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A finite-range n-p potential and the effect of deuteron stretch have been introduced into a distorted-wave
Born-approximation (DWBA) analysis of the d-p stripping process for the case in which both deuteron and
proton have energies below the Coulomb barrier. This energy region was chosen because it permits an esti-
mate of the experimental reduced width which does not depend significantly on assumptions regarding the
target interior. The stretch of the detueron wave function is calculated with the adiabatic approximation
under the electric dipole perturbation of the target. The proton and neutron wave functions are Taylor-
expanded about the center-of-mass coordinate of the deuteron as a series in the relative coordinate of the
deuteron. The stripping matrix element is then expressed to second order in this parameter as a sum of
five terms which are introduced into a modified version of the Gibbs-Tobocman DWBA stripping program.
A series of calculations was made for the case of a Bi target in order to compare these second-order terms
with the first-order term, which is just the usual zero-range approximation. The shape of the proton angular
distribution was only modestly affected. The change in peak magnitude varied up to about 16% in the
Coulomb-stripping region, with corresponding inverse effect on the experimental reduced widths which
would be inferred therefrom. The effect of the nuclear potentials producing proton and deuteron elastic
scattering is significant, but it is mostly contained in the region of the integrations and therefore depends
mainly on the elastic-scattering phase shifts. We conclude that the particle reduced widths can be “meas-
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ured” by Coulomb stripping to better than 10% as far as theoretical uncertainties are concerned.

INTRODUCTION

N recent years there have been a number of differen-
tial cross-section calculations' for (d,p) stripping
reactions by use of DWBA methods. With rare excep-
tions®® these methods include an assumption of zero
range for the neutron-proton potential and disregard
the possibility of deuteron stretching during the strip-
ping process. The present work” is an attempt to remove
these deficiencies for the particular case of Coulomb
stripping, i.e., for those situations in which the deuteron
and proton energies are below the Coulomb barrier.
This energy region permits certain convenient approxi-
mations and allows one to obtain fairly accurate esti-
mates of experimental reduced widths which do not
rely strongly upon any assumptions regarding wave
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functions and potentials in and close to the target.
This comes about from the circumstance that the major
contribution to the integral of the stripping matrix
element comes from the region near the classical turning
points while only a small contribution comes from the
region within the target nucleus.

The Gibbs-Tobocman zero-range DWBA program
has been modified to incorporate finite-range and po-
larization effects and a series of calculations made for
the differential cross sections on a 209Bi target for a
variety of incident energies, Q values, and ! values of
the captured neutron. These cross sections have been
compared with the zero-range results. We note that the
unmodified program has been rather successfully used
by Erskine et al.? to fit the shape of experimental angular
distributions in this region.

APPROACH
The DWBA stripping matrix element employed is
T=(Fp2 (tp)u(tn,n) | Vap (1) [P (1p,1)0(8)) (1)
= (F 2 (15)Gn(xn) | Vap () [¥a™ (xp,10)) 2)
=(F,2 R+30G.R—31) | Voo () [¥aP R ). 3)

In these expressions r, is the radius vector from target
to proton, r, is the radius vector from target to neutron,
£ is the collection of coordinates for the target nucleons,
r=(1r,—1,), R=%(r,+r.), F, is the scattering func-

8 J. R. Erskine, W. W. Buechner, and H. A. Enge, Phys. Rev.
128, 720 (1962).
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tion for a proton, ¥4 is the exact scattering function
for incident deuteron waves, V,, is the neutron-proton
potential, # is the internal wave function of the target,
and v is the internal wave function of the residual
nucleus. The G,= S d§ u*v is the “wave function of the
captured neutron.” The shape of this wave function is
taken to be a harmonic-oscillator function within the
target and a Hankel function times a spherical harmonic
without. To represent ¥4 we take an eigenfunction of
the Hamiltonian Hp=Hg+H,+V,, where

Ze?
Hr= TR+7€—+ Vopt(R), 4)
H,=T,+Vnp (7') ) (5)

Ve R = (VW) / |:1+exP<R;RO>]

= Saxon-well optical potential, (6)
Vs=Vcp+ Vop=polarizing potential, (7
1 1
Vep=2¢ (—————) = Coulomb

Rtdr| R
polarizing potential (8)

=Ze (;—1?14_2)\ (;’:I)XP;‘ (f-R)) , )
p<=min(r/2,R), (10)
p<=max(r/2,R), (1)
P\(#- R)=Legendre polynomial of cosine of angle
between unit vectors # and R,
Vop= Vot (| R+31|)— Vope (R) = optical
polarizing potential. (12)

We neglect Vop but allow Vpi(R), already present in
the Tobocman program, to remain.

The eigenfunction ¥4 (R,r) is handled by the adia-
batic approximation. Thus

Ya (R,1)=F 4, (R)pa(r,R) , (13)

where
(HAVeop)pa=Leot e2(R) b, (14)
[Hr+e(R)Fas=EqF 4, (15)

E, being the center-of-mass kinetic energy of the inci-
dent deuteron, ¢ being the negative of the deuteron
binding energy, and e:;(R) the perturbation to ¢ due
to Coulomb polarization.

To calculate ¢4 and e (R) we use perturbation theory,
assuming the excited states of the deuteron to be free-
particle states. Then

$a(1,R)=¢o(r)+1(r,R)+¢2(r,R), (16)
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where ¢, is the Hulthén wave function and ¢1 and ¢,
are the first- and second-order perturbations due to
Vep which is approximated by its dipole component
cutoff by a step function for 7> 2R. The function e(R)
is approximated by the second-order energy perturba-
tion due to the dipole. In the latter case, the branch of
the dipole expression valid for #<2R is used for all
values of 7; but a cutoff is imposed for R<Ry, where R,
is the nuclear radius. For Coulomb stripping these
approximations are good since the significant region of
integration of the 7' matrix is that for »&2R and
R>R,. The explicit expressions used for calculations
are as follows:

&k
61(r,R)= | — 1 {(dx| Ver|$0), (17)
€0 €k
&k &
o [—twa1vaisd
€0 €k 0 €0 €q
. X{pg| Vea|po), (18)
B =SR—R) [——I@lUalodls, 1)
where o
Zer
Ua(r,R)=———(7-K), (20)
IR?
Vcl(rJR) = Ucl(rjR)S(ZR— 7') ) (21)
S(a—b)=1 if a>b
(22)
=0 if e<b,
¢ (r) =€ 7/ (2m)*2. (23)

The function Fg,(R) was calculated numerically by
entering the subroutine of the program which calcu-
lates F4(R), the eigenfunction of Hg, and inserting the
additional potential ez(R). The wave functions on the
left-hand side of the matrix element were calculated to
second order by Taylor series in r about R. For V.,
we assume the Hulthén potential.

Calculating to second order, we can now express the 7’

matrix as the sum of the following nonzero elements®:
T1=(F2 (R)G(R) [ Vap (7) | Fas™® (R)o (7)) » (24)
To=([31- VI, (R)IG.(R) [V ()|

XFds(+) (R)¢1(I,R)> ) (25)
Ty=—(F,O (R)[31: V4 ]Ga(R) [ Vp (1)

des(+) (R)¢1(I,R)> ) (26)
Ts=5G1 (Vo= V) 0 (R)G(R) | Van(r)|

XFds(+) (R)¢0(I,R)> 3 (27)
Ts=(FpO (R)G(R) | Vup(r) | Fas™ (R)g20(r,R)), - (28)

9 Other apparent elements vanish because of angular-momentum
or parity considerations. We have not included the terms arising
from the polarization of the target, namely virtual Coulomb ex-
citation, because these are expected to be small (Ref. 5).

10 For simplicity we assume the target has infinite mass.
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where V, acts only on F,, v, acts only on G,, and
¢20 is the =0 component of ¢s. Except for the inclusion
of €3 in computing Fg;s, Ty would be the matrix element
normally computed by a zero-range program. The
terms T, T3, and T's represent primarily the contribu-
tion due to the corrections in the internal deuteron
wave function. There is also a higher order contribution
due to the use of Fy, in place of F4. The term T4, apart
from the higher order effect due to the use of Fg4;, may
be regarded as characterizing those finite-range effects
remaining when the stretch of the deuteron is neglected.

We now show, using a standard method, that T is
very closely a multiple of 7y and thus has virtually no
effect on the shape of the angular distribution

1
T4=§//d3Rd3r FisD(R)[7- (Vo—Va)]
XE,*(R)Gn(R)Vap (r)go(r)  (29)

1
=2—4/d3R Fas® (R)(V,— Va)?F, " (R)G(R)
X / @1 PPV nppo™ . (30)

By partial integration and use of the Schrédinger
equation, we have the operator equation

(Vp—vn)2
=2V V.-V
=(—4M /i) (Tp+Tw—Ta)
= (—4M /W) [(EptEn—Ea)— (Vo+Va—Va) ]

in obvious notation.

In the Coulomb stripping region we can neglect the
nuclear portions of the potentials and using conserva-
tion of energy we are left with

(Vp—Va)i= (—4M /i*)[est e2(R)]
= (—4M /h?) eg=4a?,

(1)

(32)
(33)

where a is the wave number of the deuteron. Thus
o?
TFE/ @R F, " (R)Ga(R)Fas P (R)
X / @3 12V pto=0.02T1 (34)

for the Hulthén wave function defined as
aB(B+a) T 1
do= [—-——] l:_ (e—ar_ e——ﬁr)] .
2r(B—a)? 7
RESULTS

With the aid of the modified Gibbs-Tobocman pro-
gram, a series of runs was conducted for a Bi target
over a wide range of incident energy Eg, Q values, and
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F1c. 1. Comparison of zero-range and modified differential
cross sections for a Bi target with /,=0, Eg=8 MeV, and
Q=—1.8 MeV.

captured neutron angular momenta (f). This parameter
space was explored freely and not restricted to values
corresponding to actual physical levels. Although em-
phasis was on the Coulomb stripping region, some runs
were conducted well outside this region. The region
widely explored is delimited as follows:

Maximum Minimum
Parameter value value
l 2 0
Eq 14 MeV 6 MeV
Q 8 MeV —1.8 MeV

Some runs were made for /=4 and for a few cases Eq4

ranged as high as 18 MeV and Q as high as 20 MeV.
The Gibbs-Tobocman program employs a Saxon well

[Eq. (6)] for the deuteron and proton optical potential.
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Fi1c. 2. Comparison of zero-range and modified differential
cross sections for a Bi target with /,=0, E;=8 MeV and
Q=—0.203 MeV.
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F1c. 3. Comparison of zero-range and modified differential
cross sections for a Bi target with /,=0, E4=8 MeV, and
Q=42 MeV.

The following parameters were used for all runs:

Vi=—50MeV,  V,=—60MeV,
Wa=—15MeV, W,=—10 MeV,
A4,=07F, A4,=04F,
R,=86F, R,=T.12F.

These are not the latest parameters for optical-model
fits, but they serve for our purpose.

The neutron Hankel function was taken outside of
the neutron radius R,=7.0 F.

The above optical parameters lead to Coulomb barrier
heights of about 10 MeV for the deuteron and 13 MeV
for the proton. The Coulomb-stripping region is re-
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F16. 4. Comparison of zero-range and modified differential
cross sections for a Bi target with /,=0, E;=8 MeV, and
Q=44 MeV.
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F1c. 5. Comparison of zero-range and modified differential
cross sections for a Bi target with l,=0, E;=8 MeV, and
Q=46 MeV.

garded in this paper as that region in which E;<10
MeV and E;+Q0<13 MeV.

For each computer run the modified and unmodified
differential cross sections were plotted on the cathode-
ray tube attached to the IBM 7090 and photographed.
A sampling of these curves is displayed in Figs. 1-11.
Figures 1 through 8 represent a sequence of cases for
an /=0 captured neutron holding the incident energy
E, fixed at 8 MeV and allowing Q to vary from —1.8
MeV to an unphysically large 20 MeV. We note that
the shape of the distribution is not significantly altered
and the peak magnitude is only modestly affected until
we are well outside the Coulomb-stripping range and
at unphysically large Q values. Figures 9 and 10 corre-
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F16. 6. Comparison of zero-range and modified differential
cross sections for a Bi target with /,=0, E;=8 MeV, and
Q=8 MeV.
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Fic. 7. Comparison of zero-range and modified differential

cross sections for a Bi target with [,=0, Eq=8 MeV, and
Q=+14 MeV.

spond to Figs. 2 and 4 except that we have an /=2
neutron. Note that the alteration is still modest. Figure
11 represents a case of high incident energy and low Q.
Again the change is slight.

The results of all runs are summarized in Table I.
We observe that the 9, deviations for Coulomb strip-
ping are moderate and range up to 16%. Except for a
few cases of high E; and low Q the cross section is
increased. The deviation seems to be independent of
the 7 value of the captured neutron.

A number of additional runs were made to determine
the relative effects of the modifications separately.
Figure 12 portrays a breakdown of the contributions
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F1c. 8. Comparison of zero-range and modified differential
cross sections for a Bi target with /,=0, Eq=8 MeV, and

¥1c. 9. Comparison of zero-range and modified differential

cross sections for a Bi target with /,=2, Eg=8 MeV, and
Q=—0.203 MeV.

from the various matrix elements to the peak differen-
tial cross section of an 8-MeV deuteron over a range of
Q values with /=0, while Figs. 13 and 14 portray the
same breakdown as a function of incident deuteron
energy for two fixed Q values. The curve labeled “all
effects” depicts the relative deviation when all modifica-
tions were used. The curve labeled “external polariza-
tion effect” is derived from the use of matrix element
T, alone and represents the deviation generated by use
of the modified center-of-mass deuteron wave function
Fg4s. The curve labeled “finite-range effect” is the flat
contribution from 7', as previously discussed. The curve
labeled “internal polarization effect’” represents the
deviation resulting from adding T, T3, and 7’5 to the
unmodified matrix element. These three elements are
the only ones incorporating a correction to the internal
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T16. 10. Comparison of zero-range and modified differential

cross sections for a Bi target with l,=2, Eq=8 MeV, and
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TaBLE I. Percent deviation of peak of modified differential cross section from the peak of the Gibbs-Tobocman cross section.
The region printed in italics in each section of the table is the Coulomb-stripping region (see text).

Q (MeV)
I Es(MeV) —18 —0.203 42.0 44.0 +6.0 +8.0 +14.0 +20.0
0 6 6.4 10.5 13.9 16.2 17.1
8 1.1 6.7 114 4.3 16.9 19.2 69.8 101.8
10 —4.8 2.0 7.2 9.8 23.0 349
12 —6.2 —11 2.6 10.5 14.5 22.8
14 —6.2 —3.6 3.7 9.3 14.1 18.2
16 —3.7 9.2
18 0.5
2 6 6.6 13.8 16.0 17.4
8 2.3 7.2 117 14.3 17.0 19.2
10 2.3 7.2 10.3
12 —2.0 0.8 11.3 31.0
14
4 6 7.1
8 8.2 4.8 18.6
10 9.6
12 2.7 5.5

a The angular distribution is twin peaked. The deviation for the other peak is 14.1%.

deuteron wave function. We see that their contribution ing wave function for the deuteron. These observations
is on the order of 19 or less and that major contribu- are borne out by other runs, the results of which are
tions come from T4 and the use of the modified scatter- summarized in Table II. “o15” corresponds to the “ex-
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Fie. 11. Comparison of zero-range and modified differential Fic. 13. Comparison of polarization and finite-range effects as
cross sections for a Bi target with /,=0, E4=16 MeV, and a function of incident deuteron energy for Q= —0.203 MeV and
Q=—0.203 MeV. bound-state /=0. Target is Bi.
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F16. 12. Relative influence of the three classes of modifications F16. 14. Comparison of polarization and finite-range effects as

upon t}]e peak zero-range differential cross section as a function a function of incident deuteron energy for Q=4 MeV and
of Q with /,=0 and E;=8 MeV. bound state /=0. Target is Bi.
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TaBLE II. Percent deviation of peak of g1, and ¢, from peak of Gibbs-Tobocman differential cross section (¢1).2

Devia- Q (MeV)
tion of I Es(MeV) —0.203 +2.0 +4.0 16.0 18.0 1140 4200
O1s 0 8 2.0 0.3 9.0 10.8 11.6 20.1 22.1
10 9.1
12 —5.7 1.7
14 —8.6
16 —8.1
2 8 10.5
oy 0 8 0.51 0.58 0.74 34.2 72.7
10 0.7 1.0 1.2
12 0.7 42
14 0.0 3.2 6.3
16 0.1
2 12 0.7 49

& The regions printed in italics are in the Coulomb stripping region.

ternal polarization effect” and refers to the peak dif-
ferential cross section when using 77 alone. “c,”
corresponds to the “internal polarization effect” and
refers to the peak differential cross section obtained
from adding T, T3, and T5 to the Tobocman matrix
element. Note that the o5 deviation ranges up to 9%,
and the o, deviation up to 19, in the Coulomb-stripping
region. For two cases with unphysically large Q values,
the deviation of ¢, becomes quite large. These values
cannot be taken very seriously since they are well
outside the region of validity of our approximations. On
a strictly calculational basis, however, these values are
not surprising since they correspond to high neutron
binding energies. The corresponding rapid decay of the
neutron wave functions would greatly accentuate the
relative importance of the target region in the calcula-

°
£,=8 I/

/

£,=6 MeV

5

CUTOFF RADIUS=8.576 fermis

@

IS

PERCENT DEVIATION OF PEAK DIFFERENTIAL CROSS SECTION

- M __—/
2 ° > "
Q (Mev)

Fic. 15. Effect of imposing a cutoff in zero-range calculation
as a function of Q for several incident deuteron energies and a
bound state /=0. Target is Bi.

tion of the matrix element and it is in that region that
the deuteron internal wave function of our model would
be most perturbed.!!

These results, namely that the second-order correc-
tions to the zero-range Coulomb-stripping matrix are
all small, suggest that our series in r is reasonably con-
vergent and that higher order terms would be even
smaller. In order to check our fundamental assumption
that contributions from the nuclear interior are really
small, we have compared our complete calculations with
a set for which the internal region was not included.
For a cutoff radius of 8.6 F we have plotted in Fig. 15
the percentage of the cross section coming from the
interior in our calculations. As expected, this percentage
rises with incoming deuteron energy but remains quite
small over a range of Q values. It rises with increasing
Q value, as discussed above.

Finally we have investigated the effect of the nuclear
potentials on the cross sections. Since we already know
that the nuclear interior is not important the only
effect of these potentials can come through the phase
shifts. As has been pointed out to us by Austern and
Drisko® this effect need not necessarily be small. In
Fig. 16 we show the effect of setting the nuclear po-
tentials to zero for /=0. We see that the effect can indeed
be very large especially for high incident energy and
high Q. However, this does not detract from our aim
of obtaining a reliable measure of reduced widths, be-
cause the phase shifts can be measured from elastic
scattering and we need assume nothing about the nu-
clear interior. The fact'®* that recent refinements for
the nuclear potential including nonlocal effects actually
change the optical wave functions inside by as much as

' We are indebted to James Griffin and Leon Heller for dis-
cussions on this point.

2 N. Austern and R. Drisko (private communication).

871, K. Dickens, R. M. Drisko, F. G. Perey, and G. R.
Satchler, Phys. Letters 15, 337 (1965).

U F. G. Perey, Proceedings of International Symposium on Direct
Interactions and Nuclear Reaction Mechanisms, Padua, 1962
(Gordon and Breach Science Publishers, Inc., New York, 1963),
p. 125.
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309 is essentially irrelevant, as long as we stay in the
Coulomb-stripping region.

The expression for reduced width as computed by
the zero-range program is

v= (#*/2urn)Rou? (Ro) ,

where v is the reduced width, % is Planck’s constant
divided by 27, prx is the reduced mass of the target
and captured neutron, Ry is the nuclear radius, and #,
is the radial portion of the neutron wave function.
Outside the target radius, the true neutron wave
function and the one used in the zero-range program
differ only by a constant factor. Thus for Coulomb
stripping the “true reduced width” may be estimated by

do, /dog
'Ye='Yc|:— / "’_‘] ’

aQ’ dQ
where the subscript ¢ refers to numbers computed by
the program and e to experimental results. The effect
of the program modifications on v, will thus be inverse
to the effect on do,/dQ (since 7, is not changed). Thus,
for example, for 8-MeV deuterons, v,=0.16 MeV for
the 2.57-MeV level of 2°Bi as obtained from the zero-
range program and Erskine’s® data. The modified
program reduces this about 6%.

CONCLUSIONS

One concludes that in the stripping region for a Bi
target the finite-range and polarization effects usually
increase the differential cross section and reduce the
estimate of the reduced width by a variable amount of
not more than about 169, and usually considerably
less (Figs. 12-14).

Within the Coulomb-stripping region the cross-
section deviations are largely generated by the external-
polarization and finite-range modifications. The internal
polarization modification generates only on the order
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F1c. 16. Effect of setting nuclear potentials to zero in zero-
range calculation as a function of Q for several incident deuteron
energies and a bound state /=0. Target is Bi.

of 19, or less. The finite-range modification by itself
introduces a 49} increase in the cross section at all
angles. The relative change in peak differential cross
section from all modifications was essentially insensitive
to the ! value of the captured neutron. These conclusions
are numerically based on employment of a Hulthén
potential and wave function. Other deuteron potentials
and wave functions will be tried in future work.

An experimental test of these conclusions would be
to do Coulomb stripping as a function of energy. The
reduced widths should then be independent of energy
to the accuracy of the above approximations.
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