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The ratios of nuclear matrix elements compatible with the experimental shape factors of the second-
forbidden beta transitions in the decay of CI®¢, Feb9, T'c?, 1129, Cs135, and Cs%7 are computed. In each case a
solution is found which agrees with the predictions /*24;;/ S Rs; of the conserved vector current theory and
is close to the extreme single-particle estimate of /% Ty;/ Ri;. Deviations are analyzed by introducing
small amounts of configuration mixing. The standard matrix elements /'R;;/R? are computed and compared

to their single-particle estimate.

1. INTRODUCTION

ECOND-forbidden beta transitions have been in-
vestigated in the past with the purpose of acquir-

ing information about the nature of the weak interac-
tion.!—? The main idea of these early studies was to try
to reduce the number of unknown parameters on the
basis of shell-model considerations in order to select
interaction type(s) suitable to the experimental data.
Now that our knowledge of the weak interaction has
been so much improved, it seems justified to reverse
the procedure. Starting from a theoretical formalism
which we assume to be essentially correct, we may
experimentally determine the nuclear matrix elements
of the interaction Hamiltonian which are involved in
particular beta transitions. Extensive work along these
lines has been carried on in allowed and first-forbidden
beta decay during the past few years and has brought
valuable information about nuclear structure. Beta
transitions of increasing order of forbiddenness are
characteristic of particular shell-model states. Their
study gives as much information about nuclear structure
as the similar case of isomeric gamma transitions. The
comparison of experimental data and nuclear models
might therefore be easier with highly forbidden beta
decays than it is with allowed transitions. The purpose
of this work is to establish experimental relations
between the nuclear matrix elements occurring in the
second forbidden beta transitions, and to compare them
with some predictions of the j-j coupling shell model.
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In the first part, we define the nuclear matrix elements
in a spherical representation and their ratios for single-
particle shell-model wave functions. Corrections to
these single-particle ratios are given using configuration
mixing and j-7 coupling. In the second part, we give
the complete theoretical function for the spectrum
shape factor and the electron longitudinal polarization.
In the third part, we compare experimental data to
these theoretical functions and compute the nuclear-
matrix-element ratios compatible with the experiments.
In the last part, we discuss the experimental nuclear-
matrix-element ratios in terms of their single-particle
estimate and compute some qualitative corrections due
to the admixture of a limited number of shell model
configurations.

2. NUCLEAR MATRIX ELEMENTS INVOLVED
IN A SECOND-FORBIDDEN BETA
TRANSITION

2.1. Spherical Representation

It appears convenient to express the nuclear matrix
elements of the interaction Hamiltonian in terms of
reduced matrix elements of spherical tensor operators.

Following the generally accepted notation* for the
tensor product of two tensor operators, we define
the operators

TKL.YM:iLrL[G,yX YL:]KM "/=0,1 N (1)
where ¢, and @o are the Pauli matrices and unity
operator in their spherical representation and ¥y, is a
spherical harmonic of degree L. We expand then the
beta decay Hamiltonian (V-4) in terms of these

4 A. de-Shalit and I. Talmi, Nuclear Shell Theory (Academic
Press Inc., New York, 1963).
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operators and get

ty= %, (e [ " par

KLyM

X {/dQN[‘l‘f*(CV_‘CA'YB) (76)7TKL7MT+%]}

TN=r

X [ f d[¥* (1+79) <v5>wTKm-M¢»]}

rL=r
+H.c. (2)

The subscripts NV and L refer to the nucleon and lepton
space, respectively, and 7+ is the isospin operator
changing a neutron into a proton.

After the integration over the angles, one is left with
reduced nuclear matrix elements defined by

/ ¥ (ve)Y T M rpaidr
=(apJ ;M ;| (vs)" Trr,M 7% | i M)
J; K J;
—M; M M;
XarTyl| (vs)Y TrrymH|al ). (3)

-

v' takes the value y'=+ for the vector part of the
interaction and y’=v—1 for the axial part. 7+ applies
for B decay.

The correspondence between the original notation of
Konopinski and Uhlenbeck® and our spherical one is
established by comparing the Z component of the
Cartesian operator to the M=0 component of the
corresponding spherical tensor. Table I summarizes
that correspondence for the matrix elements occurring
in second forbidden beta decay.

2.2. Ratios of the Matrix Elements and Their
Single-Particle Estimate

Besides the comparative half-life, all the observables
related to beta decay depend only on the ratio of the
nuclear matrix elements to an arbitrarily chosen
normalization. The fact that relativistic matrix elements
contribute to the forbidden decay increases the difficulty
of theoretical computations. Fortunately, only one
(S1A;;) contributes to the second-forbidden beta
decay. The transformation properties of the correspond-
ing operator A;; are the same as those of the other
Fermi contribution to the interaction Hamiltonian
(Rs;). The theory of the conserved vector current in

(1; El) J. Konopinski and G. E. Uhlenbeck, Phys. Rev. 60, 308
41).
6 J.-I. Fujita, Progr. Theoret. Phys. (Kyoto) 28, 338 (1962).
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TaBLE I. Nuclear matrix elements of second-forbidden beta decay
in Cartesian and spherical notation.

Cartesian =  Spherical X Normalization
8\ 2
/Rif {Tsl[ Tazor =) 3 —(1—> 2741712
167\ 12
/iTij (]f”T221T:\:”]1') -—(—5—> (2]i+1)_1/2
167\ 12
iAy; Jellvs Taur®[|T:) QJ+1)712

<]/”T321‘ri“]i> -

/Sijk

weak interactions enables one to establish a relation
between these two matrix elements, and that relation®
turns out to be independent of the nuclear potential:

/iA»L]: “Acvcg‘/Rij. (4:)

. Wo—2.5
Acve=244+-X{Wo+2.5 for et decay (5)
AMA41.5 for e.c. decay.

12
) @7i+1)71n

for e decay

In these equations, 2¢=aZ/R is the Coulomb energy
of the electron at the nuclear radius R, Wy is the
maximum energy available to beta decay, and AM
is the mass difference between the decaying nucleus and
its daughter, all in units of moc%

Relations between the other matrix elements can be
evaluated within the framework of a particular nuclear
model. Among these, the j-j coupling shell model has
proved to be a valuable tool, at least to evaluate the
nuclear wave functions of odd-mass nuclei, with nearly
closed shell configurations. In that coupling scheme, the
odd-particle wave function is given by

| jm)y=4"R(#) X2 X Vi ™ (6)

where Xy is the spin eigenfunction, ¥; a spherical
harmonic, and R(r) the radial wave function.

The reduced matrix elements discussed under Sec.
2.2, taken between two single-particle states | j)= |I'm’)
and | j;)=|Im), read then

(I TxLyrt|gy =321 (25+1) 2K +1) (25'+1) ]2
XX@G3v; W L; j5'K)
XV2Z(V3)Y| Y L||)Fr, (7)

where Fy, stands for the radial integral

Fr= / rI2R(r)R’ (r)dr. 8)
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TascE II. Single-particle ratios A; g.p. and Az g.p..%
j=l-3 j=l+3
A1 g.p. ji=l—3 (=)5@=1) (=)S1Q++1)
J'=V+3 (=)SQ@+r+1) (=)sh@=1)
A 1 |:3 G+ =3)@—V+3) (l'—l-l~3):|‘/2 3CH'+4) -V +4) (l+l’—2):r’2
.P. j'=l'—3 - -
R : 5(4+1'+3) [ S/ —142)
N |:3 C+r+4) ¥ —i144) (l+l’—2):|1/2 [3 CHV+35) A=V +3)—1+3) :|1/2
j =143
: 5(1—1'42) 541 —1)
8.5 =0 for an odd jumping nucleon; S =1 for an even jumping nucleon.
For positron decay, one can use the relation where one has
T || Y= (— ) E+i"—i+v{ 7/ +|| 4Y. Ly vy .
Tz ll7)= (=) (I Txsrrls)- O) 2 83k G ) Goll Trar* 1 5)
That formulation enables one to compute the following p(Kly)= (13)

ratios:
JSiTy; XG351;02;452)
Arsp.= =4/6 ,
SRy X(GFz0;02;452) (10)
SSue  2INPX (G 5150025 44°3)
Ay gp.= =3(—) .
SRy 5/ X(330;U2;475'2)

In Table II, the single-particle values A;gs.p. and
A, g.p. are computed as function of the orbital angular
momenta / and /. The results are the same as those
given by Rose and Osborn.”

2.3. Nuclear Matrix Elements and Configuration
Mixing
The matrix element ratios described in the preceding
section represent a crude estimate. With more realistic
wave functions, the numerical evaluation of A; and A,
becomes complicated. Although one can always reduce
the matrix elements of a single-particle operator (such
as one hasin the case of beta decay) to a linear combina-
tion of single-nucleon reduced matrix elements, several
radial integrals are involved and the defined ratios lose
their simplicity.
Using configuration mixing and j-7 coupling, one can
formally write the nuclear wave functions as
|)=ai| ju'T)s.p. 420 B:(fy -+ - jn’)
X|gd'ge gl s Li)s
| f=es| jolns e 20 Br(J1 " jm)
X jage - gvi )5
where the sum extends over all possible mixed configura-
tions |jije--+jv;I) and |7;I)s.p. represents the

extreme single-particle wave function. The nuclear
matrix elements can then be written

I Trr |y =cax(jl| TeL,v||7')s 2.
[1+p(KLy)],

7M. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954).

(11)

(12)

aax(jl| Trr 7| ')s 2.

In these last equations, the coefficients ¢x and bx (7,7
are geometrical decoupling factors and p(KLy) is a
measure of the influence of the configuration mixing in
terms of the single particle estimate.

With that formulation, the corrected nuclear-matrix-
element ratios A; and A, can be written

1+p(221)
Ar=A;gp——, (14)
1+p(220)
and
14p(321)
A=A, S.P.L“‘ . (15)
1+p(220)

An analysis of experimental data such as the compara-
tive half-life fi, the beta-spectrum shape factor C(W),
and the longitudinal polarization of the beta particles
Pr(W) should give enough information to extract
experimental values of A; and A,. The comparison of
these values with their single-particle estimate gives
valuable information about the amount of configuration
mixing of the nuclear states involved in the decay and
about the overlapping of their radial wave functions.

3. SPECTRUM SHAPE FACTOR, LONGI-
TUDINAL POLARIZATION,
AND ft VALUE

3.1. Standard Matrix Element and ft Value

It appears convenient to normalize the nuclear
matrix elements to the standard

8m\ /2
17=CV/Rij=_<""> (27+1)12

5
XJAICv Tagor||T5), (16)

which can be computed from the corrected f.f value of
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the beta transition by the relations

|n|2==%In2/f.t,
Fi= / R W o— WY)W . (17)

In these equations, ¢ is the partial half-life of the decay,
p and W are the momentum and the total energy of the
beta particle, C(W) is the spectrum shape factor, and
F(Z,W) is the Fermi function.

From Eq. (17) one has, taking Ry=1.2 F,

/e

3.2. Shape Factor and Longitudinal Polarization

=5.65X 108X A~23X (f)~12.  (18)

Introducing the nuclear ratios A, A;, and A, defined
in the previous section in the theoretical expression of
the shape factor,* we get, taking C4=—1.2 Cy,

CW)=2 ¢***{Asx1[3A?Lr_1+ (1+0.6A1)*M g,
+A£ (1 +06A1)NK_1]— 2qC2K_1 (1 — 06A1)
X[(140.6A1)Ng_1+FA(Lk 1]
+@Dag—1(140.6A1)*Lg_s

+(0.04A2—0.12A2—A)¢*Box1Lx—} . (19)

In that equation, Asx—1, Bek—1, Cox—1, and Dog_; are
Greuling coefficients.? g=W,—W is the total energy of
the neutrino associated with the decay. Lg_1, Mx 4,
and Ng_; are linear combinations of radial electron
wave functions and have been tabulated.?

The formula for the electron longitudinal polarization
can be derived following the procedure of Lee-Whiting.0
It reads

PL(W)=—=C"(W)/CW), (20)

where C'(W) is the “modified shape factor” and is

obtained by substituting in C(W):

Lg1— Lg1'= (p*Fop***)"g_g fx sin(A_x—Ax),

Mg_1— Mg_it= (p*Fop?K)Yr fk sin(Ax—A_g),

Ng-1— Ng_i'= Qp*Fop' %) grg_r+ fxf-x ]
Xsin(Ax—A_z),

where p is the nuclear radius; gx and fx are radial
electron wave functions and Ax are their phase shifts.

3.3. & Approximation

By expanding the electron radial functions in powers
of the radius 7 and evaluating the value of their leading
term at the nuclear surface, one gets for the spectrum

8 E. Greuling, Phys. Rev. 61, 568 (1942).

9 C. P. Bhalla and M. E. Rose, Oak Ridge National Laboratory
Report No. ORNL-3207, 1961 (unpublished).

10 G. E. Lee-Whiting, Can. J. Phys. 36, 252 (1958).
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TaBLe III. Experimental data on the nonunique second-
forbidden transitions [Aexp? is the experimental value derived by
fitting the shape factor to Eq. (21). log(f)s is not corrected for
the forbidden shape of the beta spectrum. ]

Mother

iSOtOpe I; Iy Wo Aexp2 log (.ﬂ)a
17Cl1% 2+ 0+ 24 0.6£0.1 13.3
26 €33 g— 7= 4.07 3.3+0.7 10.9
43Tcse® 3+ 3+ 1.57 2.0+0.5 12.3
531762 3+ 3+ 1.29 10 +1 13.5
55Csgo!®® 4 i+ 1.41 10 +1 13.2
55C532137 %"{— %+ 331 40 _25+60 118

shape factor of second-forbidden beta transitions:

CW)=A*(W—W)24 (W2—1) (21)
with

A2=[(2—A+1.2A;)/ A—A+0.6A)T.  (22)

The experimental data have usually been fitted to this
particular dependence, and in this approximation, the
contribution of /°S;;; is completely neglected. Although
the comparison of such an expression with model-
dependent values of A and A; is instructive, it seems
preferable to use the theoretical expression of C(IW)
given by Eq. (19) and introduce in it the electron wave
functions computed from the potential of an extended
nuclear charge distribution and corrected for screening.

4. EXPERIMENTAL DATA AND MATRIX
ELEMENTS IN THE DECAY OF CI%,
Fe®, Tc®, I'?9, Csl®, AND Cs!¥’

4.1. Experimental Data

Six nonunique second-forbidden beta transitions
allow reliable shape-factor measurements and have
been investigated by several experimental groups.!—%
They are: CI1%, Fe®, Tc% I'® Cs!®, and Cs'¥. Their
shape factors have been given in terms of Eq. (21).
Table III summarizes the averaged experimental
results.

4.2. Matrix Element Ratios Compatible with
the Experimental Data

In order to determine the values of the parameters
A, Ai, A, compatible with the experimental shape
factors, we have done a X? analysis with the following
relation:

Con(Wi)—Cexp (W )72
W) ( )]. 23)

Q2 (A7A1)A2) = Z[
Acexp (Wz)
11 R. G. Johnson, O. E. Johnson, and L. M. Langer, Phys. Rev.
102, 1142 (1956).
127, Feldman and C. S. Wu, Phys. Rev. 87, 1091 (1952).
13 F, R. Metzger, Phys. Rev. 88, 1360 (1952).
( 14 D) E. Wortman and L. M. Langer, Phys. Rev. 131, 325
1963).
15 E. der Mateosian and C. S. Wu, Phys. Rev. 91, 497 (1953).
16 T,, Lidofsky, E. Alperovitch, and C. S. Wu, Phys. Rev. 90,
387 (1953).
17 1, M. Langer and R. J. D. Moffat, Phys. Rev. 82, 635 (1951).
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_ Fic. 1. Equi-Q? in
the (A, Ay, A2=0)
plane for CI*6, The
-1 solid line gives the
709 confidence
level, the dashed line
1 the 909 one. S.P.
and CVC label the
_| theoretical estimate
of Ay and A. The
hatched domain is
7 - compatible with
v Acve.

AL —>

In that equation, Ce (W) is the value resulting from
the Eq. (19). Cexp(W;) and ACexp,(W,) are the exper-
imental values and errors of the shape factor, as a
function of the beta particle energy W.,.

We have plotted in the plane (A, A1) equi-Q? as a
function of A,. A variation of A, between O and 10
results in a nonsignificant displacement of the equi-Q?
so that one can set A;=0 to simplify the general discus-
sion of the solutions A and A;. In Figs. 1-6, we give the
equi-Q? in the plane (A, Ay, A;=0) corresponding to the
confidence levels of 709, and 909, respectively.
[P(x*>(%=0.3 and 0.1, respectively.]

The relatively broad range of the possible values A
and A; can be limited if one accepts the prediction Acve

I T T I I I

Fe5®
Ap=3

30

10

F16. 2. Equi-Q? in the (A, A1, A2=3) plane for Fe®. The solid
line gives the 709, confidence level, the dashed line the 909,
one. S.P. and CVC label the theoretical estimate of A; and A.
The hatched domain is compatible with Acve.
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I I I I I I T
Tc®®
Ay=0
60— =1
\
\
40| \ .
\
\

20—

A—>
N
/ §
/

A—>

Fic. 3. Equi-Q? in the (A, Aj, A2=0) plane for Tc®. The solid
line gives the 709, confidence level, the dashed line the 90%, one.
S.P. and CVC label the theoretical estimate of A; and A. The
hatched domain is compatible with Acvec.

given by the conserved vector-current theory.® With
the present status of the experiments performed to test
the validity of the CVC hypothesis in beta decay,®

F16. 4. Equi-Q? in the (A, A1, A;=0) plane for I*®. The solid
line gives the 709, confidence level, the dashed line the 909, one.
S.P. and CVC label the theoretical estimate of A; and A. The
hatched domain is compatible with Agve.

18 T, Yoshizawa, Nucl. Phys. 5, 122 (1958).
19 H. Daniel and H. Schmitt, Z. Physik. 168, 292 (1962).
2 C. S. Wu, Rev. Mod. Phys. 36, 618 (1964).
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and the experimental ratios of matrix elements
T rlvsTr, o1l T/ T 4l Trrol [T )

derived from first-forbidden beta transitions?? a
relative error of 109, on the theoretical value Acve
seems to be a safe limit. Under that assumption, one
can derive experimental values of A; from the computed
(? analysis.

In Table IV we give the shell-model configurations
and the theoretical estimates of the nuclear-matrix-
element ratios for the beta transitions considered. The
experimental value A; o is obtained setting A=Acve
and A,=0 in Eq. (19). The Coulomb energy factor &
has been computed with the nuclear radius R=1.2X 413
F and is given in units of Z=m=c=1 by

E=1.175XZXA713,

where Z and A4 are the nuclear charge and mass number,
respectively.

The comparison of A; exp With A; g.p. given in Table
1V shows that the extreme shell model description leads

TABLE 4. Shell-model configurations, theoretical estimates of
the matrix element ratios, and experimental values compatible
with the CVC theory.

Isotope  |[p) |#)  Acvct Ais.p. Azs.p. A1 exp
17CI%6 da/z ds/z 15.4 0 0 —1.1_g5%0¢
WF®  fn e 212 —2 43 {16502
43TC99 89/2 ds/z 25.8 —2 +26 ——4.6_1_7'*'2,5
531129 g1/2 d3/2 288 +2 —1 +52j:10
55C5135 g1/2 da/z 29.4 +2 —1 +50j:085
55C5137 8172 d3/2 31.2 +2 —1 +29:i:04

2 See Ref. 14,
b See Ref. 13.

to the right magnitude and sign of A;, with the exception
of Fe®. In that particular case, there is a disagreement
between experimental data from different groups.!®:4
Langer e al.'* find a shape factor consistent with the
¢ approximation. Because of the relatively high
endpoint energy of that particular beta transition
(Woy=4.07, £=7.85), the £ approximation (£>W)
might be poor. If the results of Metzger et al.'® apply,
an excellent agreement with the shell-model prediction
is obtained : Ay exp=—2.0420.2, Ay exp=1.040.5. Figure
7 shows a comparison of the theoretical fit to both
experimental results.

The case of Cs'¥ is the most interesting one. The
shell-model prediction gives a vanishing contribution of
the term in (W?—1) of Eq. (21), which is experimentally
verified. In Fig. 6, two distinct regions of sets (A, Ay)
are shown from the equi-Q? giving the 909, confidence
level. The island between these two regions disappears
as A is increased. Although the choices of (A, Ay)
centered around Aj e, and A;g.p, give roughly the

2 P. Lipnik and J. W. Sunier, Nucl. Phys. 53, 305 (1964).
22 P, Lipnik and J. W. Sunier, Nucl. Phys. 65, 21 (1965).
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60— -

AE—>

Fic. 5. Equi-Q? in the (A, Ay, A;=0) plane for Cs!®. The solid
line gives the 709, confidence level, the dashed line the 90%; one.
S.P. and CVC label the theoretical estimate of A; and A. The
hatched domain is compatible with Agve.

same fit of the shape-factor measurement, the behavior
of the longitudinal polarization is quite different, as is
shown in Fig. 8. The similarity between the spectrum
shape factors of the Cs'¥” and RaE decays is striking.
A measurement of the energy dependence of the electron
longitudinal polarization in the decay of Cs'3” would be

60— —

AE—>

A—>

F16. 6. Equi-Q? in the (A, A;, A2=1) plane for Cs!¥”. The solid
line gives the 709, confidence level, the dashed line the 909, one.
S.P. and CVC label the theoretical estimate of A; and A. The
hatched domain is compatible with Acvc.
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I I [ I % T
Fe5°
Cp(W)
15— —
CQ(W)
iy -Pp'(W)
10
1
P (W)
a) A=+165 b) A=-2.0
05 |— Ap=+30 AyF+1.0 —
f Langer et al. ; Metzger et al.
| | I | | |
25 30 35 40

Wim,c?)

F1c. 7. Shape factor C(W) and reduced electron longitudinal
polarization —PY(W)=Pr(W)W /p for Fe®, as a function of the
electron energy W.

highly desirable. It could give the additional informa-
tion required to compute a precise set of nuclear
parameters.

5. CONFIGURATION MIXING AND RADIAL
MATRIX ELEMENTS

Let us make some comments concerning Egs. (7) to
(14) of Sec. 2. The value A; s.p. does not change if one

I I I I ] | I
A A
156
10 —
075 —
s
¢ 7.2
156
05— —
| | | | J | |
20 25 30 35

W(mocz)

F16. 8. Reduced electron longitudinal polarization of Cs!¥7 beta
decay as a function of the electron energy W.
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TasLE V. Experimental values of the mixing parameter p(220).

Extreme shell model Admixture p(221)/

Isotope 7 7’ jrorji' p(220)  pexp(220)
Cle (dasa) o (d3j2)n® (s1/2)p a —0.27
Fe® (frr2) 2 (p32)n® (fsr2)n +3 82;
Tc%® (gor2) 5 (ds/2)n® (g1/2)n -3 —0.19
I (g172)8° (ds/2)n® ds/2) p —3 —0.31
Cst28 (g172)p° (d372)n? 5/2)p -3 —0.30
Cs1¥7 (g1/2)0° (ds2)nt (dsr2) p -3 —0.11

aIn that case, Eq. (14) is not valid and has to be replaced by A1=3
p(220)/[1+p(220) ], the single-particle value being A1 s.p. =0.

b See Ref. 13.

° See Ref. 14.

considers higher orders of seniority in the configurations
7 and j’, because then p(221)=p(220). Egs. (12) to
(15) simplify the computation considerably because a
limited number of configurations j,/ and j, lead to
nonvanishing reduced matrix elements (7,|| Tz 7).
In that sense, the ratio of the experimental values
A1 exp and Aj oxp (Table IV) to their extreme simple-
shell-model estimate A; g.p. and A 5.p. (Table IV) is a
measure of the amount of configuration mixing.

Theoretically, these ratios can be computed with
Egs. (11) to (15) as functions of overlapping integrals
between the radial wave functions of the initial and final
nuclear states. Such computations are tedious if more
than two or three shell-model orbits are mixed to
compose the wave functions of these states. In the
following we shall restrict ourselves to the mixing of
three shell-model wave functions and consider this
procedure as a qualitative attempt to interpret the
experimental data.

5.1. Computation of the Parameter g(220)

With the simplification discussed above, the nuclear
matrix elements given by Eq. (12) reduce to a sum of
two single-particle matrix elements and take the form:

(NI Txrartli)=aas(jl| Tr 14l s 2.)+Bb2 (41 1)
X {1l Trzsll 7 )s.p. (24)

In Eq. (23), the primed momenta label the neutron
states.

TasLE VI. Radial integrals® for the harmonic oscillator poten-
tial. Fr= _/'rL“R(r)R'(r)dr (NI|7E|NV). The value of bo/R
is that of Wahlborn.b

N’ 4 F,

N l [N +5 166
N2 i —3L(NHI4-2£1) (N —14-1£1) V2%
N+2 142 SLVAHI-1£2) (VH14-31 117252

N I+£2 —[(V414-221) (N —I-+1F1712¢
NTF2 I£2 LV —I7F2) (N —14-27F2) J2b¢?

bo= (B/Mwo)'?; bo/R=0.82XA7Y6 (h=m=c=1)

s W. H. Shaffer, Rev. Mod. Phys. 16, 245 (1944).
b S, Wahlborn, Nucl. Phys. 8, 209 (1964).
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TasiLE VII. Standard matrix elements compared to their single-particle estimate.

Tsotope log fct | S'Rsj/R?|oxp as (Gl Taz0r ] 57 | S Rij/R?|s.p. ot
Clze 15.840.3 0.007-+0.001 1 (7/27/m)be? 0.084 0.083
Fe a 12.540.2 0.210-£0.020 1 (6/+/m)be 0.218 0.965
b 13.4+£0.3 0.074£0.011 1 (6/+/m)be? 0.377 0.196
Te% 14.3+0.4 0.019-+0.004 (1/24/15) [9v/(10/77) 1o 0.038 0.200
Ii29 14.640.2 0.0114+0.002 (1/4v2) [18/4/(7T7) Jbe? 0.046 0.239
Cst3s 14.54-0.2 0.012::0.002 (1/4v2) [18/+/(7Tm) Jo 0.048 0.250
Cst37 13.9:.£0.4 0.0240.005 (1/4v2) [18/4/(77) Jbe? 0.061 0.394

a See Ref, 14,
b See Ref. 13.

Using Eq. (7), Eq. (10), and Table II, we can compute
p(221) (il Tearl| 71"} (4l Tazall 57
p(220) (71l Tazol| 71"} {7l Tozal| 7")

and the parameter p(220) can be extracted from
Eq. (14) as a function of Ai1/A; s.p. The experimental
values pexp(220) computed with the parameter Aj exp
discussed under Sec. 4.2 are given in Table V. In the
same table we give also the shell-model configurations
7, 7'y 71, 7' and the corresponding ratio p(221)/p(220).

5.2, Standard Matrix Elements Compared to
Their Single-Particle Estimate

The standard matrix element, computed from the
comparative half-life of the decay according to Eq.
(17), is smaller than its extreme single-particle value.
Considering Eqs. (7), (12), (16), and (17), we define
an effective reduction factor

(I T 2207 || exp
Oleff = .
[0 pexp (220) Jas | Tasor*] 7)s..

The geometrical decoupling factor a, can be evaluated
by considering only the lowest order of seniority in the
configuration jj/. The single-particle matrix element
(jl|T2207]| ') depends on the radial integral Fi(j7’)
which we compute from Table VI, giving the solutions
for the harmonic oscillator potential. The results are
summarized in Table VII, in which we give the exper-
imental standard matrix element |/ Ry;/R?|, the
corrected comparative half-life, the geometrical factor
a2, and the reduction factor aess with respect to the
single-particle estimate :

fRij <81l'> 12
5

R2
X [1+Pexp (220):K.7H T2207+”f> .
6. DISCUSSION OF RESULTS

(25)

(2T +1)"12q,

Is.p.

(20)

The nuclear matrix element ratios Af=— fiA;;/
J Ry and A1= fiT:;/ /" Ri; compatible with the shape
factors investigated agree with the prediction Acvc of

the conserved vector-current theory and exhibit
reasonable deviations from the single particle estimate
A1 s.p.. The matrix element /'S;; has small influence
on the shape factor and can be neglected. Even in the
case of Fe’ the deviations from the £ approximation,
suggested by the shape factor measurement of Metzger
et al.,® can be accounted for by taking further terms
in the expansion of the transition probability as a
function of £.

The deviations from A;sp. can be explained by a
relatively small amount of configuration mixing in the
shell-model wave functions (10-309). The correction,
measured by the parameter pex,(220) is a minimum for
the decay of Tc% and Cs'¥, as could be expected from
the shell-model level structure.

The standard matrix element | /"R;;/R?| is reduced
with respect to its single-particle estimate. The reduc-
tion factor decreases from 5 to 2.5 as the neutrons fill
the levels of the N =82 shell between Tc and Cs'?".
The standard matrix element of the CI®¢ transition is
reduced by a factor of 12, although configuration mixing
does not seem prohibitive in that case. The (f¢#) value
resulting from the shape factor measurement of
Langer et al'* is surprisingly low. The analysis of the
measurement of Metzger ef al.'3 agrees much better
with (Acvc, A1 s.p.) and the general trends exhibited by
all other second forbidden transitions. It is therefore
not improbable that the £ approximation is not suffi-
cient to describe the shape factor of that particular
transition.

A comparison of the similar transitions in the decays
of Cs'7, Cs'%, and I'* is instructive in many aspects.
First, the reduction factors a.s of the standard matrix
elements are proportional within 4=8%, to the statistical
factor [N.X (N ,+1)]"2, where N, and N, are the
number of nucleons in the (ds2)» and (gs2)» levels of
the initial state. This fact supports our approximation
that only pure (ds2). configurations are involved in
these decays. With this in mind, one can evaluate the
ratio of the amplitudes of the nuclear wave functions.
Considering the states of seniority 1 and 3 only, one
can write according to Eq. (11):

|1y =ai| ()55 (3)n*0; 2)+B:] (1)°2(8) 55 (3)n"0; 2),
| f)=as] (3)20(3)n%; 5)+84] (2)52(3)70($)a% 5 3)-
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The nuclear matrix element then takes the form

(T a207(|4) = ctice s (32) % gy o] | T 07| d3y2)
+Bi85233)7V%(dsjo|| Toz07 || d3ss)

from which one gets, considering Eq. (7), Eq. (13), and
Table VI:

BiBBs/ciy=1.01p(220).

In the case of Cs'¥’, the experimental value pexp(220)
=—0.11 and the cancellation between the matrix
elements occurring in the leading term in $? of the
theoretical shape-factor distribution confirms the
almost single-particle character of the beta transition.

The experimental value Aj, derived for the decay of
C1%¢ indicates a considerable mixing of (ds2) and (sy/2)
orbits in the initial wave function. Pure (dss) configura-
tion would imply A;=0 for the 8~ decay of Cl* into
S3% as well as for the transition of CI3¢ into Ar®¢ by
electron capture. This contradicts the experimental
results?®:

A8 =—11£05, AC)=—0.35+0.10.

( 23 P. Lipnik, G. Pralong, and J. W. Sunier, Nucl. Phys. 59, 504
1964).
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We consider the wave functions

CI%|i)=ai| (da2) 5 (daj2)n®; 2)

+8s| (daj2)2(51/2) 572 (da2) 2%; 2)
Ar®| fy=a| (ds2) y*(d3/2)a?; 0).
Application of Eq. (7), Eq. (13), and Table VI gives

Bifai= (7/4+/5)p(220)= —0.21.

This relative amount of |(s12)%} 3(ds2)%%%; J=2,
T=1) to | (s12)%00(d32)*21; J=2, T=1) configuration
agrees very well with the value 8;/a;= —0.23 reported
by Lovas et al.** in their study of the excited states of
C1% and Ar?.

In conclusion, we would like to stress that, despite
the limited number of observables and experimental
data, the second-forbidden beta transitions agree
fairly well with the j-j coupling model, in a consistent
manner. Although this agreement may be partially
of a qualitative nature, a systematic study of observ-
ables like the electron longitudinal polarization and its
energy dependence could be very promising and would
allow a more precise determination of the relevant
nuclear parameters.

2¢1. Lovas and J. Révai, Nucl. Phys. 59, 364 (1964).
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Nuclear Recoil in the C?(p,pn)C" Reaction.* I. Angular Distribution

J. A. PavontIN,} L. L. Scawar1z,{ A. F. STEENEY, E. P. STEINBERG, AND L. WINSBERG§
Argonne National Laboratory, Argonne, Iilinois
(Received 27 December 1965)

The angular distribution of the recoiling C!! atoms from the reaction C2(p,pn)C", induced by 450-MeV
protons, was measured. The results were compared with the theoretical calculations of Benioff and Person.
The distorted-wave impulse approximation gives better agreement than does the plane-wave approximation.
However, the theoretical values from both calculations appear to be too large at the backward angles. This
may indicate the existence of competing mechanisms. The results reported here are in general agreement
with the thick-target thick-catcher recoil measurements of Singh and Alexander. A similar comparison for

the reaction Cus5(p,pn)Cus! indicates no agreement between the two types of experiment.

INTRODUCTION

HE measurement of the angular and energy dis-
tribution of recoiling atoms from the (p,pn),
(p,2p), and other simple reactions provides information
about the mechanism of nuclear reactions and about the
structure of the target nucleus.! Measurements of the
simple reactions are expected to be more sensitive to the

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

T Present address: Purdue University, Lafayette, Indiana.

1 Present address: Lawrence Radiation Laboratory, University
of California, Livermore, California.

§ Present address: University of Illinois at Chicago Circle,
Chicago, Illinois.

1 P. Benioff and L. Person, Phys. Rev. 140, B844 (1965).

nature of initial encounter between the incident proton
and the target nucleus than reactions in which many
particles are emitted. Hence, these reactions are being
extensively investigated.?

The C*(p,pn)C* reaction was chosen for this type of
study because C® is a closed-shell nucleus of relatively
simple structure. Furthermore, the amount of CU
formed in this reaction can be readily determined by
measuring the intensity of positrons emitted during
radioactive decay.

Measurements of the recoiling C* atoms from this
reaction have previously been made by Singh and

2 J. R. Grover and A. A. Caretto, Ann. Rev. Nucl. Sci. 14, 51
(1964).



