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Disyersion, a Most Useful Tool in Paramagnetic Resonance
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The authors present a theoretical and experimental study on the possibilities of paramagnetic-resonance
dispersion for investigating the properties of paramagnetic systems. It is shown that the dispersion line
contains at least as much (and "better") information about the magnetic relaxation as does the absorption
line. The parameters of both resonance lines and their relation to parameters of the relaxation function
are discussed. New parameters of the dispersion line are introduced, corresponding and equivalent to the
area under and the moments of the absorption line. These dispersion parameters are related to the static
susceptibility and the derivatives of the relaxation function in a much simpler way than the corresponding
absorption parameters. The foregoing results, being derived essentially for the ideal case of a symmetric
nonsaturated line in a high magnetic Geld, are generalized afterwards to some nonideal cases. Experimental
methods, applying the theoretical principles introduced in the paper are described, amongst others a simple,
accurate, and selective method for measuring the static susceptibility by means of resonance dispersion.
In order to check those experimental principles, a series of test measurements of the static susceptibility of
diphenylpicrylhydrazyl (DPPH) were performed in a 9-GHz ESR spectrometer. An excellent reproduci-
bility was found, without using any reference substance, and even after complete deregulation of the spec-
trometer. Low-temperature measurements were included. The values of the static susceptibility found by
the resonance-dispersion method are compared with those of other authors, obtained by means of static
methods. The Curie temperatures are calculated and some deviations from the Curie-Weiss law are dis-
cussed. A possible inhuence of the air surrounding some of the samples is detected.

INTRODUCTION

''N almost all paramagnetic-resonance studies, ab-
~ - sorption rather than dispersion is used, except in the
case of appreciable saturation, where the absorption is

too weak. In the present paper we want to demonstrate
that it is quite interesting, even in the case of negligible
saturation, to make use of resonance dispersion for

studying paramagnetic systems.
In interpreting magnetic-resonance experiments,

scholars almost exclusively use the relaxation function,
to which the absorption line is related by the g factor,
the linewidth, the area under the curve, and the mo-
ments of the line.

In the first section of this paper we will show that the
dispersion line contains at least the same —and even
"better"—information about the relaxation function as
the absorption line. For clarity we will restrict ourselves
in this section to the discussion of a simple symmetric
line in a high static field. The conclusions will then be
generalized to some extent in the second section. In the
third section it will be emphasized that, from an experi-
Inental point of view, information on the relaxation
function should be more accessible in the dispersion

line, and that resonance dispersion really is a useful and
practical tool for the investigation of magnetic prop-
erties. The fourth section contains direct experimental
evidence on this question.

I. DISPERSION, ABSORPTION, AND
RELAXATION

x(co)—=x'—ix"= (—dm (t)/dt) exp( —itot) dg.

On physical grounds we assume X(~ ) to be zero. ' In the
presence of a static magnetic field 8„the function m(l)
undergoes an oscillation at a certain frequency co„and
X(&o) becomes important in the neighborhood of that
resonance frequency.

In the present section we suppose 8, constant, while
cv is variable, and we confine ourselves to the case of one
single resonance frequency, which we assume to be much
higher than 1/r, where r is the characteristic time of
m(t) if one disregards oscillations. The frequency range
where X(to) is enhanced is of the order of 1/r, and pretty
well centered on co,= —&B„wherep is the gyromagnetic
ratio.

By introducing a new quasi-step-function for the

A. Transformation of the Relaxation Function—
Quantities of Interest

The relation existing between relaxation and high-
frequency (HF) susceptibility, and more generally
between transient and steady-state response of a system,
constitutes precisely the physical background of the well-
known Fourier transformation.

Let m(t) be the magnetization following a unit step
function of magnetic field b, ending at time 1=0. The
resulting comp/ex susceptibility is then given by

*Former Research Fellow of the Belgian Interuniversity In-
stitute for Nuclear Sciences. Now at the University of Sao Paulo
(Brazil).

t Scientific Collaborator of the same Institute.
' C. P. Slichter, Principles of 3fagnetic Resonance (Harper and

Row, New York, 1964), p. 36.
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magnetic pulse:

b~=cosM, t for t&0,
b~=0 for t &~ 0,

we may write the response magnetization as

mi(t) =P(t) cos(u, t,
which relation defines the so-called transforn;ed relax-
ation function g(t). In the limit r&)1/cu„considered
here, m(t) =mi(t). Further we define

Mg=M —
M& &

and confine ourselves to symmetric li~es, i.e., lines
satisfying the following condition:

x(co~) = —x*(—~d) .
With some mathematics, carried out more extensively

elsewhere, " and disregarding the line centered on
M= —M„we arrive at the following inverse Fourier
transforms:

the shape of P(t). Here too we will introduce equivalent
parameters for the dispersion curve.

B. g Factor and Linewidth

As a matter of fact it is immaterial —from a purely
theoretical point of view —whether one considers, for
determining the first two parameters, the absorption or
the dispersion. In order to measure the g factor one can
make use of the maximum in X" as well as of the central
inflection point or the zero point in X'. The linewidth
can be found from X' or from X".

It remains to discuss the integrals of X".

C. Static Susceytibility

The static susceptibility X, is given quite generally by

With Eq. (1b) we get the well-known relation:

—X slnMdt dMg ) X dMd

X" cosM~t dM~. (1b)
= lim (2/iree, ) x"((od') dodd'. (2)

One never knows x(cud) completely, and thus one cannot
deduce P(t) from these equations. Grant' has pointed
out that some assumption has to be made anyhow about
the shape of x(ides) or p(t). Therefore, the normal pro-
cedure is to define some parameters of P(t), which are
theoretically obtainable, and which one may determine
then by investigating x(~&).

We summarize these parameters and their relations
to parameters of X(cvq):

1. The g factor gives the position of ~, on the ar axis.
It determines how to "transform" the relaxation func-
tion to f(t).

2. The linemidth gives the region over which X is
extended along the M axis. It is proportional to the
inverse of the characteristic time r of P(t). The propor-
tionality factor depends on the definition of "linewidth"
in x and the definition of "relaxation time" in p(t)

3. The area Neder the absorption curve x"(cvq) gives
the value of $(0), and hence the static susceptibility x,.
We will derive in this paper an equivalent parameter for
the dispersion curve x'(~q).

4. The moments of x"(~q) give the derivatives of
f(t) for t approaching zero, and hence a Taylor expamsi ox
of P(t). The whole (infinite) set of moments of x" would
yield us f(t) completely of course; however, as proved
by Grant, 4 without some previous assumptions even the
first hundred moments do not teach us anything about

It must be emphasized that Eq. (2) supposes the inte-
gral of Eq. (1b) to be convergent, and hence the
Kramers-Kromg relations to be valid.

We use Eq. (1a) to deduce another quite eeoc expres-
sion for x,. Let us write down Eq. (1a) in a slightly
modified form:

—X slnMgt dMd

sinMqt
d(op . (3)

lim
t~0

sinM~t
A dMg ——limt~0

SlnMdt
A dMg

= (lim A)—=-',mA. (4)t~0

In the limit t —+ 0 the first integral vanishes, whatever
the (fixed) positive value of E, for, in any case:

sinu&qt
~
(ddt,

[x'[ (~,
0&~Mg~&E( ~ .

For the calculation of the second integral we first derive
the following identity by applying the same reasoning
together with Dirichlet's integration (A is a constant):

R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
Now su ose that

3 J. Talpe, thesis, Leuven, 1964, p. 100 (unpublished).
4 W. J. C. Grant, Physica 30, 1433 (1964).

I.= lim (x'(v~)—
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whereexists and is finite. Then, for t approaching zero, the
second integral of Eq. (3) approaches ,'7rL—, —since, for
cog) X, the difference (X'~q —L) becomes negligible
compared with L (Ã being chosen high enough). Thus,
if the limit exists and is finite

+" sincodt
+2n~d2n

X,= lim (—2X'cud/(0, ).
lim 2„=0.t~

In the same way as in the preceding paragraph it can

(5) be shown that

For evaluating X„Eq.(5) can be applied as well as
Eq. (2). Moreover, a simple check of the convergence
of the two limits in the case of a Lorentzian line illus-
trates already the improvement of Eq. (5) over Eq. (2):

Equation (2) converges as

1—(2/s. )x—'+ (2/3~)x —'—

Equation (5) converges as 1—x '+x 4—

Other advantages of the use of Eq. (5) will be indicated
below.

D. Taylor Exyansion of the Relaxation Function

Successive differentiation of Eq. (1b) with respect to
I,, while taking the limit for t approaching zero, yields
the well-known expressions for the moments of the
absorption line. We confine ourselves to the even
moments, the odd ones being zero:

Let us consider furthermore the summation term of
Eq. (8). On the terms of this sum the following general
remark can be put forward: The integral

Ng since'
c2„2J,cog'~ do)g with Xg&Ã

is an oscillating function of E~. Its value is determined
by the phase of (Et() in the sine and hence the fre-
quency is of the order of E&. The amplitude is of the
order of a2„21,Ã~' . But for t less than a certain value
1&, the term with Qs„in Eq. (8) is negligible with respect
to P""&(t) and a&„.Therefore, if the asymptotic expan-
sion exists, the limit of 8J, for E~~ ~ has to be taken in
an unambiguous way and must become independent of
t for t —+ 0. The only way to realize these conditions is
that

lim (lim dl,)=0.
t-+0 Ny~

0""'(0)=(-1)"(2/ .) X Q)g dGOg.

Here the restrictions about convergence for X."are still
more stringent, and for a Lorentzian line, for example,
the formula breaks down.

Let us use again Eq. (1a). Successive differentiation
of this equation with respect to t yields

0""'(1)= (—1)"(2/ )
—X cog slnvgt

rug'" dry, . (6)

Now suppose (X'cod) to have an asymptotic expansion":

—X ~a/~a=+o++sa'a +&4~v + +&sk&e +%a&

By this asymptotic expansion Eq. (6) is transformed
Lusing again Eq. (4) and assuming k=ef to

0 ""'(1)= (—1)"2&s + (—1)"(2/~)

sino& t
as„sl,u)~'s d~g+ ( 1)"2Qr„/s,—(8)

0 Mg

' A. Angot, Comp/emend's de 3Eathemutigles (La revue d'optique
theorique et instrumentale, Paris, 1961), p. 335.' H. Poincare, Acta Math. 8, 295 (1886).

with, for any (fixed) non-negative integer value of k:

lim R2I,cog2~= 0
~g-+00

Finally Eq. (8) reduces thus to the simple relation

0""'(+0)= (—1)"2~

So we have shown that the derivatives of P(1) in the
limit for t approaching zero are essentially the co-
eKcients of the asymptotic expansion of X'. A simple
check shows that this statement holds, not only for a
Gaussian shape, ~ but also, for example, for a Lorentzian
shape. The equivalence between the moments and the
coefficients of the asymptotic expansion of respectively
two functions, connected by what we now call the
Kramers-Kronig relations, was already demonstrated
in 1895 by Stieltjes' in his theorem of moments. It must
be pointed out, however, that his theorem is only valid
for finite moments, ' while our statement includes also
the case of infinite moments, e.g., the Lorentzian line.

II. SOME GEÃE&Q.lZATXONS

In this second part we will examine three cases where
the resonance lines are not so simple and tractable as
assumed in the foregoing section:

7 The surprising discovery of such a relation, while calculating
the asymptotic expansion of a Gaussian dispersion line, was in fact
the beginning of the story of this section.

T. J. Stieltjes, Ann. Fac. Sci. Univ. Toulouse Sci. Math. Sci.
Phys. 8, J1-122 (1894); 9, A1-47 (1895).

' Even with the refinements introduced by Hamburger PH.
Hamburger, Math. Ann. Sl, 235 (1920)g.
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First, when the HF field is so strong that saturation
is no longer negligible; second, when the resonance Geld
does not greatly exceed the linewidth; and finally, when
the resonance line is composite and hence asymmetric
or even split up.

Pote: As we are getting closer to the experimental
conditions, we will from now on consider the frequency
as a constant, denoted by co or by cop. co—=cop, and the
static magnetic field 8, as variable, the resonance value
of which is denoted by Bp: Gpp=——p Bp. %e do not dis-
cuss here corrections due to Eq. (9b) below, although
they may easily inQuence the linewidth measurements
by 10%.M This type of correction, however, is insig-
nificant for static-susceptibility measurements. For high
fields we have

(dg= 0) Glg= COp M g

A. Saturation

Absence of saturation (i.e., linearity), together with
the other conditions necessary for the Kramers-Kronig
relations to be valid, guarantee the validity and even
the convergence of Eq. (1a) and (1b). However, when
saturation appears, these relations fail, and we have to
appeal to the Bloch theory, e.g., to see what happens.

For discussions about the linewidth and the g factor,
as measured on the absorption line, we refer to the work
of Van Gerven. "It would be of interest to do a similar
job for the dispersion line.

As for the static susceptibility, it can be shown easily
that Eq. (2) breaks down in the presence of saturation.
Equation (5) however remains valid, but the conver-
gence of the limit depends now (also) upon the amplitude
of the HF field. As a matter of fact, in the case of
complete saturation the use of X." becomes absolutely
impossible, the absorption being zero, while Eq. (5)
still remains useful under certain conditions, as, for
example, in some of the circumstances indicated by
Solomon and Ezratty" (see Talpe").

B. Linewidth of the Order of the Resonance Field

The transformation which eliminates the resonance
frequency from the relaxation function, leading to
Eqs. (1a) and (1b), assumes the static resonance field
Bs to be much larger than the (half) linewidth b If 5 is.
of the order of Sp, everything about the line shapes
becomes very complicated. As to the absorption, this
case has been discussed extensively by Van Gerven" by
means of the so-called "modified Sloch theory. " It
might be worthwhile to do the same for the dispersion.

' Reference 3, p. 123."L. Van Gerven, Lijnvormen in I'aramagnetische EesonanIie
(Interuniversitair Instituut voor K.ernwetenschappen, Brussels,
1963)."I.Solomon and J. Ezrstty, Phys. Rev. 127, 78 (&962).

~ Reference 3, p. 124.

There exists, however, another procedure, namely,
reducing the static Geld to zero and using a low-

frequency field. (In this way, of course, one cannot
determine g factors. ) As a matter of fact, the static
susceptibility is exactly the "dispersion" in zero field.
The experimental problem then is to apply a large
enough sweep in order to obtain the zero level X'(~) of
the signal. Anyway, one cannot use Eq. (2).

For the discussion on the width of the absorption line
we refer to the quoted publication" —to be supple-
mented in an analogous fashion for the dispersion line.

C. Comyosite Line

An asymmetric resonance line or a split line can be
considered quite generally as the resultant of a group
of elementary lines. The paramagnetic-resonance line
of a powdered sample of diphenylpicrylhydrazyl
(DPPH), e.g. , which is very asymmetric (see Fig. 1),
is a sum of individual symmetric lines, produced by
crystals in various directions. Sometimes a finite number
of lines is assembled, each coming from the spins that
have a certain definite position and identity in the
substance. Or even transitions from the same kind of
spins between different levels, as in the case of electric
quadrupole splitting in NMR, may produce a com-
posite line. But, anyhow, the elementary lines are
symmetric" (if we suppose, as we do, that the linewidth
is much smaller than the static-Geld values used:
5&(Be). A lot of work has been done up to now to
disentangle such composite lines. For a 1.963 review we
refer to the paper of Draghicescu. " When one is in-
terested precisely in the splitting, the only thing to do
in general is to try to locate the different lines and to
evaluate the relative intensities. I.et us emphasize that

'
I zs I,

FIG. 1. Dual-beam oscillogram of an experimental ESR dis-
persion and absorption line at 9 GHz from a sample of 7.38 mg
DPPH powder at 291'K. Total width of the trace: 0.90 mT
(=9.0 G). Total height of the dispersion line: 0.466 mm3. The
static 6eld increases from left to right.

"A.Abragam, The PrznezPles of 1Vzzctear Magnetism (Clarendon
Press, Oxford, England, 1961},p. 108."P.Draghicescu, Studii Cercetztri, Inst. Fizica 14, 201 (1963).
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SUM advantages of measuring dispersion instead of ab-
sorption.

The experimental work, by which the following ideas
are supported, is done on a microwave dispersion
spectrometer, described elsewhere. "The spectrometer
contains a stabilization system, locking the klystron
frequency coo to the "eigenfrequency" co, of the sample
cavity.

The absorption brings about a change in the "eigen-
damping" 1/Qp of this cavity:

(9a)

0.0

-5;0 -2.5

d)(n,/dBd
I.——--

y Bo/2Sz

t. 2S + 50
""-.2.5 0.0 t 2.5

By/6 Bd/S

O.O 5D

and is measured in a conventional way. p is the filling
factor of the sample in the cavity (we use rationalized
mesa units, hence 4ir disappears).

The dispersion brings about a change in the eigen-
frequency of the cavity, which equals the change in
actual frequency of the l~lystron, because of the stabili-
zation. It is this chmge ie oro, being proportional to X,
which we measure:

Fin. 2. Comparison of x', x", dx'/dBd, and dx"/dBq for one
single Lorentzian line and for the sum of two Lorentzian lines
separated by a distance in field equal to the linewidth at half-
height 25. The small vertical arrows indicate Bd ——~5.

one gets a much clearer spectrum when recording the
derivative (with respect to the static field) of the dis-
persion line than that of the absorption line. The
derivative of X'(B„)has a sharp maximum in its center
and very weak tails. In Fig. 2 the comparison is made
between X', X", dX'/dBq, and dX"/dBd for a single
Lorentzian line and for the sum of two equal Lorentzian
lines, situated at a distance of one linewidth at half-
height from each other.

If the paramagnetic system is linear, one can of
course use Eq. (2) for evaluating the static suscepti-
bility from the composite line. But Eq. (5) also is still
valid. Moreover, if the composite line is not too asym-
metric, one may prove (at least for the case that the
elementary lines are Lorentzian) that for the same
relative amplitude of the modulation field B, Lsee Eq.
(10)j the convergence of Eq. (5') below becomes even
better.

III. EXPERIMENTAL PRINCIPLES AND
METHODS APPLIED WHEN USING

DISPERSION INSTEAD
OF ABSORPTION

A. Introduction

It is well known how in communication techniques
an important improvement is reached by using fre-
quency modulation instead of amplitude modulation.
Absorption measurements concern an amplitude vari-
ation, while dispersion has essentially to do with the
frequency. We will point out now the experimerttal

'gX =—24oiq/ppq= —2AMp/ppp. (9b)

A more detailed analysis of the results given in Eqs.
(9a) and (9b)—including the discussion of HF de-
magnetizing effects—is elaborated in the thesis of
Talpe."

C. Static Susceptibility

The advantage of using the dispersion appears most
explicitly when measuring static susceptibilities. We
shall assume from now on that both Eqs. (2) and (5),

16 Mededel. Konint l. salaam. Acad. Belg. , Kl. Wetenschap. (to
be published).

"Reference 3, p. 8.

B. g Factor and Linewidth

The quality of the measurements of the two param-
eters concerning the frequency axis—or, more prac-
tically, the magnetic field axis—depends in first order
on how well one can keep constant and measure a
frequency and a magnetic Geld. When one wants to
determine the place on this axis of some zero point or
some maximum of a line, the linearity of the apparatus
is of no importance. However, when measuring the
width of an absorption line —either the width at half-
height or the width between the inQection points —the
linearity of the apparatus is important, and, moreover,
for the first case it is necessary to know exactly the
signal level at zero absorption. Both these problems,
which are often very annoying, disappear in dispersion
measurements. For g factor measurements we see no
direct advantage either in using absorption or in using
dispersion.
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x,= lim (2/n. Bp)
B~oo —Bd

transposedhere to variable field (near resonance B,=Be)
+By

(2')

charred dextrose it is dificult to predict the number of
spins, as this number depends very critically on the
treatment temperature and the vacuum conditions dur-

ing the charring process. "The use of NMR to calibrate
an ESR spectrum is restricted to very few cases."

x,= lim (2x'Be/Bp),
B~oo

(5')
Z. Approach to the Limit

hold equally, although Eq. (5') is more convergent and
more generally valid than Eq. (2'), as shown in detail
above '8

The application of each of these formulas requires
that the spectrometer be linear; furthermore, it requires
a catibratioe of the signal, and finally some approach to

u limit.

1. Linearity and Calibratiol of the Spectrometer

With our spectrometer, " which contains a very
elegant device for checking its linearity accurately, we

found it much easier to achieve linearity in the dis-

persion mode than in the absorption mode, essentially
because our dispersion measurements are based on a
null method.

Calibration of the dispersion signal is quite easy and
can be made in an absolute way with our type of
spectrometer. The only thing to be done is to measure
the frequency of the klystron at the points where X.' has
its maximum and minimum. The filling factor can be
determined accurately. In practice we obtain an ac-
curacy of a few percent. For experimental details we

refer to the paper describing the spectrometer. "As a
matter of fact this facility of calibration is rot limited to
microwave dispersion spectrometers.

Calibration of an absorption signal requires in
general the measurement of an HF energy diRerence and
of an HF coupling, connecting the change in damping to
the change in measured energy. In practice the only
experimental method to carry out such measurements
with a precision higher than 50% consists in using some
reference substance of known susceptibility. However,
one should pay attention to the change in coupling when

changing samples: variations of 100% are quite normal!
It is feasible to measure those elements of the coupling
that are most influenced by the sample itself. But
nevertheless, this remains an inaccurate procedure, and
generally one prefers some method in which both
samples are together in the HF apparatus. Great care
must be taken then to avoid mixing of the sample
signal and the reference signal. Anyhow, the problem
remains of finding a good reference: stable and having
an accurately known susceptibility at each temperature.
We shall not digress upon that point now, but some
remarks ought to be made. Of the two most studied
reference substances —DPPH and charred dextrose—
DPPH is certainly not a good one for ESR," and for

"For B,=10e Lsee Eq. (10) below] the error is theoretically
equal to 7% for Eq. (2') and to 1'$0 for Eq. (5').

"Reference 3, p. 177.

The application of Eq. (2') requires an integration,
or, in case the derivative of the absorption curve is
recorded, a double integration or at least a moment
calculation, the latter by virtue of an integration by
parts:

x"dBe (x"Be)+"„——

+") d'x, /l

Bg dBg.
„dBg

~atever the electronic ~ ' or mechanical tricks used
for these integrations, it remains a very important
source of trouble, starting —for the simple integration—
with the uncertainty about the zero level, and ending
nowhere.

For determining the limit of the product in Eq. (5),
on the contrary, there exists a very simple and accurate
method, which we will present here.

Upon the constant field Bo, centered on the central
inAection point (or the zero point) of x'(B,), we super-

pose a sinusoidal modulation field b„=B„cosQt:

B,=Bp+B„cosset;Ba B„cQots.
——

X' is displayed on an oscilloscope, whose horizontal
deQection is sinusoidal with the same frequency 0 and
with a variable phase q with respect to b„.

Let us take erst y=0 (see Fig. 1, dispersion line).
Now the horizontal oscilloscope axis is a field axis, going
from Be B„to Bd=+——B„.Bp—and B„areknown. We
have only to measure the difference in x' at both ends of
the horizontal axis, and multiply this difference by the
modulation amplitude over the resonance field, , to get

P(B„)—=2x'(B„)B,/Bp.

This expression is exactly the product given in Eq. (5 ),
with Bd=B„.When we take B„larger and larger, we
observe a nice approach to a limit for P (Fig. 3). For a
Lorentzian line the error (1—x,/P) equals —1% for
B„=108, where 28 is the width between maximum and
minimum of X'. I'"or a Gaussian line the error amounts
in these conditions to +1%. Generally the error lies
somewhere in between these two values. "The centering
of the static 6eld on the resonance value Bo is not very
critical, since the biggest part of the resulting error is

~ J. Herve, Compt. Rend. 244, 1475 (1957).
2' J. Herve, Compt. Rend. 245, 653 (1957).
~ V. R. Burgess, J. Sci. Instr. 38, 98 (1961).
23 Experimentally we observe indeed a much better convergence.
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imum of one trace above the minimum of the other
trace (see Fig. 5), and we measure again the difference
in volts. Afterwards we measure this same difference
(now as a frequency difference) directly in Hz. In case
the latter difference is too small, we apply a known
artificial frequency modulation for intermediate
calibration.

Note: When the derivative of the dispersion line is
recorded, we can use for the determination of X, a
relation, analogous to Eq. (5'), that will not be derived
here'4.

X,= lim $ 2(dX'—/dBg)Bds/Bpj.
Bd~oo

It is useful for broad lines.

-t.o

FIG. 3. Approach to the limit of the prod~uct P(B„)=2x'B„/Bp
Full curve: x'/Bp as a function of Bq (x—=x', B=Bp). Dashed—
curve: X./2Bs as a function of Bq (x—=x, ; B=2Bre). Sur—fa'ce

///=2 P(Bqt). Surface ggX=2 P(Bde). The limit equals half the
area of the rectangles inscribed in the hyperbola.

compensated just by taking the double difference in X',

namely X'(B„)—X'(—B„)and not X'(B„)—X'(0). Hy
this very procedure also an exact knowledge of the
signal zero level becomes completely superQuous.

The experimental method for measuring I' goes as
follows. We consider the dispersion line as represented
on the oscillogram of I ig. j.. Now we shift the phase y
to w/2. The two values X'(B,) and X'(—B„),between
which we want to measure the difference, are now

exactly one above the other in the middle of the
oscilloscope pattern, as shown in I'ig. 4. The difference
can be measured directly in volts. A method for measur-
ing such differences on an oscilloscope screen with a
0.2% precision is described in another paper. 'P All we
need further is a calibration of voltage versus frequency.
Therefore we adjust the phase p so as to get the max-
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D. Moments and Asymytotic Exyansion

FzG. 5. The KSR dispersion-line oscillogram of Fig. 1, now with
the horizontal sweep somewhat out of phase, just the right amount
for measuring the difference between &',„andX' . . Each of both
traces is brought about during one of the two half-periods of the
modulation field.
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1.4

The calculation of the derivatives of the relaxation
function in the limit t —+0 is sometimes possible on
theoretical grounds. In practice, however, only the
second and the fourth derivatives are calculated. On the
other hand, the experimental determination of the
fourth and higher moments of an absorption line is
quite a problem also. Even the second is already hard
to determine. Some electronic tricks"" can be helpful,
but even then it remains necessary to have at one' s
disposal a very accurately traced line.

The determination of the coefFicients of the asymp-
totic expansion is also rather complicated, but it can be
carried out by iteration. Suppose X„andhence ao of
Eq. (7), has been measured. From Eq. (7) we get
(transposed to variable field)

FIG. 4. The KSR dispersion-line oscillogram of Fig. 4, now with
the horizontal sweep ~/2 out of phase with respect to the modu-
lation fteld (et4 =er/2), as used for measuring the difference between
x'(B,) and x'(—B,), i.e., the vertical distance between the two
"tails" of the dispersion line.

as ——lim (X'Bq/Bp ap)y'Bs . —

~ Reference 3, p. 108.
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This means that we have to evaluate the difference
between the curve x'/Bs and the hyperbola as/Be (see
Fig. 3), and to multiply it by y'Bs'. The precision
depends on the accuracy with which the tails of the
curve are recorded. Here again we have similar ad-
vantages in utilizing the dispersion to those in the
measurement of X,. There are analogous formulas for
differentially recorded lines: one has only to differ-
entiate Kq. (7), after having divided it by ~e and trans-
posed it to variable 6eld34

IV. SOME TEST MEASUREMENTS

In order to test our dispersion method we performed
a series of measurements in our 9-6Hz ESR spectrom-
eter. 's We shall discuss only the measurement of the
static susceptibility, which constitutes the most
interesting feature of the method. Two types of samples
of n, rr'-diphenyl, P-picrylhydrazyl (DPPH) were used,
both prepared from a Qne powder of triclinic DPPH
crystals, supplied by A. G. Fluka, Buchs (Switzerland).
Samples of the erst type (A) were simply sealed off in a
small thin-walled glass tube. Those of the other type
(B) were rinsed three times with helium gas, pumped
off afterwards by means of active charcoal, and finally
sealed off im eaclo.

A. Results

Room-temperature measurements of x, on the same
sample, separated by a couple of months and by a
complete detuning and deregulation of the microwave
spectrometer, gave the same result within less than 1%.
Room-temperature measurements on different samples
of the same type (differing in weight) also gave the same
result within about 1%.During these measurements the
temperature of the sample is kept at a constant value
&0.3'C by means of a thermostatted bath of water.
Absolute comparisons of the results for all the various
samples are dificult to make, because of the uncer-

TABLE I. The static mass susceptibility &,/p (and its inverse)
of DPPH, as measured by the resonance-dispersion method, as a
function of temperature (p =the density of DPPH).

Sample

I

r
('K)

294.0
77.4
70.0
62.9
20.4
18.0
16.6
14.7

295.0
77.4
69.9
63.0
20.4
18.0
16.6
14.4

X,/p
(mm'/kg)'

29.2
90.1
97.1

105
244
270
289
327

35.8
114
123
133
312
342
364
410

p/X,
(g/mm')'

34.3
11.1
10.3
9.53
4.09
3.71
3.46
3.06

27.9
8.75
8.12
7.50
3.21
2.92
2.75
2.44

We use rationalized mksa units.

tainty in the actual value of x, for a given sample (see
below).

Further measurements were done at liquid-nitrogen
and liquid-hydrogen temperatures. The experimental
results are collected in Table I.

We have compared our resonance-dispersion results
with the results of Van Itterbeek and Labro, "who have
measured by means of a static method (the Faraday or
balance method) the static susceptibility of two
samples —listed samples I and III—of triclinic DPPH.
Sample I, prepared in the laboratory, was several years
old by the time of the measurements. Sample III is of
the same origin (Fluka) as our samples A and B. For
comparison we have shown their values, in mksa units,
in Table II.

B. Discussion

At a/l temperatures, except perhaps in the very
coldest part of the liquid-hydrogen region, the experi-
mental results on sample 3 are in close agreement with a
Curie-Weiss law

TAELE II. The static mass susceptibility x,/p (and its inverse)
of DPPH, as measured by Van Itterbeek and Labro using a static
method, as a function of temperature (calculated from data of
Ref, 25).

Sample

290.8
77.4
74.1
70.6
65.8
20.4
17.9
15.1

295.0
77.4
66.1
20.4
17.9
15.1

"./p
(mm'/kg)'

35.5
106
108
112
118
274
295
309

28.3
93.2

102
224
243
271

p/"e
(g/mm')

28.2
9.43
9.26
8.93
8.47
3.65
3.39
3.24

35.3
10.7
9.80
4.46
4.12
3.69

yielding a Curie temperature e of (—19&1)'K (see
Fig. 6). The same Curie temperature of —19'K, but a
different Curie constant, is found for sample A, if one
neglects the liquid-nitrogen points (full line in Fig. 6).
These latter points yield a quite different (spurious)
Curie temperature of —31'K (dashed line in Fig. 6).

In the same graph of Fig. 6 we also check the results
of the static measurements of Van Itterbeek and Labro
against a Curie-Weiss law: once neglecting the liquid-
nitrogen points, and once taking them into account.
Without the liquid-nitrogen points a common Curie

& We use rationalized mesa units. "A. Van Itterbeek and M. Labro, Physica BO, 157 (1964).
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Finally, if we consider the slope of the lines on the
graph of Fig. 6, we could perhaps say that aging the
sample has the same eHect as pumping o6 the air. But
here the experimental basis is really too small to draw
conclusions from.

After all, the most striking result of the test measure-
ments, reported here, is to be found in the perfect
reproducibility of the susceptibility measurements,
realized without any critical spectrometer regulation
or calibration.

-100

-1g

-31'K

100 200

Fxo. 6. The inverse of the static mass susceptibility of DPPH
as a function of temperature. ~ Dispersion measurements on a
nonrinsed sample (A). g Dispersion measurements on a rinsed
sample i8). + Static measurements by Van Itterbeelr and Labro
(Ref. 25) on a nonrinsed aged sample (I). )( Static measurements
by the same authors on a nonrinsed sample (III). Curie-Weiss
curves through the room-temperature and liquid-hydrogen-
temperature points. ———-Curie-gneiss curves through the room-
temperature and liquid-nitrogen-temperature points. At left the
respective Curie points are indicated. For clarity the vertical
scales for samples A, 3 and I, III are shifted. Rationalized mksa
units are used.

temperature of —16'K is found, while otherwise
divergent "Curie temperatures" are found.

The divergences in 0, occurring for all samples except
the "rinsed" sample 8, could be explained by assum-
ing an anomalous lowering of X, in the liquid-nitrogen
region, due to the presence of air around the samples.
Analogous e6ects are found in coal. This would also
explain the important disagreement about the Curie
temperature of DPPH existing in the literature, " for
this parameter is being determined mostly by extrap-
olation from measurements at room temperature and
liquid-nitrogen temperatures.

V. GENERAL CONCLUSIONS

From a theoretical as well as from an experimental
standpoint, magnetic-resonance dispersion constitutes
in many cases a much more valuable tool for studying
paramagnetic systems than magnetic-resonance ab-
sorption. Simple and accurate determination of the
static susceptibility —or spin density —of such systems,
without integration procedures or reference substances,
may be mentioned as a most interesting application of
resonance-dispersion measurements.

Last, but not least, it ought to be emphasized that this
method, being a ~esoeance method, permits selective and
semsztzve measurements of the susceptibility of para-
magnetic systems:

Selective measurements on complex or impure samples,
for example, in the (frequent) case of contamination by
ferromagnetic impurities, a most serious problem when
using static nonselective methods;

sejzsi ti ve measurements on feebly paramagnetic
systems, embedded in strongly paramagnetic or dia-
magnetic substances, as for example nuclear spin
systems. The resonance-dispersion method is applic-
able, of course, as well in radiospectroscopy (NMR) as
in microwave spectroscopy (ESR).
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