the angular rate w[=1(8/9¢)]
is assumed to be smaller than most—but perhaps
comparable to some—of the inherent relaxation rates
which characterize the interactions in the phonon gas.
In this connection, it should be pointed out that the
case of second sound obtains when w is greater than
some relaxation rates—umklapp ones—and less than
others. Here, we explore, not second sound, but simply
time-dependent thermometry when the thermal oscil-
lations are less rapid than all collision mechanisms. The
term ‘‘high-frequency thermometry” indicates fast
times technologically, but slow times on the scale of
microscopic processes.

The net result of the following will be to derive the
differential equation governing the transport of heat
in a medium when allowance is made for relatively
high-speed thermal fluctuations. This equation, ex-
hibited as (27), involves three new parameters which,
like the thermal diffusion constant D, characterize the
medium. Expressions for these parameters in terms of
the microscopic rates of phonon umklapp and normal
relaxation processes are given in Egs. (24)-(26). In
these expressions allowance is made for the dependence
of these rates on the phonon energy.

Measurements of these parameters as functions of
temperature can yield information on the microscopic
relaxation times just as measurements of D or the
thermal conductivity do presently. This additional
information comes in the form of averages over the
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phonon spectrum of specific combinations of the various
phonon relaxation times. This is the same form in which
measurements of the thermal conductivity present us
with phonon relaxation times.!* Experimental data on
these new parameters, when combined with thermal-
conductivity data can, therefore, be made to yield a
more complete and consistent picture of phonon
collision processes.

Verification of the form of the governing differential
equation (27) and the determination of the values of
the parameters characterizing this equation is relatively
easily accomplished if sufficiently fast-response thermal
detectors are employed. In principle, one utilizes a long
rod of specimen at one end of which is a heat source.
This may be, for example, an evaporated thin metal
film subject to Ohmic heating due to a sinusoidally
varying current through it. Sinusoidal heating at the
film end of the specimen will then occur at a frequency
twice that at which the current is driven through the
film. At several points down the length of the specimen
rod are placed thermal detectors to measure the tem-
perature of the specimen at these locations as a function
of time. By observing the amplitude and the phase of
the temperature variations at these locations in response
to the oscillating heat input, one effectively measures
both the real and imaginary parts of a thermal-propa-
gation vector k (cf. Egs. (14) and (22)]. The imaginary
part corresponds to the attenuation and the real part
produces a phase shift. By performing this experiment
at a number of different input heating frequencies one
may, in principle, measure the entire dispersion rela-
tionship k=k(w) thus making an experimental deter-
mination to be compared with Eq. (22). This is no more
than the operator form for the thermal differential
equation (27). In fact, any empirical determination of
k=k(w) effectively defines the proper differential
equation governing the process under study. Hence
measurements of the type described are definitive in
checking the results outlined here. Furthermore, they
can ascertain the values of the key parameters arising
in those results.

In practice, the ideal experimental situation outlined
may not be expedient. Finite boundaries may be present
and the geometry may be multidimensional (instead of
one-dimensional as in the foregoing). Furthermore,
pulsed experiments are more practical than continuous-
wave ones. All of these experimental contingencies
require that the proper boundary-value problems,
regarding (27), be solved to suit the particular experi-
mental configuration utilized so that the theory may
legitimately be compared with experiment. These
considerations do not, however, affect the results
exhibited in (27) and (22) which obtain regardless of
the particular geometrical configuration to which they
are applied. They are valid in the bulk locally and
hence for any boundary condition.
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II. MODEL

To discuss the problem at hand we follow the now
familiar model utilized by Callaway.’ This model is
applicable to electrically nonconducting crystals at low
temperatures. The medium is characterized by the
presence of a phonon gas of mean number N with
phonon wave vector q at the ““position” r and at “time”
¢. This statement must be understood to be tempered
by the usual stipulations on the accuracy with which
the position r is defined with respect to the uncertainty
in wave vector q. And a similar consideration obtains
for the time definition, Af, and the phonon energy
e=€(g). With these in mind, the number N follows the
Boltzmann equation:

IN/0t+v- VN=(dN/0%)., €))

where v is the phonon group velocity for the particular
mode (or wave vector) to which N refers, and (dN/3z).
represents the increase in NV due to collisions. We will
assume, following Callaway, an isotropic crystal and
sufficiently low temperatures so that those phonons
present suffer no dispersion. In this approximation the

velocity v is
v=(1/%)V e=as/q, @

where s is the appropriate speed of sound for the par-
ticular branch of e versus ¢ (longitudinal, transverse)
for which the calculation is being done.

The right-hand side of (1) represents the net rate at
which phonons are added to the mode under consider-
ation by collisions. This term is approximated by

(0N/3t)e=—(N—N))/tv— (N—No)/rv, (3)

where B
T RS T
el 6

The quantity 7"=T"(r,!) represents the local tempera-
ture at the position r and at the time . This may differ
from the ambient temperature 7. The parameter 2 is
also a function of r and ¢ and must ultimately be so
chosen as to insure the validity of the dissociation
exhibited in Eq. (3). This will be accomplished later
by setting

and

/ (0 /1) dPq=— / AL N—No)/rs1Pq.  (6)

The significance of Eq. (6) is as follows: Of the two
terms in (3) the first one refers to collisions which
conserve the phonon pseudo-momentum gq, whereas
the second one refers to collisions which do not. But
it is well known that an integration over phase space,
performed on a collision term multiplied by a weighting
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factor which is microscopically conserved in collisions,
will always be zero.!'® Hence, a zero contribution must
arise from the integration with the weighting factor q
when applied to the g-conserving collision term and
the remainder is that part exhibited in (6). It is due to
the non-q-conserving term. Since both collision terms
must conserve energy, we also have

f e(dN/88), dg=0. )

These points together with the motivations and justi-
fications for the approximation of Eq. (3) have all been
discussed extensively.® The basis for Eq. (3) lies in
the distinction between normal collision processes and
umklapp processes. The former are momentum-
conserving and are characterized by the relaxation time
7v=7x(€). The latter may occur through a number of
different mechanisms which together are characterized
by the rate 1/7y. This umklapp collision rate is a func-
tion of phonon energy.

With this model of the transport of a phonon gas as
our microscopic picture of the thermal disturbance, we
wish to deduce what parameters determine how the
temperature fluctuation AT (r,#)=T"'—T and the heat
current Q(r,t) vary with position and time. The high-
frequency thermometry experiments may then be
interpreted in terms of those parameters.

The calculation will proceed on the basis of several
approximations and assumptions in addition to those
already inherent in the model. If we call # the deviation
from the local equilibrium number of phonons present

at r and ¢ then
n=N—No(T"). (8)

And further, it is convenient to denote the heat capacity
per phonon mode as

C(e)=€dNo/dT' | r—r=€dNo(T)/0T. )
With these definitions in mind the calculation assumes

(1) isotropy of the medium,
(2) dispersionless medium for phonons; i.e., e,= 7syg,
where 7 denotes the phonon branch—longitudinal,

transverse, acoustic,
(3) that the following dimensionless “amplitudes”

are small:
AT/T, Ns, en/TC(eK1; (10)

(4) that the combined relaxation time #.(e) satisfies

the condition
wr.(e) <1 (11)

for all of the thermal phonon energies involved (energies
greater than about 1°K), where by definition

l/TcEl/Tu+1/TN, (12)

16 F. Reif, Statistical and Thermal Physics (McGraw-Hill Book
Company, Inc., New York, 1965), Chap. 14.4.
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but that the quantity wr, is not completely negligible
and is amenable to experimental investigation.

III. CALCULATION

Equations (1) and (3) may be solved by standard
methods®:7* to obtain an expression for # in terms of
the amplitudes AT and A. The solution is obtained by
a straightforward substitution of the definition (8)
into the combination of (1) and (3). All of the time
and space variations are contained within the parame-
ters AT and A. Employing the operators

w=19/dt, (13)

and
k=—iv, (14)
and incorporating the assumptions mentioned, we find
TC(G) Te q'l
(1—irewtirev- k)“l(—-— —

T~ S

n=
€

A
+iTc(w—v-k)—1—> . (15)
T

To utilize this result we must determine two things:
The relationship between the amplitudes & and AT
and the ‘“dispersion” relationship « versus k for the
thermal disturbance. These are obtained by inserting
the result (15) back into Egs. (1) and (3) and inte-
grating first with the weighting factor q and then with
the weighting factor e. These are the significant
weighting factors with which to integrate because with
them the separation of the collision term into normal
and umklapp processes is brought into self-consistency.
This procedure yields a macroscopic pair of equations
which utilize the information contained in the conditions
(6) and (7). This new pair of equations involves both
the amplitudes AT and & homogeneously. They, there-
fore, have simultaneous solutions only for a unique
w-versus-k relationship. A determinant expresses this
relationship. Once the dispersion w versus k is known
either one of the two equations can be used to ascertain
the dependence of & on AT. Thus the two essential
connections A versus AT and w versus k are made.

Proceeding with this progaam the energy condition
(7) in combination with (1) becomes

a(z ! _/Nd3 +v-Q=0
a\T @ny ) q) "'

This is no more than a statement of the conservation
of energy. The first term is simply the time rate of
change of the internal energy per unit volume. The
summation is taken over the three different modes of
propagation—two transverse and one longitudinal—
labeled by the index 5. In terms of the amplitudes AT
and 2, Eq. (16) takes the form shown below. In this
expression the solution exhibited in Eq. (15) for the

(16)
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phonon distribution function has been employed with
terms kept only out to the appropriate order. This
order is determined by the condition that in first
approximation k2 goes as w and A goes at RAT. This
notion implies for example, that the terms AT, &2\,
wkAT and w\ are all of about the same order. And, in
fact, it is to just this order that one must calculate.
With these features in mind, and after considerable
algebraic manipulation, Eq. (16) becomes

HRyk - a—[iw+5(iR)Xs")av(e) JAT/T=0. (17)

In this equation, and the ones following, it is useful
both for notational reasons and for physical interpre-
tation to use a shorthand notation for averages of the
various relaxation times and for averages over the
modes of propagation—transverse, at a speed s; and
longitudinal, at a speed s;. For any function of phonon
energy A (e) the average of this function, denoted by
{A4), means

)= [coa@a/ [coa.

The symbol R is just a shorthand notation for the ratio
(always less than unity)

R=ry(e)[ruv(e+rn(e 1. (19)

This ratio indicates to what extent normal processes
dominate. The ratio R is unity if only normal processes
obtain and zero if there are no normal processes.

By the speed average (s™)av is meant

(™) ( 2 . 1 ) (IZ 1 >—1
S Vay = } .
St3—m ! 313_"' t3 ! 513

The momentum equation, obtained by multiplying
(1) through by g, integrating and utilizing the condition
(6), yields the result in Eq. (21). There is a considerable
amount of algebra in this step.

3 Dav ((R/ ) —i(R2)%— (1/15)(RP7.)
X [ (ik)2a+2ik (ik - 2) 1+ {3(R)+ 3iw(Rr.)
+ 4%y (R)XR72)}KAT/T=0. (21)

This equation is, of course, valid to the same order of
approximation as (17). And the pair of equations (17)
and (21) are the homogeneous relations in & and AT
mentioned formerly.

The first point to note about (21) and (17) is that,
as one expects on physical grounds, k and & are collinear.
The physical grounds rest on the realization that the
medium is assumed to be isotropic and hence there is
no other direction characteristic of the problem but
that of k. The mathematical proof follows from forming
the cross product of (21) with k (or &) and noting that
a nonzero constant multiplied by kX is zero only if
kX2=0. The fact that the numerical coefficient of
kX2 is indeed not zero follows from noting the in-

(18)

(20)
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consistencies obtained in comparing the results of the
cross products of Eq. (21) with & and with k on the
assumption that kX is not zero. Utilizing this result
plus the fact that simultaneous solutions for AT and A
exist only if the proper relation between their coefficients
obtains one may find this relation. It is an equation
which is quadratic in the quantity (i%)? and of the form

a (k) (ik)*(1—iwr1)+ (iw/D) (1—iwr)=0, (22)

where the parameters called o, D, 71, and 7, are symbols
for combinations of relaxation-time averages and
speed-average values:

D=3[(RY/{sa{R/7u) I+ 3{sDar(7e), (23)
71= ((Dav{R/70)D) 7 (3(sMav{sav{7)(R?)
+(Rre)—3(RXR7e)), (24)
To=(R*NR/10)7*, (25)
a=F(s%)av ((s2)av(R/70)D) (RN R72)
—(R27.)(7e)).  (26)

IV. DISCUSSION

It is clear from the form of (22) that the symbols D,
71, T2, and @ may be interpreted respectively as the
thermal diffusion constant, two characteristic times
and the square of a characteristic length for the process
of thermal transport. Furthermore, by the meaning of
the operators tk and —iw Eq. (22) implies that thermal
disturbances follow the form

VAT +V2T'+ V29T dt— (1/D)aT" /ot
— (ro/D)T"/3=0. (27)

In the limit that the new parameters o, 7; and 79—
which have arisen here because of the higher order to
which the calculation has been extended—are taken
to be zero, then (27) reduces to the familiar diffusion
equation as it should. However, as the frequency w at
which the temperature is caused to oscillate gets large,
the other terms in the dispersion formula begin to play
a role.

One may insert the result (22) back into (17) or (21)
to discover how A depends upon AT. Utilizing this
together with (22), the proper definition of Q, the heat
current density, and keeping only first-order terms,
one finds the familiar result

Q= —«xVT'+higher order terms. (28)

The parameter «, which obviously must be interpreted
as the thermal conductivity, is found by this procedure
to be given by

k=CD, (29)

where C is the specific heat and D is the diffusion
constant given in Eq. (23). This result for « in terms of
relaxation-time averages reduces to just that of
Callaway™ in the limit (s2™)ay= (s2)ay™. This assumption
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was inherent in Callaway’s calculation but not in the
present calculation. At most, something approaching a
259, error results from Callaway’s simplifying
approximation.

Contact is made with a calculation by Sussmann and
Thellung® by taking the limiting case of our result where
no umklapp processes may occur, 7y—> ©, R—1.
They considered a phonon gas where only normal
processes obtained and where the phonon collision
relaxation time was independent of phonon energy.
They allowed for different transverse and longitudinal
velocities, however, as we have done.

Equation (22) represents an expression for (k)% as a
function of applied thermal frequency w. Its validity is
restricted to the regime w7y, wr2<1. This condition is a
more relaxed one than the original one upon which the
calculation was based. It is the macroscopic analog of
the microscopic condition wr,<1. The latter is harder
to justify since, in fact, 7, is not a number. It is a
function and takes on a vast range of values depending
upon the phonon energy to which it refers. The mean
macroscopic thermal times, 71 and 7, are simply
numbers. They depend only on the ambient background
temperature T through the Egs. (24) and (25).

The diffusion constant D (or the thermal conductivity
k) measures some complicated phonon energy average
of microscopic collision times. The particular combi-
nation of relaxation time averages which x measures
was originally pointed out by Callaway. It is exhibited
in Eq. (23). Theoretical estimates of these relaxation
times inserted into (23) yield D (or ) as a function of
temperature, and this result may be compared with
experimental measurements of (7).

The same process may be employed for the character-
istic times 71=71(T) and 72(T). Theoretical estimates
of 7o(T), 71(T), and «(T) would utilize the same in-
formation as that employed for x(7") since the same
microscopic relaxation times are involved. The char-
acteristic parameters «, 71 and 7. are simply different
combinations of the averages of these times. Hence,
both a check and further information on phonon re-
laxation rates is provided by measuring these parame-
ters as well as D(T) [or «(T)].
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As might be expected, on physical grounds the
characteristic time 7, reflects the dominance of normal
or umklapp processes. Large positive values of 7,
produce thermal propagation which is less diffusive
and more wavelike. This regime obtains, as might be
expected, when non-umklapp or normal processes
dominate, i.e., R— 1. On the other hand, if umklapp
processes dominate (R—0), 72 becomes very small
(as does D) so that the transport process is highly
diffusive.

When the applied thermal frequency w gets very
large so that it exceeds some of the microscopic re-
laxation rates, then (22) is no longer valid.

V. CONCLUSION

It has been the purpose of the foregoing to find what
extra information regarding phonon interactions in
solids may be obtained by utilizing high-frequency
thermometry. This information is contained in the
dispersion relation (22), in combination with Egs. (24),
(25), and (26) for the values of the parameters 71(7T),
72(T), and (7). This study was motivated by the
appearance of fast thermal detectors as technological
tools. Measurements utilizing such detectors are easily
capable of directly extracting the dispersion relation
between applied thermal frequency and wave vector.
Such measurements can evaluate both the form of the
dispersion and the amplitudes of the appropriate
parameters characterizing the relationship. Thus, the
experimental results may be compared with the
deduction (22) where the parameters 71, 72, @, and
D(T) have been evaluated and are given in Egs. (23)-
(26). The measurements of these parameters may then
be compared with theoretical predictions regarding the
form of the relaxation times 7x(e) and 7y (e).
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