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where we have made use of the identity

r (a)r (1—a) =sr/sinn-u.

Now

sin (sr/2+ iysr/2p) =cosh (ysr/2p)

e '&"tstF—(-'+iy/2P; 1 i iPr)

cosh(sr7/2p) ' e'o"('—&&

dt. (C3)
s tt(1—t)j»s&1—t)

"Reference 6, Chap. 6, p. 256, formula (6.1.17).

Letting u= 1 1;—du= d—t; t——,'=-',—u (C3) becomes

e '&"—"tF (-'+iy/2p; 1 i ipr)

cosh(sr'/2p) ' e'&"&1—"& t'1 —u) '»'&

o (u(1—u)j'ts( u )
cosh(ysr/2p) ' e 'o"&~ &&

du. (C4)
o Eu(1—u)y" &1—ui

Comparing the right-hand sides of Eqs. (C3) and (C4),
we see that e '&"rFt(sr+i'/2p; 1;ipr) is also equal to
its complex conjugate, hence it is real. Thus, the eigen-
functions R(hs, y, r) are real.
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The assumptions and predictions of the Brueckner-Sawada method (including recent refinements) for
the derivation of the excitation spectrum of the high-density boson system are examined using Green s-
function techniques and a new method of solving the scattering-matrix equation. In the case of the real inter-
action potential of He4 atoms, the spectrum obtained in our approximation has the correct form but the
depletion has a meaningless value. It is pointed out that a probable cause of discrepancies is inconsistent
omission of certain self-energy terms.

INTRODUCTION

HERE are several microscopic approaches to the
derivation of the excitation spectrum of the zero-

temperature boson system, ' which have been used to
derive the phonon part of the spectrum. To obtain the
roton minimum, methods for a nondilute gas must be
used. Some clari6cation of the reason for the appearance
of the roton dip was already given by the argument of
Feynman' showing connection between quasiparticle
energy e(k) and the liquid-structure function S(it,to).
The purely microscopic derivations have concentrated
almost exclusively on the case of hard-sphere bosons.
Brueckner and Sawada' (BS) treated the hard core as
a screened delta-function potential, and found quali-
tative agreement with the Landau curve. Parry and
ter Haar4 found that the roton minimum disappears if
the depletion eGect is included in these calculations.
Even poorer agreement was found when an attractive
tail was added to the hard core, and they concluded
that the hard-sphere boson gas is not as good a model

'For review, see, e.g., P. C. Hohenberg and P. C. Martin,
Ann. Phys. (¹Y.) 34, 291 (1965).

s R. P. Feynman, Phys. Rev. 91, 1301 (1953);94, 262 (1954);
R. P. Feynman and M. Cohen, ibid. 102, 1189 (1956).' K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957);
106, 1128 (195'l).

4W. K. Parry and D. ter Haar, Ann. Phys. (N.Y.) 19, 496
(1962).

for liquid helium as has been assumed. Liu, Liu, and
Wong' showed, however, that a qualitatively correct
excitation spectrum is found if, instead of this treat-
ment, the hard-sphere potential is replaced by the
two-body pseudopotential earlier considered by Lee,
Huang, and Yang. '

The approach used in the quoted papers is called the
Brueckner-Sawada method. Because it still forms one
of the main e6orts to microscopic derivation of the
excitation spectrum of liquid helium II, we consider it
worthwhile to study some aspects of the approximations
and predictions of the theory. In the next two sections
the quasiparticle spectrum, the depletion, and the
reaction matrix equation are derived using Greens-
function techniques at zero temperature. The BS
method is then shown to have the following properties:
Lil The quasiparticle energy is assumed to be given by
the poles of the single-particle Green's function. (2g In
this, only the self-energy resulting from first-order
terms of the effective interaction with the particles in
the condensate is included. [3] The effective inter-
action is given by the BS equation for the scattering
matrix, in which the propagator between successive

' L. Liu and K. W. Wong, Phys. Rev. 132, 1349 (1963);L. Liu,
Lu Sun Liu, and K. W. Wong, ibid 135, A1166 (1964)..' T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).
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scatterings is taken to be the above Green's function,
except that L4] here in addition the process of a pair of
particles scattering into, or out of, the condensate is
neglected. L5$ The center-of-mass approximation is
adopted throughout.

Predictions of the equations are considered in the

remaining sections. We ftrst develop a method to solve
a T-matrix equation of the BS type. By expanding in
spherical harmonics, the equation can be transformed
into a set of integral equations in one real variable.
After partially transforming into coordinate space these
equations can be solved numerically in a straight-
forward manner. In contrast to previous calculations
this procedure is applicable to any interaction potential.

The excitation spectrum and the depletion are calcu-
lated for hard spheres and for the experimentally and
theoretically well-known interaction potential of He'
atoms. The behavior of the spectrum including the
roton dip agrees semiquantitatively with the neutron
di8raction data. The depletion, however, turns out to
have a meaningless value and is inconsistent with a
value used elsewhere in the approximation scheme.

Several conclusions on the validity of the approach
can be drawn. The assumption L1] is valid because, as
shown by Hohenberg and Martin, ' in a condensed Bose
system the single-particle propagator and the density-
correlation function (relating to scattering) have the
same poles. The BS scheme of evaluating the positions
of the poles presumably has some meaning for a non-
dilute gas as it gives the roton modes, which are absent
in low-density calculations using the free-particle
propagator in the T-matrix equation. The inconsist-
encies in the values of the depletion for liquid-helium

density, however, show the inadequacy of the theory.

The largest part of the error presumably comes from
L4], which has the effect of replacing the phonon spec-
trum by an energy gap, and also causes the inconsist-
ency of using different self-energy expressions in the
T-matrix and excitation spectrum calculations.

THE GREEN'S FUNCTION AT ZERO
TEMPERATURE

In the formalism of Beliaev~ the operators referring
to particles in k/0 states and those referring to parti-
cles in the condensate are separated. There are then two
kinds of propagators: those for k&0 are denoted by
G&" (x—x') and by a straight line, and those for k=O
by a zigzag line. The diagram describing a self-energy
part of a particle not in the condensate will contain two
external straight lines and in addition an even number
of zigzag lines stemming from the interaction of
particles not in the condensate with particles in the
condensate. There are now three different types of self-
energy diagrams: (a) diagrams with one ingoing and
one outgoing straight line, and with e ingoing and e
outgoing zigzag lines (rt=0, 1, ). The sum of irre-
ducible self-energy parts of this type is denoted by
Ztt(x —x'), (b) Diagrams with two outgoing straight
lines, st+2 ingoing, and rt outgoing zigzag lines. The
sum of irreducible self-energy parts is Zp&(x —x'). (c)
Diagrams with two ingoing straight lines, n ingoing and
rt+2 outgoing zigzag lines. The sum of irreducible self-
energy parts is Zsp(x —x').

The analog Dyson's equation is a set of two equations.
Solving, one finds for the exact Green's function of a
particle not in the condensate the momentum space
expression

~+«(u)+~(p) —~ (p) —p
G'(p)

&--~(p)) -("(.)+~(»-.)+~-(p)~-(p)+'~'

with the notation

(P)='(~"(P)+~"(-»» (»=l(~ (P)-~ (-P)), (p)=u'/2 .

The equations have been written for the grand canonical ensemble with p as a free variable.
The excitation spectrum is given by the poles of G'(p),

(p)+ & L.o(p)+s(p) —„p'—z„(p)z„(p)}t, (2)

where the square root must be taken with positive sign. Generally this is an implicit equation for the fourth co
ponent oo of p. Later we will work in an approximation in which the self-energy parts g (p) do not depend
and thus the quantity (2) is directly e(y).

In the presence of interaction the number density of the particles in the condensate no is different from the tota
number density st= Jtf/O. The depletion is given by the number of particles not in the condensate

X=X .

' S. T. Beliaev, Zh. EksPerjm. i Teor. Fiz. 34, 417 (1958); 34, 433 (1958) PEnghsh transls. : Soviet Phys. —JETP 7, 289 (1958) ~

7, 299 (1958)g; see A. A. Ahrikosov, L. P. Gorkov, and L E. Dzyaloshinski, 3fethods of Qnontttnt psettt ".7'heory in St tcsticul
Physscs (Prentice-Hall, Inc. , Englewood CliBs, New Jersey, 1963).
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In momentum space this becomes

d'p " dM d'p dM
n —mo

——lim i — — G—'(p, (v)e'"'=i —G'(p, (o),'~+ (2n.)3 „2~ (2m)3 g 2w

d'p S(y)+ (P) —p, —(LS(p)+ (P)—pg' —Z o(P)Z (P))'"

2(L~(y)+ oo(y) —~j'—Zoo(y)Zo2(y) )'"(2m)3

where the contour C is the real axis closed by a large semicircle in the upper half-plane. %'e again assume that the
self-energy parts Z(p) do not depend once. Substitution of Eq. (I) and evaluation of the residue at the pole in the
upper half-plane gives

It is seen that neglecting the ~ dependence of the
Z(p):s also means that the poles of G'(p) are assumed
to exhaust the whole spectrum of the spectral density
function and that the normalization of the resronances
does not enter. The numerical results quoted in the last
section indicate that the normalization constants in
fact may be important.

From symmetry with respect to the sign of p there
follows the equation

Zo2(P) =Zoo(p)

Further, one can show that at zero temperature the
chemical potential is'

P =»1(0)—Zo2(o).

This equation can also be derived, apart from the sign
of Zoo(P), from Eq. (2), assuming that o(0) vanishes.

THE REACTION MATRIX

one may use for G'(p) the expression (1) in which the
functions Zll(p) and Zoo(p) are taken to be the first-
order terms in T. Equation (4) is then a nonlinear
integral equation for T.

Introducing total and relative four-momenta

kl+k2 k3+k4yk 2(kl k2)yk 2(k3 k4)p

Eq. (4) becomes

T(k'k K)=U(k' —k)+i
2m 4( )

&& U(k' —P)G'(2&+P)G'(2& —P)T(P,k; &) (5)

From Eq. (4) it is seen that, because, 'U(g) does not
depend on the fourth component of the four-vector g,
the only dependence of T on the fourth components is
through the fourth component of the total four-
momentum E Equation . (5) can then be wr'itten in the
fODIl

To carry out explicit computations some approxi-
mation must be chosen for the irreducible self-energy
parts Z. The simplest approximation is to tak.e the
irst-order terms in the interaction. When the inter-
action potential U(x —x') has a hard-core part, the
matrix elements in momentum space are inhnite, and
one must use instead the effective potential obtained by
summing the multiple scattering diagrams of the two
particles over all orders. The resulting scattering matrix
is given by the equation

T(kl, k2, ko, k4)

T(k',k; E)= U(k' —k)

dp+ U(k' —y)G(p; E)T(y,k; E), (6)
( )

with
dM

G(y; E)=i G'(-,'E+p)G'(—-,'E p), p= (p,&)—. (7)
2~

The calculations are essentially simplified if we adapt
the center-of-mass approximation, i.e., assume that in
Eq. (6) G(p; E) is independent of E. According to the
estimates of Parry and ter Haar' this appears not to
cause appreciable error. The scattering matrix T(k', k)
is then independent of K, and the self-energy parts,

Zll(p) ='~oT(2P 2P)+'~o~To(2P 2P)

Zoo(p) =Zoo(p) =~oT(P,0))i,

= U(l,—k,)+i U(k —p)G'(p)
(2m)4

XG'(k, +k, p) T(P, k +k P—, k, k ). (4)—
Replacing the interaction potential by the 2 matrix
gives expressions for Zll(p) and Zoo(p). Equation (2)
gives, then, the quasiparticle energies.

If the' free-particle propagator,

G"'(p) = L
— (y)+a+ '6 '

do not depend on the fourth component of p. The
integration in Eq. (7) can be carried out by closing the
part of integration and computing the residues at the
poles in the upper half-plane. The result is

is used for G'(p) in Eq. (4), the results are valid in the
low-density limit. only. To account for interactions with
background particles between successive interactions,

2L"(y)+Z (y)-.j -Z.:(y)
G(p) =— (9)

4&L"(p)+Z" (P) ~j' Zoo'(p) &'"
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coordinate space. It is convenient to do this with respect
to only one index of T. Defining

20
t), (x) =

(2~)'
d'k'e-'"'*T(k', k),

FIG. 1. Calculated
excitation spectrum in
liquid helium and the
experimental curve of
Henshaw and Woods.

Eq. (6) becomes

t), (x)=N(x) e '"'*—
(2n.)'

d'Pd'X G(p)e"'" *'t.(y) (11)

0 2
fc t:A'3

The value of ti is, according to Eqs. (3) and (8),

ti=npT(0, 0).

The preceding calculations could be improved by
introducing, analogously to the self-energy part,
several types of T matrices with n outgoing and 4—n
ingoing straight lines. The T-matrix equation would
then be replaced by a set of equations.

If the self-energy part Zpp(p) is neglected in Eq. (9),
then

G(p) = —L(p'/»)+noT(lp, lp)
+noT(2p 2p) noT(0 0)7 ' (10)

Equaf:ion (6) with propagator (10) is the Brueckner-
Sawada equation for the reaction matrix.

REDUCTION OF THE T-MATRIX EQUATION

For an interaction potential u(x) which has a hard-
core part, all the Fourier coefiicients U(k) are infinite.
This difFiculty can be avoided by transforming into

The function t), (x) depends only on x=
~
x~, k=

~
kj

and the angle between x and k. Equation (11) can
be reduced into a set of integral equations in one real
variable by expanding in spherical harmonics. We set

t), (x) =Q ran&i)(x)E&(k x),
lM

and use the formula

Substitution into Eq. (11) gives

r~")(x)= (2l+1)( i)' j(&—kx) I( x)

2
+ 4dP ~'O'G(P) ( I)x

&&j (p*)j (pr) .")b).
The excitation spectrum is

e'"'*=+ (2l+1)i'j&(kx)P&(k 9),
L=O

where j& is the spherical Sessel function, and the
orthogonality relation between Legendre functions

4m
d'x ri(k x)P (*" k') = I'i(k. k')t)&„.

2l+1

and the depletion is

p(k) =
2m

+noT(-,'k, —',k)+noTPk, —-', k) —no'T(0, 0) —np'T(k, 0)' (13)

(k'/2»)+noT(ok, peak)+noT(pik, —pik) —npT(0, 0) 1
n —no= —dk

2il' —2{L(k/2»)+noT(pk pk)+noT(pk pk) —npT(0 0)7 —np T(k 0) )'&
(14)

The formula

T(k', k) =4m+ i' dxx'ji(k'x)r), «)(x)P&(k' k)

and

T(k,0) =4m' dx x r), & (x).

gives

T(-'k -'k)+T(-,'k, ——,'k) —T(0,0)

=8ir+ (—1)' dx x'jp((-,'kx)rk&p"')(x)
l~

If G(P) is considered as a given function, Eq. (12) is
an integral equation of Fredholm type. In vector form
it can be written

ry(() = fp(' +Q i rq(' .

4 d + &o)( )
The solution is

r~(&) —(1 i(.'(&))—if'(o
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The inverse operator of 1—K&'~ can be found numeri-
cally. The length of the calculations is greatly decreased
by the fact that the kernel,

2
&'"(x,y) =- dp p'G(p)N(x)i i(px)Ai(px)

does not depend on k. Only one inversion is needed for
each value of l.

EXCITATION SPECTRUM

Numerical calculations have been carried out in the
case of the hard-sphere potential, N(x)=ee, x(d;
N(x)=0, x&d; with d=2.6A; and in the case of the
Lennard- Jones (L.J.) 6-8 potential

I(x)= (256/27) eL(o/r)s —(o/r)' j,
o = 2.84 A, e =6.34'K,

which according to Haberlandt' gives best fit to the
experimental data on the second virial coefficient of
He4 atoms.

The calculations were iterative in the sense that a
form for G(p) was assumed, T(k', k) solved from Eq.
(12), and the result used to find the next approximation
for G(p) from Eq. (10).It turned out that the procedure
was very sensitive to the value of res in Eq. (10). The
iteration converges for ns/I=0. 71 (hard spheres) and
0.76 (Lennard-Jones potential). For higher or lower
values of res the maximum value of G(k) at about 2 A '
increases or decreases, respectively, without limit. At
the correct ms the form of G(k) which is stable is found
after a few cycles. In Fig. 1 the resulting energy spectra
are shown. For comparison the neutron-diGraction

s R. Haberlandt, Phys. Letters 14, 197 (1965).

results of Henshaw and Woods' are given. In the calcu-
lations the I values 0, 2, 4, 6, and 8 were included. At
small x the function ji(x) is asymptotically equal to
x'/1X3X .X(2l+1), and the higher E will give a
negligible contribution below &=3 A '.

The depletion given by Eq. (14) was found to be
(I—ee)/n=1. 74 (hard spheres) and 1.32 (L.J. poten-
tial). Compared with the input values 0.29 and 0.24
there is a large discrepancy. In addition to approxi-
mation L4), this reflects the effect of the approximation
made in the self-energy parts, and of the center-of-mass
approximation. According to the computations the
result of Eq. (14) is very sensitive to the form of
T(k',k). This probably explains the remarkable in-
consistency in the values of n —no found in previous
papers. The microscopic approach can at the moment
give no conclusive estimate of the magnitude of the
depletion.

The qualitative behavior of the excitation spectrum
is seen to be fairly independent of the details of the
interaction. The sound velocity given by our calculation
is somewha, t larger (hard spheres) or somewhat smaller
(L.J. potential) than the measured velocity, shown in
Fig. 1. as the slope of the dashed line. This results from
a similar variation of the calculated values T(0,0)
describing small momentum scattering.
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