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Nuclear Matrix Elements of Second-Forbidden Beta Transitions
and the j-j Coupling Model*
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The ratios of nuclear matrix elements compatible with the experimental shape factors of the second-
forbidden beta transitions in the decay of CP', Fes', Tc",P", Cs"5, and Cs" are computed. Iri each case a
solution is found which agrees with the predictions J'iA;;/'JR;; o'f the conserved vector current theory and
is close to the extreme single-particle estimate of JiI;;'/ J'R;; Devia. tions are analyzed by introducing
small amounts of con6guration mixing. The standard matrix elements J'R;, /R' are computed and compared
to their single-particle estimate.

1. INTRODUCTION

KCOND-forbidden beta transitions have been in-
vestigated in the past with the purpose of acquir-

ing information about the nature of the weak interac-
tion. ' ' The main idea of these early studies was to try
to reduce the number of unknown parameters on the
basis of shell-model considerations in order to select
interaction type(s) suitable to the experimental data.
Now that our knowledge of the weak interaction has
been so much improved, it seems justified to reverse
the procedure. Starting from a theoretical formalism
which we assume to be essentially correct, we may
experimentally determine the nuclear matrix elements
of the interaction Hamiltonian which are involved in
particular beta transitions. Extensive work along these
lines has been carried on in allowed and first-forbidden
beta decay during the past few years and has brought
valuable information about nuclear structure. Beta
transitions of increasing order of forbiddenness a,re
characteristic of particular shell-model states. Their
study gives as much information about nuclear structure
as the similar case of isomeric gamma transitions. The
comparison of experimental data and nuclear models

might therefore be easier with highly forbidden beta
decays than it is with allowed transitions. The purpose
of this work is to establish experimental relations
between the nuclear matrix elements occurring in the
second forbidden beta transitions, and to compare them
with some predictions of the j-j coupling shell model.

In the first part, we define the nuc1ear matrix elements
in a spherical representation and their ratios for single-

particle shell-model wave functions. Corrections to
these single-particle ratios are given using configuration
mixing and j-j coupling. In the second part, we give
the complete theoretical function for the spectrum
shape factor and the electron longitudinal polarization.
In the third part, we compare experimental data to
these theoretical functions and compute the nuclear-
matrix-element ratios compatible with the experiments.
In the last part, we discuss the experimental nuclear-
matrix-element ratios in terms of their single-particle
estimate and compute some qualitative corrections due
to the admixture of a limited number of shell model
configurations.

2. NUCLEAR MATRIX ELEMENTS INVOLVED
IN A SECOND-FORBIDDEN BETA

TRANSITION

2.1. Spherical Representation

It appears convenient to express the nuclear matrix
elements of the interaction Ha,miltonian in terms of
reduced matrix elements of spherical tensor operators.

Following the generally accepted notation4 for the
tensor product of two tensor operators, we define
the operators

Ter, , ——z r [tr,XYr,]z y=0, 1,

*Supported in part by the U. S. 0%ce of Naval Research under
contract Nonr-233 (44).

$ Chercheur agree a 1'Institut Interuniversitaire des Sciences
Nucleaires, Belgique.' D. C. Peaslee, Phys. Rev. 91, 1284 (1953).

~M. Morita, J.-I. Fujita, and M. Yamada, Progr. Theoret.
Phys. (Kyoto) 10, 630 (1953).

3 C. S. Wu, in Beta- and Gamrga-Ray Spectroscopy, edited by
K. Siegbahn (North-Holland Publishing Company, Amsterdam,
Holland, 1955).

where e~ and eo are the Pauli matrices and unity
operator in their spherical representation and I'L, is a
spherical harmonic of degree I.. We expand then the
beta decay Hamiltonian (V—A) in terms of these

'A. de-Shalit and I. Talrni, Nuclear Shell Theory (Academic
Press Inc. , New' York, 1963).
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ALE lI. Single-Particle ratios A1 g, P. and A2 B.P..'

(—) (l —l,)
(—)s(l+l'+ 1)

3(l+l' —3) (l l'—+3) (l' l+—3)

5 (l+l'+3)

3 (l+l'+4) (l' —l+4) (l+l' 2)—
5 (l l'+2—)

(—)'+'(l+l'+1)
(—)'"(l—l')

3 (l+l'+4) (l—l'+4) (l+l' —2)

5 (l' —l+2)

3 (l+l'+5) (l l'+3—) (l' —l+3)

5(l+l' —1)

a S=0 for an odd jumping nucleon; S =1 for an even jumping nucleon.

For positron decay, one can use the relation

(jllTxi, r II
j'&= (—) +"-'"(j'IITx".+Ilj&.

That formulation enables one to compute the following
ratios:

JiT;;'X(s rs 1; ll'2; jj'2)
~1 S.P.= =+6

J'R;; X(—' —'0; ll'2; jj'2)
J'S;,s 21 '"X(-,' —,

' 1; ll'2; jj'3)
~2 S,P.=

J'R;, 5 X(——0; ll'2; jj'2)

where one has

In these last equations, the coe%cients ax and bzr(j„j,)
are geometrical decoupling factors and p(EIy) is a
measure of the influence of the configuration mixing in
terms of the single particle estimate.

With that formulation, the corrected nuclear-matrix-
element ratios A1 and A2 can be written

In Table II, the single-particle values A1g.p. and
A2 s P are computed as function of the orbital angular
momenta 1 and l'. The results are the same as those
given by Rose and Osborn. '

2.3. Nuclear Matrix Elements and Con6guration
Mixing

and

1+p (221)
~1=~1 S.P.

1+ p (220)

1+p(321)
~2 ~2 S.P.

1+p(220)
(15)

The matrix element ratios described in the preceding
section represent a crude estimate. With more realistic
wave functions, the numerical evaluation of A1 and A~

becomes complicated. Although one can always reduce
the matrix elements of a single-particle operator (such
as one has in the case of beta decay) to a linear combina-
tion of single-nucleon reduced matrix elements, several
radial integrals are involved and the defined ratios lose
their simplicity.

Using configuration mixing and j-j coupling, one can
formally write the nuclear wave functions as

li&=~'I j 'I'&s.p.+2 t9'(j~' j ')

Xlzias" Z„;I;&,
I f&=crrl j Ir)s p+PPr(j, j )

x
I j~js

where the sum extends over all possible mixed configura-
tions

I jrjs j.; I} and
I j;I)s.p. represents the

extreme single-particle wave function. The nuclear
matrix elements can then be written

(fllTxr, „r+lli&=«z(jllTxr, 7+IIj')s p

L&+p(I:L7)j (12)

' M. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954).

An analysis of experimental data such as the compara-
tive half-life ft, the beta-spectrum shape factor C(W),
and the longitudinal polarization of the beta particles
I I (W) should give enough information to extract
experimental values of A~ and A2. The comparison of
these values with their single-particle estimate gives
valuable information about the amount of configuration
mixing of the nuclear states involved in the decay and
about the overlapping of their radial wave functions.

3. SPECTRUM SHAPE FACTOR, LONGI-
TUDINAL POLARIZATION,

AND ft VALUE

3.1. Standard Matrix Element and ft Value

It appears convenient to normalize the nuclear
matrix elements to the standard

(g~) 'ts

Rv= —
I
—

I (»'+1) '"
Es)

x(~,llcv T»,~+lie,&, (16)

which can be computed from the corrected f,t value of
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the beta transition by the relations

~g~'=m'ln2/f, t)

Wp

TABLE III. Experimental data on the nonunique second-
forbidden transitions fA,» is the experimental value derived by
6tting the shape factor to Eq. (21). log(ft)o is not corrected for
the forbidden shape of the beta spectrum. g

F(Z,W)pW(Wo W—)'C(W)dW. (17)

In these equations, t is the partial half-life of the decay,
p and W are themomentum and the total energy of the
beta particle, C(W) is the spectrum shape factor, and
F(Z,W) is the Fermi function.

From Eq. (17) one has, taking Ro——1.2 F,

Mother
isotope

17C119"
26Fe33"
43Tce6"
e3I76"'
eeCsso"'
eeCS82

2+

+
2+

0+
5'p

2.4
4.07
1.57
1.29
1.41
3,31

0.6&0.1
3.3a0.7
2.0a0.5

10 ~1
10 &1
40 +60

log(ft)

13.3
10.9
12.3
13.5
13.2
11.8

R,; R' =5.65X10oXA—'t'X(f, t)-»' shape factor of second-forbidden beta transitions:
(lg)

C(W) =A'(Wo —W)'+(W' —1)
with

(21)

3.2. Shape Factor and Longitudinal Polarization

Introducing the nuclear ratios A, A~, and A2 defined
in the previous section in the theoretical expression of
the shape factor, 4 we get, taking Cg= —1.2 Cy,

C(W)=pq "{Asz r[sA'PLK +t(1+0.6A,)'M K,

+&$(1+0.6&i)1VK—1$—2qCsz —1(1—0.6A&)

X[(1+0.6h.r)cVK r+~AtLK ij
+q'Dsz i(1+0.6Ar)'Lz i
+(004As' —0.12hr' —AP)q'Bsz rLK-,). (19)

In that equation, Ag~ I, 8g~ g, Cg~ g, and D2~ g are
Greuling coefficients. q= 8"0—8' is the total energy of
the neutrino associated with the decay. Lz &, 3fz j,
and X~ ~ are linear combinations of radial electron
wave functions and have been tabulated. '

The formula for the electron longitudinal polarization
can be derived following the procedure of Lee-%biting. '
It reads

Ei(W) = —C'(W)/C(W), (20)

where C'(W) is the "modified shape factor" and is
obtained by substituting in C(W):

Lx i~LK i'=(P'~op' 'z) 'g zfz»n(~ x—~z),
~z i~~z i'=(P'&op 'z) 'gz f-z»n(~z —~ x),
+K i-~z 1'=(2p'—&op' ' )-'[gKg K+fKf Kj- —

Xsin(~z —~ z),
where p is the nuclear radius; gz and fz are radial
electron wave functions and A~ are their phase shifts.

3.3. )Approximation

Qy expanding the electron radial functions in powers
of the radius r and evaluating the value of their leading
term at the nuclear surface, one gets for the spectrum

8 E. Greuling, Phys. Rev. 61, 568 (1942).
9 C. P. Bhalla and M. E. Rose, Oak Ridge National Laboratory

Report No. ORNL-3207, 1961 (unpublished).I G. E. Lee-Whiting, Can. J. Phys. 36, 252 (1958).

A'=[(2—&+1.2hr)/(1 —4+0.6Ar)$' (22)

The experimental data have usually been fitted to this
particular dependence, and in this approximation, the
contributionof J'S,;sis completelyneglected. Although
the comparison of such an expression with model-
dependent values of A and A~ is instructive, it seems
preferable to use the theoretical expression of C(W)
given by Eq. (19) and introduce in it the electron wave
functions computed from the potential of an extended
nuclear charge distribution and corrected for screening.

4.2. Matrix Element Ratios Compatible with
the Experimental Data

In order to determine the values of the parameters
A, A~, A2, compatible with the experimental shape
factors, we have done a X' analysis with the following
relation:

Cg, (W,)—C, o(W;) '
Q'(A, Ar, Ao) =Q

~C. o(W;)
(23)

"R. G. Johnson, 0. E. Johnson, and L. M. Langer, Phys. Rev.
102, 1142 (1956)."L.Feldman and C. S. Wu, Phys. Rev. 87, 1091 (1952).' F. R. Metzger, Phys. Rev. 88, 1360 (1952).

' D. E. Wortman and L. M. Langer, Phys. Rev. 131, 325
(1963)

1e E. der Mateosian and C. S. Wu, Phys. Rev. 91, 497 (1953).
'L. Lidofsky, E. Alperovitch, and C. S. Wu, Phys. Rev. 90,

387 (1953)."L.M. Langer and R. J. D. MoQat, Phys. Rev. 82, 635 (1951).

4. EXPERIMENTAL DATA AND MATRIX
ELEMENTS IN THE DECAY OF Cl",

Fe", Tc", I'" Cs'", AND Cs"

4.1. Experimental Data

Six nonunique second-forbidden beta transitions
allow reliable shape-factor measurements and have
been investigated by several experimental groups. " "
They are: Cl" I'e", Tc", I~', Cs", and Cs" . Their
shape factors have been given in terms of Eq. (21).
Table III summarizes the averaged experimental
results.
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Fro. 1. Equi-Q' in
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plane for CP'. The
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0 I I

-2 -I
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In that equation, Cth(W;) is the value resulting from
the Eq. (19). C, ~(W,) and AC, ~(W,) are the exper-
imental values and errors of the shape factor, as a
function of the beta particle energy 8',.

We have plotted in the plane (A, Ai) equi-Q' as a
function of A2. A variation of A2 between 0 and 10
results in a nonsignificant displacement of the equi-Q',
so that one can set A~ ——0 to simplify the general discus-
sion of the solutions A and A~. In Figs. 1—6, we give the
equi-Q' in the plane (A, Ai, A.s ——0) corresponding to the
confidence levels of 70% and 90%, respectively.
LP(X') Q') =0.3 and 0.1, respectively. )

The relatively broad range of the possible values A
and h.~ can be limited if one accepts the prediction Ac~c

I

—6
I I

—4
AI

Fio. 3. Equi-Q' in the (A, A&, A, =0) plane for Tc9s. The solid
line gives the 70% confidence level, the dashed line the 90% one.
S.P. and CVC label the theoretical estimate of A.I and A. The
hatched domain is compatible with h.ovo.

I I I l I I I I I

I 129

A2=0

given by the conserved vector-current theory.
the present status of the experiments performed to test
the validity of the CVC hypothesis in beta decay, "

Fe 59

R2=5

60—

CVC cvc

20—

10—

t
l

S.p.

0 gF I

-2 0
I

10

0-2
'I

I

0

S.P,

I I

2 4
AI~

1 I 1

6

Fio. 4. Equi-Q~ in the (4, A.&, A2 ——0) plane for In9. The solid
line gives the 70% confIdence level, the dashed line the 90% one.
S.P. and CVC label the theoretical estimate of A.~ and h, . The
hatched domain is compatible with h.ovo.

Fxe. 2. Equi-Q' in the (h., h.1, A.2=3) plane for Fe59. The solid
hne gives the 70'%%uo confidence level, the dashed line the 90%
one. S.P. and CVC label the theoretical estimate of h.1 and A..
The hatched domain is compatible with h.ovo.

"I. Yoshizawa, Nucl. Phys. 5, 122 (1958).
i~ H. Daniel and H. Schrnitt, Z. Physik. 168, 292 (1962).I C. S. Wu, Rev. Mod. Phys. 36, 618 (1964).
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and the experimental ratios of matrix elements

derived from first-forbidden beta transitions, "" a
relative error of' 10% on the theoretical value &cvc
seems to be a safe limit. Under that assumption, one
can derive experimental values of A» from the computed
Q' analysis.

In Table IV we give the shell-model conQ.gurations
and the theoretical estimates of the nuclear-matrix-
element ratios for the beta transitions considered. The
experimental value A.», ~ is obtained setting A=A.g~g
and As ——0 in Eq. (19). The Coulomb energy factor $
has been computed with the nuclear radius R= 1.2)&2'~3

F and is given in units of A=m=c=1 by

)=1.175XZXA "',
where Z and A are the nuclear charge and mass number,
respectively.

The comparison of h.», ~ with A.» g p given in Table
IV shows that the extreme shell model description leads

60—

"40—

20—

0-2

I I I I I I I I I

CS l35

hp= 0

CVC

I I

6

TmLE 4. Shell-model configurations, theoretical estimates of
the matrix element ratios, and experimental values compatible
with the CVC theory.

Fro. 5. Equi-Q' in the (it, hi, A2 ——0) plane for Cs'". The solid
line gives the 70% confidence level, the dashed line the 90'% one.
S.P. and CVC label the theoretical estimate of A.I and A.. The
hatched domain is compatible with Advt:.

17CP'

26Fe"

43Tc»
$129

Cs135

55Cs137

d3/2 d3/2 15 4 0 0

f7/2 P3/2 21.2 —2 +3
gg/g d5/g 25.8 —2 +2.6
g7/2 d3/2 28.8 +2 —1
g7/2 d3/2 29.4 +2 —1
g7/2 d3/2 31.2 +2 —1

Isotope ~P) ~a) hovel iti s p, its s p ~1 exp

+0 4

(
+1.65'0.25~
—2.0 ~0.2b
—4.6
+5.2a1.0
+5.0~0.85
+2.9~0.4

same 6t of the shape-factor measurement, the behavior
of the longitudinal polarization is quite different, as is
shown in Fig. 8. The similarity between the spectrum
shape factors of the Cs"~ and RaE decays is striking.
A measurement of the energy dependence of the electron
longitudinal polarization in the decay of Cs"~ would be

a See Ref. 14.
b See Ref. 13.

to the right magnitude and sign of A», with the exception
of Fe". In that particular case, there is a disagreement
between experimental data from different groups. "'
I.anger et al.' And a shape factor consistent with the

approximation. Because of the relatively high
endpoint energy of that particular beta transition
(Wp= 4.07, $ = 7.85), the & approximation (&))Wp)
might be poor. If the results of Metzger et al.»3 apply,
an excellent agreement with the shell-model prediction
is obtained: A», ———2.0~0.2 A2, ——1.0~0.5. Figure
7 shows a comparison of the theoretical 6t to both
experimental results.

The case of Cs»3~ is the most interesting one. The
shell-model prediction gives a vanishing contribution of
the term in (W'—1) of Eq. (21), which is experimentally
verified. In Fig. 6, two distinct regions of sets (A, At)
are shown from the equi-Q' giving the 90% confidence
level. The island between these two regions disappears
as As is increased. Although the choices of (A, A.t)
centered around A.», ~ and A» s p. give roughly the

"P.Lipnik and J. W. Sunier, Nucl. Phys. 53, 305 (1964)."P.Lipnik and J. W. Sunier, Nucl. Phys. 65, 21 (1965).

I I I I I I I I

cs I 57

hp= I

60—

po—

CVC

20

0
0

S.P.

I I I ir I I I I I

I 2 3 4

Fxo. 6. Equi-Q' in the (A, hi, F2 ——1) plane for Cs"'. The solid
line gives the 70% confidence level, the dashed line the 90% one.
S.P. and CVC label the theoretical estimate of A.1 and A. The
hatched domain is compatible with h.yves.
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TABLE V. Experimental values of the mixing parameter p(220).

Isotope
Extreme shell model Admixture tp(221)/j' j1 or j1' p(220) p, p(220)

1.5—
C (W)

CP6
Fe"

Tc99
$129

Cs135
Cs137

(aWp) r'
(aV2) ~'
47/2) ~'
47/2) ~'

(d )'
(Pep) '

(A/2) '
(&3/2)

'
(d'3/2). '
(d3/2) '

(gzyp) e
(~5/2) u
(~l5/2) p
(d'5/2) p

9
2
5
2
5
2
5
2

—0.27
0.0b
0 42o

—0.19—0.31—0.30—0.11

1.0
W)

-P (W)

a In that case, Eq. (14) is not valid and has to be replaced by 41=3
p(220) jl 1+p(220) j, the single-particle value being hg s.p. =0.
b See Ref. 13.
& See Ref. 14.

0.5—
a) Xi=+1.65

A,=+5.0

f Laager et al.

b) hi= -2.0
Ay=+1.0

$ Metzger et at,

I I I

3.0 3.5
W(m, c')

FIG. 7. Shape factor C(W) and reduced electron longitudinal
polarization —P (Wz) =Pz(W)W/p for Feoo, as a function of the
electron energy W.

I

402.5

highly desirable. It could give the additional informa-
tion required to compute a, precise set of nuclear
parameters.

I I

S. CONZIGURATION MIXING AND RADIAL
MATRIX ELEMENTS

I.et. us make some comments concerning Eqs. (7) to
(14) of Sec. 2. The value Ar s p does not change if one

considers higher orders of seniority in the configurations
j and j', because then p(221)=p(220). Eqs. (12) to
(15) simplify l.he computation considerably because a
limited number of configurations j„' and j„ lead to
nonvanishing reduced matrix elements (j„llT«.„llj„).
In that sense, the ratio of the experimental values
At, „n and As, , (Table IV) to their extreme simple-
shell-model estimate Ar s p and As s p. (Table IV) is a
measure of the amount of configuration mixing.

Theoretically, these ratios can be computed with
Eqs. (11) to (15) as functions of overlapping integrals
between the radial wave functions of the initial and final
nuclear states. Such computations are tedious if more
than two or three shell-model orbits are mixed to
compose the wave functions of these states. In the
following we shall restrict ourselves to the mixing of
three shell-model wave functions and consider this
procedure as a qualitative attempt to interpret the
experimental data.

5.1. ComItutation of the Parameter Iz(220)

With the simplification discussed above, the nuclear
matrix elements given by Eq. (12) reduce to a sum of
two single-particle matrix elements and take the form:

1.0—

0.75—

0.5—

Cs l37

Ap= -1.0

2.9 15.6

24 172

2.1 15.6

&fll T«.r+llo) =~~s&jll T«vll j's.p.)+&&s(jt'jr)
&&(jrllT«, ll jr')s.p. (24)

In, Eq. (23), the primed momenta label the neutron
states.

TABLE VI. Radial integrals' for the harmonic oscillator poten-
tial. Fz= frz~R(r)R'(r)rlr=(N11rzttN'I'). The value of bp/R
is that of Wahlborn b

F2

I

2.0
I

2.5
I

5.0
W(moc )

I

5.5

X~2
X~2

N
X+2

l

l+2
l~2
l~2

b p
= (ft/ilute)'~',

$N+ o5bp'-—e P (N+l+2a 1) (N 1+1+1)5'~ob p'—
$P(N+l+1&2) (N+1+3+15'robpo—L(N+1+2a1) (N —I+IW15z"boo
—o'P(N —1&2)(N —1+2~2)5'~oboe
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FIG. 8. Reduced electron longitudinal polarization of Cs' 7 beta
decay as a function of the electron energy W.

W. H. ShafFer, Rev. Mod. Phys. 16, 245 (1944).
b S. Wahlborn, Nucl. Phys. 8, 209 (1964).
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Ter.z VII. Standard matrix elements compared to their single-particle estimate.

Isotope

p6
Fe69 a
b

Te»
Iua

S136

CS13'?

logf,t
15.8~0.3
12.5~0.2
13.4+0.3
14.3~0.4
14.6+0.2
14.5~0.2
13.9~0.4

l J'R;;/R'l,

0.007~0.001
0.210~0.020
0.074~0.011
0.019+0.004
0.011&0.002
0.012+0.002
0.024~0.005

1
1

(1/2+15)
(1/4@2')
(1/4%2)
(1/4v2)

(JII2'»p.+Ill')

(7/2 ~)bp'
(6/ m)bpP

(6/Qn. )bp'

E
9+(10/7n.) fbpP

18/Q(7n. ) gbpP

L18/v'(7 ) 3b '
L18/g(7n) gb 0'

l J'Rg/R'l s p.

0.084
0.218
0.377
0.038
0.046
0.048
0.061

jeff

0.083
0.965
0.196
0.200
0.239
0.250
0.394

a See Ref. 14.
b See Ref. 13.

U»ng Eq. (7), Eq. (10),and Table II, we can compute

p(»1) &jill T»ill ji'& (jll T»oil j'&

p(»o)

and the parameter p(220) can be extracted from
Eq. (14) as a function of A&/A& s.p. The experimental
values p,„~(220) computed with the parameter Ai,„,
discussed under Sec. 4.2 are given in Table V. In the
same table we give also the shell-model configurations

j, j', j&, j&' and the corresponding ratio p(221)/p(220).

5.2. Standard Matrix Elements Compared to
Their Single-Particle Estimate

The standard matrix element, computed from the
comparative half-life of the decay according to Eq.
(17), is smaller than its extreme single-particle value.
Considering Eqs. (7), (12), (16), and (17), we define
an eBective reduction factor

&fll T»pr+II'&...
&eff

L1+p,,(220)3~0(jll2'200''ll j'&s.p.
(25)

fR,, /8~q 't'
=I —

I (»'+1) "'~0
R' is.p. 45)

XL1+p. ,(220)](jll T220r+II j'& (20)

5. DISCUSSION OF RESULTS

The nuclear matrix element ratios AP= JiA;;/— '

fR;; and A~= fiT;;/f R;; compatible with the shape
factors investigated agree with the prediction A~y~ of

The geometrical decoupling factor a2 can be evaluated
by considering only the lowest order of seniority in the
configuration jj'. The single-particle matrix element
(jllT»0m+II j') depends on the radial integral Fp(jj')
which we compute from Table VI, giving the solutions
for the harmonic oscillator potential. The results are
summarized in Table VII, in which we give the exper-
imental standard matrix element

I
J'R;;/R'I, the

corrected comparative half-life, the geometrical factor
a2, and the reduction factor n, fg with respect to the
single-particle estimate:

the conserved vector-current theory and exhibit
reasonable deviations from the single particle estimate
Ax s.p. . The matrix element fS;;p has small influence
on the shape factor and can be neglected. Even in the
case of Fe", the deviations from the ( approximation,
suggested by the shape factor measurement of Metzger
et al. ,

" can be accounted for by taking further terms
in the expansion of the transition probability as a
function of $.

The deviations from A~ g.p. can be explained by a
relatively small amount of configuration mixing in the
shell-model wave functions (10—30%). The correction,
measured by the parameter p,„,(220) is a minimum for
the decay of Tc" and Cs"', as could be expected from
the shell-model level structure.

The standard matrix element
I
J'R;;/R'I is reduced

with respect to its single-particle estimate. The reduc-
tion factor decreases from 5 to 2.5 as the neutrons fill
the levels of the X=82 shell between Tc" and Cs'".
The standard matrix element of the Cl" transition is
reduced by a factor of 12, although configuration mixing
does not seem prohibitive in that case. The (f,t) value
resulting from the shape factor measurement of
Langer et al. '4 is surprisingly low. The analysis of the
measurement of Metzger et al." agrees much better
with (Aovo, A& s p.) and the general trends exhibited by
all other second forbidden transitions. It is therefore
not improbable that the $ approximation is not suK-
cient to describe the shape factor of that particular
transition.

A comparison of the similar transitions in the decays
of Cs"~, Cs"', and P29 is instructive in many aspects.
First, the reduction factors a,ff of the standard matrix
elements are proportional within &8%%uo to the statistical
factor I:1V-X(E„+1)Jt', where X„and N„are the
number of nucleons in the (dptp)„and (gpt2)„ levels of
the initial state. This fact supports our approximation
that only pure (dptp)„conflgurations are involved in
these decays. With this in mind, one can evaluate the
ratio of the amplitudes of the nuclear wave functions.
Considering the states of seniority 1 and 3 only, one
can write according to Eq. (11):

I ~&=~'I (-.)n'-. (-.)~0 i 2)+O'I (-.)n'2(k) n'2(s)-0, —.) ~

I f&=~rl (2)n00(2)-'2 ~ 2&+pal (0)n'2(0)n'0(0)-pk' 0&.
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The nuclear matrix element then takes the form

(fll7'»«'III& =n'n/(32) "'(g»sll2'»oT+lld3/3&

+P.P/2(33) '"(ds/sli T»o"Ilds/3&

from which one gets, considering Eq. (7), Eq. (13), and
Table VI:

P,Pr/n;ns 1.0——1p(220) .

In the case of Cs'", the experimental value p, v(220)
= —0.11 and the cancellation between the matrix
elements occurring in the leading term in p' of the
theoretical shape-factor distribution con6.rms the
almost single-particle character of the beta transition.

The experimental value A1, derived for the decay of
Cl", indicates a considerable mixing of (d3/3) and (sI/3)
orbits in the initial wave function. Pure (d3/3) configura-
tion would imply AI —=0 for the P decay of C133 into
S" as well as for the transition of Cl" into Ar" by
electron capture. This contradicts the experimental
results":

A &t' & = —1.1a0.5, A &"'=—0.35W0.10.

"P.Lipnik, G. Pralong, and J. W. Sunier, Nucl. Phys, 59, 504
(1964).

We consider the wave functions

Ci"l3&= 'I (d3/3). '(d /)-' 2&

+p'l(d /).'( /). '(d /)-' 2)

A"'I f& =n/I (d3/3) '(d3/3) -' o&

Application of Eq. (7), Eq. (13), and Table VI gives

p;/n, = (7/4/5) p(220) = —0.21.

This relative amount of I (sI/3) 3-', —', (d3/3) 33 —,'; J= 2,
2'= 1) to

I (st/3)'00(d3/3)'21; J= 2, T= 1& configuration
agrees very well with the value P~/n, = —0.23 reported
by Lovas et a/. '4 in their study of the excited states of
Cl" and Ar".

In conclusion, we would like to stress that, despite
the limited number of observables and experimental
data, the second-forbidden beta transitions agree
fairly well with the j-j coupling model, in a consistent
manner. Although this agreement may be partially
of a qualitative nature, a systematic study of observ-
ables like the electron longitudinal polarization and its
energy dependence could be very promising and would
allow a more precise determination of the relevant
nuclear parameters.

24 I. Lovas and J. Rdvai, Nucl. Phys. 59, 364 (1964).
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Nuclear Recoil in the C"(p,pn) C" Reaction. * I. Angular Distribution

J. A. PANONTIN, 't L. L. SCHwARTz, f. A. F. STEHNEY, E. P. STEINBERG, AND L. WINsBERGjl

Argonne Nationa/ Laboratory, Argonne, I/l&sois

(Received 2'7 December f965)

The angular distribution of the recoiling C" atoms from the reaction Cn(p, pI3)C", induced by 450-MeV
protons, was measured. The results were compared with the theoretical calculations of Benioff and Person.
The distorted-wave impulse approximation gives better agreement than does the plane-wave approximation.
However, the theoretical values from both calculations appear to be too large at the backward angles. This
may indicate the existence of competing mechanisms. The results reported here are in general agreement
with the thick-target thick-catcher recoil measurements of Singh and Alexander. A similar comparison for
the reaction Cu" (p,pII) Cu" indicates no agreement between the two types of experiment.

INTRODUCTION

I 'HE measurement of the angular and energy dis-
tribution of recoiling atoms from the (p, p33),

(p, 2p), and other simple reactions provides information
about the mechanism of nuclear reactions and about the
structure of the target nucleus. ' Measurements of the
simple reactions are expected to be more sensitive to the

~ This work was done under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Purdue University, Lafayette, Indiana.
f Present address: Lawrence Radiation Laboratory, University

of California, Livermore, California.
$ Present address: University of Illinois at Chicago Circle,

Chicago, Illinois.' P. BenioQ' and L. Person, Phys. Rev. 140, 8844 (1965).

nature of initial encounter between the incident proton
and the target nucleus than reactions in which many
particles are emitted. Hence, these reactions are being
extensively investigated. '

The C"(p,p/3)C" reaction was chosen for this type of
study because C" is a closed-shell nucleus of relatively
simple structure. Furthermore, the amount of C"
formed in this reaction can be readily determined by
measuring the intensity of positrons emitted during
radioactive decay.

Measurements of the recoiling C" atoms from this
reaction have previously been made by Singh and

2 J. R. Grover and A. A. Caretto, Ann. Rev. Nucl. Sci. 14, 51
(1964).


