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Green's-Function Theory of Ferrimagnetism, with an Application to Magnetjtes'
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A Green's-function theory of magnetic properties of an n-sublattice ferrimagnet is derived in the random-
phase approximation. The magnitude and relative orientation of the sublattice magnetizations, the re-
normalized magnon spectra, the zero-point motion and the Curie temperature as functions of the spin magni-
tudes, the exchange constants and the geometry are derived. These properties have been computed for
magnetite. It is concluded that magnitudes of the exchange constant Jg~ between sites of tetrahedral and
octahedral coordination of about 2.50&10 eV above 119'K, and about 1&(10 ' eV below that temperature,
are consistent with present experimental data for magnetite.

1. INTRODUCTION

ARMER studies of magnetite have not led to a
~ satisfactory determination of the exchange con-

stants which characterize the magnetic properties of
this substance. Linear spin-wave theories for mag-
netite' ' have been used to fit experimental data for
the low-temperature specific heat, ' the thermal con-
ductivity, " and the acoustical and optical magnon
spectra observed at room temperature. "The exchange
constant between sites of tetrahedral and octahedral
coordination J~~, has been found to be about an order
of magnitude greater than any of the other constants.
However, the data for the speci6c heat require for J»
the value 0.44)&10 ' eV' or 1.1X10 ' eV,"while the
spectra require the value 2.4X10 ' eV. ' The result of
the thermal-conductivity evaluation is not conclusive
since it requires other parameters which can, at present,
only be estimated. The experimental value of the Curie
temperature" can be used in an expression for T, from
molecular field theory' to calculate the value 1.6&(10 '
eV for J», a result which does not clearly favor any
of the other values. The fact that the linear spin-wave
theories and the molecular field theory ignore the effect
of statistical and dynamical correlations of the spins at
higher temperatures indicates that the fit to the spec-
tral data may need correction. The attempt at com-
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paring high- and low-temperature data may be frus-
trated by a phase transition at 119'K in which the
magnetite goes from a fcc structure to an orthorhombic
structure upon cooling. Part of the purpose of the pres-
ent paper is to report on a calculation of the renor-
malized magnon spectra and the thermodynamic prop-
erties of magnetite.

A two-time Green's-function theory of ferrimagnets
with an isotropic Hamiltonian is derived in Sec. 2.
This theory has been developed as a generalization of
theories of ferromagnets due to Tahir-Kheli and ter
Haar" and to Callen. "While this work was in prog-
ress, related papers on antiferromagnets were pub-
lished by Hewson and ter Haar" and by Lines. "The
present theory obtains generalizations of the spin-
wave spectra and Curie temperatures derived by these
older theories. It is shown that the zero-point motion of
a magnetic system is described in a Green's function
theory in a very simple manner which rejects directly
the physical nature of the phenomenon. It is recognized
here that in the absence of an external field the align-
ment of a magnetic system is not specified a priori, but,
through the renormalization, the relative ordering of
the sublattice magnetizations can be predicted cor-
rectly for a given choice of the exchange constants,
independently of any preassigned choice of positive s
direction for a sublattice. Contact with the earlier re-
sults" '" is made in Sec. 3 where a brief application of
the theory is made in the cases of simple ferromagnetism
and two-sublattice antiferromagnetism. These applica-
tions illustrate some of the details of the theory and ex-
hibit their physical significance. Results of calculations
of the sublattice magnetizations and the Curie tempera-
ture of magnetite are given in Sec. 4 together with a
comparison with experimental data. A sulnmary and
conclusions are presented in Sec. 5. Mathematical de-
tails concerning aspects of the approximations which
have been used have have been relegated to Appendices.

"R.Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962)."H. B. Callen, Phys. Rev. 130, 890 (1963)."A. C. Hewson and D. ter Haar, Physics 30, 890 (1964).» M. E. Lines, Phys. Rev. 135, A1336 (1964).
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and

~am ~am ~&~em

I Sam &Spro 5 +—Sam t&apt&mro r

(2.2)

(2.3a)

LS „+,Sp„5 =25 'B„p(& „. (2.3b)

The ferrimagnets considered here have no preferred

2. TWO-TIME GREEÃ'8-FUNCTION THEORY
OF FERMMAGÃETS

The ferrimagnets described in this section are those
whose Hamiltonian can be expressed in the form

tin' Jam toasam+Zap, ma +am, pas maSpro r (2.l)

in which p, is the Bohr magneton, H is a uniform, ex-
ternal field, S „is a spin operator situated on site m of
sublattice o., g is the g factor for the sublattice n, andJ,p„ is the exchange energy between atoms on sites
r and rp„.'" A positive value of J,p„corresponds to
antiferromagnetic coupling. It is assumed that all of the
atoms on sublattice o. are identical, with spin magni-
tude 5 . No restrictions are placed on the number of
sublattices, or the number of the sites on a sublattice.
It should be noted that sublattices are to be distin-
guished here on a basis of differences in local magnetic
characteristics and not merely differences in geometri-
cal or chemical characteristics.

The commutation rules obeyed by the spin operators
are, with

(S „*Sp„')=o.op. (2.S)

The transverse correlation functions in (2.4) will be
expressed in terms of an integral representation in-
volving a spectral function which can be obtained from
a set of Green's functions. Consider now the expecta-
tion value (S (t)Sp +(t')), where the operators are in
the Heisenberg picture. Invariance of the system under
translations of the lattice or of the origin of the time
scale implies that this expectation value must depend
only on the differences r —rp and t—t'. Let E„be
the eigenvalue of the eigenstate ~E„) of K, and let Z
equal Tr(e Pec). Then

direction in the absence of an external field, so any uni-
form nonzero H, however small, will be taken as de-
fining the direction of the s axis. The internal energy is
then

(+)= p+ gamgaea+S gap Qmro ~ampro,

X(S..-Sp„++5..+Sp„-+25.„5p„). (2.4)

Here ( ) denotes the expectation value with respect
to the canonical ensemble, and o =(S ). The site
label j can be neglected because of the translational
invariance of the lattice. The random-phase approxima-
tion (RPA) is obtained by ignoring the correlations of
5 with other operators in expectation values. The
longitudinal correlation functions in (2.4) are approxi-
mated by

(5 „(t')5p„+(t))=Z ' Q „e Pe e'(s e& (' '&(E—„~5 ——
~
E„)(E

~
Sp +

~

E )

20~
e+i&r (ram —rpo)

S
.oo

p (Q ~)e—ia(t—t')

dc'
eI'"—1

(2 6)

where E is the number of sites on a sublattice and

1
—~"-."-e "'" '"' & (e "" e"")(E.

I
Sp-—+I E )(E I

5- IE.)&(~ E.+E.) (2—.'t)
20 SZ

is the spectral function. (Here is= 1.) A sum rule follows by direct evaluation:

Similarly,

do& p„p(k,o&)= g„.„,,p„e
'" (' 'p" ([Sp+,S 5 )=t'& p

20 g
(2.8)

2(7p
(5 +(t)Sp —(tr) ) g& e

—i&r (ram rpo)

S
oo

p (k ~)e—ia(t,—V&

dc'
1—e ~"

(2.9)

Then (K) can be obtained by taking the limit of (2.6) and (2.9) as t ~ t and substituting the result into (2.4):

(Se)= —pHA P.g.o..+2 P., p P .J.„,p
—

o p (k o&)ei&r (tam tpo) rr p (k o&)e i&r (ram —rpa)—

dGD

1—e P"
+o o.

p . (2.10)

"The symbol p in a subscript here always refers to a sublattice, while in an exponent or coth( ) it always denotes (aT& ', where a is
the Boltzmann constant and T the absolute temperature.
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The sums P, can be divided into contributions from
the nearest neighbors, next-nearest neighbors, etc. Only
nearest-neighbor (nn) contributions will be considered
in the present paper. Then the P,„can be incorporated
in structure factors

y s(k)=P&,„~ expLik (r r—s„)j,
and (2.10) becomes

(&)= IJ+& Za gao'a+& Za, p o'a&ap o'a'yap(0)

(2.11)

+(1/Ã)ps y s(k) Cko ps (k,ol) coth-,'po& . (2.12)

C.=(5. —5.„+)/2o.

p-(k, ~)
dec

et'"—1

(2.14)

(2.1S)

There are two sets of quantities which remain to be de-
termined, the o. and the p s(k, co).

The 0. can be obtained with a moment-generating
function like that discussed by Callen. "The pertinent
details of Callen's theorem on the moment generating
function are discussed in Appendix A. It is noted here
that under conditions which are satisfied in the RPA,
a nioment generating function for sublattice n, 0 (g),
can be expressed as a function of a number C „and of a
parameter a:

0 (g)
—= (exp(as *))

ssa+ls —sac—(1+@ )ssa+ls(sa+1)a

[y ssa+1 (1+@ )ss~+lj[(1+@ )sc @ ]
(2.13)

The number C is given under the same conditions by

mined are the spectral functions, p s(k, co). The manner
in which the spectral functions follow from a set of
Green s functions is described below but first it is im-
portant to understand some qualitative features con-
cerning the computation of the 0- .

A theory of ferrimagnets should have the capacity to
predict the relative orientation of the spins on the
various sublattices. This is inherent in C and o. (C ).
From (2.15)

o (4 )=—o. '(4 '). (2.18)

Thus, the sign of 0- relative to the remaining o-p s is
the sante regardless of the convention taken for +s
on the n sublattice.

It may be verified by evaluation that for some C on
the interval (—1, 0), lo l

is in excess of 5 (and in fact
is so for all such C if 5 is half-odd-integral), and hence
such values of C must be unphysical. It has not yet
been possible to verify that such unphysical values of
4 will not be predicted by this theory, but they have
not occurred in any calculations with H =0.

It is expected that in some cases, e.g., that of the
antiferrornagnet, " the value of lo l

will differ some-
what from S at the absolute zero of temperature. If
one sets T=0 in (2.15), then

C (T=O)= —1V 'Ql, dorp. „(k,ol). (2.19)

C '= —1—C = —(Ls +,5 „—j +5 „—5 „+)/2o.
= —(5-+5- &/2- (2.17)

If the signs of the y and s axes are reversed for sub-
lattice u alone, C ' has the form of (2.15) again. Thus,
4 ' is the characteristic number associated with the
sublattice n when the sign convention for +s is in-
verted. "The o ' obtained from (2.17) with 4 ' are re-
lated to the o. from (2.16) with C by

C has the form of an expectation value for a magnon
number operator associated with sublattice u." From
(2.14), this expectation value is closely related to the
number of spin deviations on sublattice n. From (2.13),

0 = ——5 —C
dc g=p

(25 +1)@ ssa+1

(2.16)
L(1+@ )2SN+1 @) 2Sa+1]

Thus, the basic quantities which remain to be deter-
'9 The terms spin wave and magnon are sometimes used in the

literature as though they were synonymous and sometimes as
though they were distinct in meaning. Here, for definiteness, the
term spin wave is taken to refer to the mode of propagation of spin
deviations as observed in the direct lattice, while the term magnon
is used to refer to the components in the reciprocal lattice of a spin
wave. This is precisely analogous to the distinction discussed by
Ziman (Ref. 20) between phonons and vibrations of a solid, or
between photons and vibrations of an electromagnetic field.

20 J. M. Ziman, Electrons and Phonons (Qxford University
Press, London, 1960), p. 16.

The zero-point deviation of 0. is obtained by evalu-
ating (2.16) using the value of C given by (2.19). The
origin of the "negative frequencies" which are re-
quired if C in (2.19) is to be nonzero can be ascertained
by considering the zero temperature limit of p . It
follows from (2.7) that

p. (k,ol)lr s

=l 2o (0)X)—'P„.„,„,„expl —ik (r „rs„)$—
yp, {(z,ls..+le.)(z.ls..-le, )a(~—z.+z,)
—(z„ls.„+ Is,)(z, I

s..-l z„)a(~—z,yz.)},
(2.20)

where
l
E~'o) represents the ground state. The spin devia-

tions included in the first term in the curly brackets

2' It is clear from this that while 4 or 4 ' have the form of an
expectation value of a magnon number operator, the name magnon
number function which is used herein for C can be taken only
loosely unless C is further specified so as to be positive."P.W. Anderson, Phys. Rev. 85, 1260 (1951);86, 694 (1952).
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are associated with excitations of system from the
ground state, while the second term includes de-
excitations to the ground state. Only the latter term
contributes to (2.19). If the ground state is perfectly
ordered, then, depending on the convention for +s, C

is zero directly, or is —1 after a cancellation of factors.
(Notethato (0) isgiven by-,'(ED~S +S +S S +~80&.)
The value of 0 which follows from (2.16) is then &S,
respectively. On the other hand, if the ground state is
not perfectly ordered, the 0. (0) in the denominator of

p is not canceled after the co integration and C is
neither 0 nor —1. Hence ~0

~
differs from S .

It is clear that the sign which is carried by a fre-
quency ~ is of mathematical origin since that sign
can be altered by changing the +s convention for the
sublattices. It would be a mistake to set positive the
signs of all frequencies on the ground that such a situa-
tion would be more physical, for to do so would be to
discard the feature of the theory whereby the relative
orientation of the sublattice magnetizations is given
through a self-consistent calculation. It is possible in
this theory to talk of holes and particles associated
with frequencies of diferent signs, but the arbitrariness
of the designation makes this hardly seem worthwhile.

Now, to determine the spectral functions, consider a
set of Green's functions which are defined as

((Sp-+(~); S- (~')&&

—= —ie(i—~')([Sp +(i) S (~')3-& (2 21)

O(t —t) is the Heaviside unit function. With (2.6)
and (2.9) this becomes

((S,„+(t) S.„-(&')&),=—2iO(t —t')—Q, e+'" &'-- ~-&

S
da)p.p(k p)) e

—'"&'-'& (2.22)

the Heisenberg picture, the time derivative of a typical
operator is given as follows:

BSp +(t)= [Sp„+(i),se]

=+»gpSp-+(~)+2 Z» ~ Jp, «

X [Sp.'S»(+ Ss.+—Sg*)(t) . (2.26)

Then, if B(t') is some product of components of the
spin operators,

+((I S -+(~) &(i)3- B(i'))) (2 27)

The random-phase approximation for this equation is
obtained by replacing by their expectation values the
factors of 5' which appear in the commutator of the last
term of (2.27). Thus

8'—
g +P, .„.,„—2J

Bt

&&((S„+();B( ')»= 8( —')([S „+(),B(t)] &. (2.28)

This equation of motion is in the form of a product of a
matrix independent of B(t) and one which depends on
B(i). The operator B(t) has been used here to facilitate
the argument in Appendix A. It can now be replaced by
S (t) to obtain the equation of motion of the Green's
function which is desired. The commutator on the
right-hand side of (2.28) becomes just 28 pB „op and
the exchange terms are restricted to nearest-neighbor
terms. Introduction of the Fourier transform of the
Green's function then gives

The Fourier transform of this function is

1
G (k &)

— g ~ik ~ (ram rPn)

&r(l & pg vII+2 2»—Ip»vs»(0) ~»)~pr

2Isr&pvur—(&))Gr-(k,~) =2~p&p. (2.29).
This is in the form of a matrix equation

gr fcoI g(k) jprGr (k,~—)=2bp.~p. (2.30)

or

d(~—~') '* " "((S.+(~) S- (~')&) (2 23) g(k) is a matrix whose elements may be obtained from
(2.29) by inspection. Then

Gp (k, o)+is) = —2~
p p(k, (o')

ZOO . (224) Gp (k,(u)=2[&vI—g(k)j ~p 0', (no sum one). (2.31)
GO

—G7—Z 6

Here and elsewhere, e is a vanishing1y small positive
quantity. The spectral function p p(k, or) is thus pro-
portional to the imaginary part of G s(k, co) on the real
Gl axis:

If the Green's functions are evaluated in terms of the
original spectral functions with discrete spectra, it is
found that as functions of a complex co they have only
simple poles on the real axis. The poles of Gp (k,co)
given in (2.31) are the roots, co~(k) of

p-p(k, ~)=— ImGp (k, ~+is) . (2.25) Det[arI —g(k)j=0. (2.32)

Iriformation about the Green's functions follow from
their equations of motion. Since the operators are in

Only distinct zeros are to be considered when a partial-
fraction expansion of Gp is made since the poles are
simple. Denote by Ep, &(k) the residue of [cd—g(k)j 'p
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at erg.

Es, i(k)= li—m(&o —oui(k))[&oI —g(k)) 'p . (2.33)

gi Zp. , i(k) = S.s. (2.36)

A physical interpretation of these quantities may be
obtained by substituting (2.35) in (2.22).

((S +(i)'S (~')))
= —20 iO(t —t')cV—' Qg g i I|'.p. , i(k)

Xexpi[k (r „—rp„)—cubi(k)(t —t')). (2.37)

Thus spin deviations associated with sublattices n and P
can be represented as a superposition of waves of wave
number k, frequency

~
&o&(k)

~

and amplitude
~
E& i(k) (.

The ~i(k) and, from (2.33), the Rs i(k), need not all be
positive. The sign of ~i(k) indicates in (2.37) the direc-
tion in which that mode propagates, and the sign of

Rp, i(k) indicates the phase of the mode relative to the
other modes.

The roots co~(k) involve the 0 through the elements

g(k) p . The quantities 0 are to be obtained from (2.16)
with the numbers C . These in turn depend on the

coi(k), for froin (2.15) and (2.35),

C a N' gz Z& ~——aa, &(k)/[expP~i(k) —1). (2.38)

This and (2.16) then give a set of implicit equations to
be solved for the 0- . Self-consistent solutions can be ob-
tained by iteration from a suitable set of initial values.

The approximate energy (2.12) can also be simpli-

field directly using (2.35):

(BC)= IJIIIi Qa gao'a+—Ii Qa, p 0 asap 0'pvaP(0)

The inverse element may be written

[-I-~(k))- ~.=Z ~~.,«k)/[--- (k)). (2.34)

Equations (2.25), (2.31), and (2.34) give

p-p(k, ~)=Xi ~p-, i(k)&(~—~i(k)) (2 35)

The sum rule (2.8) gives

convention for each sublattice can be chosen so that 0.„
is positive. Suppose, for the moment, that such choices
have been made. The function 0. (C ) has a negative
first derivative and a positive second derivative with re-
spect to C, for all positive C . Thus 0 (C ) decreases
monotonically from 5 to zero as 4 increases without
bound from zero. Since the sum of the residues is
bounded according to (2.36), (2.38) shows that C

becomes unbounded only when the &oi(k) vanish. The
elements of g(k) are linear and homogeneous in the o.

in the absence of a magnetic field, and so the cubi(k) are
linear, homogeneous functions of the 0- . Thus the
vanishing of the 0 implies the vanishing of the cubi(k)

which in turn implies that the 4 increase without
bound. This implies again that the 0. vanish, so a self-
consistent solution is obtained.

Physically, a large C corresponds to a large magnon
population on sublattice o. and when this increases
without limit, an instability in the ordering of the
spins on the sublattice is indicated. In asserting that
there exists a temperature at which the sublattice
magnetizations simultaneously vanish, one assumes
that the normal modes represented by the ~i(k) in-
volve contributions from all the sublattices. If there
were to exist sets. of the sublattices which are not coupled
by any of the normal modes, then each of these dis-
Joint sets would be expected to have a distinct Curie
temperature.

An expression for the temperature at which this
occurs can be derived by considering the ratios 0 /0„
of the sublattice magnetizations to some particular one
of them which is taken as a reference. Berne 0 „
and Q)r, ) ~

&or=Ca &r,

Car, g—=Or) 0

(2.40)

(2.41)

Then the co„,& and the 8 p, & are functions only of the 0 „.
The asymptotic forms of (2.16) and (2.38) for large

C and small 0- give

0 S,(S +1)/34„0„p[S (S +1)/3C „), (2.42)

p(oi(k)+~- Z. r, ~. (k)~ -, (k) -th
2

(2.39)

where C „ is de6ned by

C.-1/rP~„&~, i Z...i(k)/co„, i(k) =C.,/P~, . (2.43)

In principle, the speci6c heat and susceptibilities can
be obtained by appropriate differentiation of (2.39).
However (K) depends on II or T not only explicitly,
but also implicitly through the 0. . Since this implicit de-

pendence is very complicated, it appears that it would

be simpler in practice to obtain self-consistent 0. for
a suitable set of values of II (or T) and then evaluate
the derivatives numerically.

There exists a temperature, which will be called the
Curie temperature, at which the sublattice magnetiza-
tion simultaneously vanish in the absence of an ex-

ternal magnetic Geld. It was shown above that a sign

The Curie temperature is determined by the condition
that O„„be unity. Thus

~.= 1/~P. =S„(S„+1)/3xc,„. (2.44)

The 0 „needed for the evaluation of C „„areobtained as
the solutions of a set of implicit equations,

0 „=S (S +1)C,„/S„(S„+1)c„. (2.45)

It is concluded in Appendix A that better approxima-
tions to the equation of motion for S + will still satisfy
conditions necessary for the validity of much of the
theory presented in this section. It may be that the
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inverse elements LcoI—g(k)j '
p so obtained are not

such that the cubi(k) vanish as the 0 go to zero. The
present derivation of a Curie temperature will not hold
then. Note, however, that the restriction to nearest-
neighbor exchange integrals applied in going from
(2.11) to (2.12), and in writing (2.29), can be lifted
without changing in any essential way the validity
of the arguments above which pertain to the RPA. This
is also true if anisotropy coeKcients are applied to the
transverse or longitudinal terms of 3C, and so the theory
described above is applicable to more general cases
than are considered here.

a)(k) =pgH —2JOLy(0) —y(k) j. (3.1)

From either (2.33) or (2.36), the only residue has the
constant value unity. The spectral function is just
8(M —co(k)), and so the magnon number function is

C =1V-i pz(expp(AH —2JOLy(0) —~(k)j)—1) ' (3 2)

The substitution of this relation into (2.16) then gives
an implicit equation for the magnetization, o.. The
structure factor y(k), of course, depends only on the
lattice geometry. The magnetization 0 may be taken
as either negative or positive in the absence of an
external 6eld. Substitution of the expression (3.2) for
C into (2.16) then gives a value of 0 consistent with
whichever choice has been made. If 0- is chosen to be
positive, C has the value zero at zero temperature: the
ground state of a ferromagnet is perfectly ordered. If o.

is chosen to be negative, C becomes —1, and again
perfect ordering is predicted in the ground state.

The Curie temperature is given directly by the evalua-
tion of (2.40)—{2.44).

1
Z~ I v(0) —v(k)1 '.

T, 2JS(5+1)lV

3K

(3.3)

This agrees with the results previously obtained by
other authors ""

A description of antiferromagnetism is obtained as a
special case of a ferrimagnet with two sublattices. The
roots of (2.32) are, in terms of the elements of g(k),
for two sublattices

0&~(~)= 2(gll+qg22)~(g(gli f22) +pg»pg21j ~
~ (3.4)

3. FERROMAGNETISM AND SIMPLE
ANTIFERRO MAGNETISM

The application of the theory developed in the pre-
vious section is straightforward in the case of a simple
lattice, or of a two sublattice system. It wiB be dis-
cussed here to illustrate several features of the theory be-
fore discussing the more complicated case of magnetite.

The case of a simple ferromagnet involves only one
spin species, and the exchange integral J is negative.
Only one root of (2.32) occurs, which is, from (2.29),

The residues are given by

~"=~a /(.— ),
+21'= &ggl/(CO+ —M ) .

(3 6)

(3 7)

The spectral functions which follow give fpr 0 = ]. pr 2

Qi, b((o+)+b((o )
2Ã

gll A)22+(—1) +' [b((o~)—b((g )j, (3.8)

where

b(~) = Lexp(Pcs) —jj '. (3.9)
Consider the special two sublattice system in which a

spin on one sublattice has nearest neighbors pn]y pn the
other sublattice. Then J~~ and J22 are zero, and the
matrix g(k) reads, with J=J», ~»—&.

(pgiH 2Jog (0) —2Joiy(k)
I. (3.1o)

2J02y(k) pg, H 2jg,~{0))—
If the distinction between the sublattices disappears, the
co+(k) become the co{k) of {3.1), and the case for simple
ferromagnetism is recovered, as expected.

If the only distinction between the sublattices is the
magnetic ordering, i.e., 5~=$2, the case of simp]. e anti-
ferromagnetism is obtained. The statement

Py= —g2 (3.11)
leads to a self-consistent solution, fpr then

&+=~gH+2l~~il {Iv(0) I'—l~(k) I')'". (3.12)
If H=o, co+——-co and from (3.8)

(—1) +'
C' = ——+ sgn(Joi)

2N

&&2 I:1—I7(k)/v(0) I'j-'&' ot (3.13)

It has been pointed out in Sec. 2 that g must not be in
the interval (—1, 0) if the 0 are to be assured to have
physical values. The sum exceeds 3T, so this require-
ment is met. If J&0, no self-consistent solution follows
when (3.13) is substituted into (2.16). However, if
J&0, then it is found that the magnitudes of 0.

~ and 02
are equal, and that each may have either sign, in such
a way that (3.11) is satisfied. Thus, J may be dropped
from (3.13).

11 22

~11' ~22=F
2(&+—&—)

4$»g2i - '"
1& 1+ . (3.5)

(gii —$22)'
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The zero-point deviation of the sublattice magnetjza- The Curie (or Neel) temperature can also be directly
tions follows from (2.16) and (3.13) upon letting P go to expressed in this case since the ratio of the sublattice
in6nity. magnetizations is —1. Thus, (2.40)—(2.44) gives

( 1)a+1
C'.

I
x=5= —l+

2.V
sgn(01) 2, [1-I&(k)/&(0) I

j- . (3.1S)
T~ S(S+1)JX

X+5 [1—
~
y(k)/y(0)

~

'j—'~' (3 14)

The same result follows from direct evaluation of (2.19).
ln this approximation, the zero-point deviation, from
(2.16), depends only on the spin magnitude S and the
geometry of the sublattices.

This also is in agreement with previous results of other
authors. ""

The propagation of the spin waves on a sublattice is
also of interest. The Eq. (2.37) for the Green's func-
tions becomes for simple antiferromagnetism

igO~(f '1)—
p~ expik (r —r „)[{[1—

~
q(k)/q(0)

~

&]-1&5+(—1)-+1)

Xexp[—ice~(k)(t —t') j—{[1 Iy(k)/y(0) I'7 '"—(—1) +') exp[ice+(k)(t —t') j]. (3.16)

The propagation of a spin deviation from r to r „is thus given as a superposition of pairs of waves of wave num-
ber k. The waves in each pair travel in opposite directions, generally have unequal amplitudes, and are 180
out of phase. The inversion sylnlnetry of antiferromagnetism has not been lost in spite of the unequal amplitudes.
A wave of given k, amplitude, and direction on one sublattice is matched by a wave of the same k and amplitude,
but of opposite direction, on the other sublattice.

4. APPLICATION TO MAGNETITE

(4.1a)
(4.1b)
(4.1c)
(4.1d)

(4.1e)

1
2

—2

555 M5 ajll y

where

Magnetic properties of the ferrite magnetite (Fe504) have been treated previously in the approximation of
linear spin waves. ' ' The calculation of these properties in terms of the renormalized spin-wave theory of Sec. 2 is
the subject of this section.

In its ordered phase, magnetite can be described approximately as being composed of six interpenetrating fcc
sublattices. This is illustrated in Fig. 1 of the paper by Glasser and Milford (GM). The enumeratipn pf the sub
lattices given there is also used here. It is adequate to the present purpose to note that two of the sub]attjces
and 6, are occupied by ferric ions whose nearest neighbors have tetrahedral coordination (type p). The remalnlng
four sublattices involve sites for which the nearest neighbors have octahedral coordinatipn. Ferric jpns (t~e 81)
occupy two of these sublattices, 1 and 2, while ferrous ions (type 82) are on the remaining ones, 3 and 4 The spin
magnitudes are Su=5141= 2.5, Ss5= 2. The structure factors (2.11) for magnetite can be cpmputed usjng jnfora
tion given in the Appendix of GM.

The matrix 4dI $(k) of (2.30—) has in this case a determinant which is a sixth-order polynominal ln + and whpse
zeros are not generally available in any simple analytic form. However, as shown jn GM the po]ynomjna]
can be factored readily if the only nonzero exchange integral is that between sites on the p and g type sub]attices
J~s. Then for H=O, the six roots have the form

+2 1(2

M2 +2
(ajll+$55)+ 1 ($11 aj55) +28+ (85—4C)1&5 &

CO3 2

and

kl= —6J~a(05+05),

f55= —6J~a(~1+05+O5+04),
4

8=4J '( + )Z -~v. ~',

4

C= 16Jg11405~5 Q &raa p(Imp 5yp5*)'.
a&P

(4.2)

(4.3)

(4.4)

(4.5)
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The fact that p 6 is the complex conjugate of y 5 has been used in writing (4.4) and (4.5). The products of the
structure factors which are needed are listed here.

l yg5 l

'= 3+2 cos-', u(k, +k„)+2 cos2u(k, —k,)+2 cos~~u(k„+k, )

l y25l '=3+2 cos-', u(k +k„)+2 cos-', u(k +k,)+2 cos-,'u(k„—k,)

l pa~ l
'= 3+2 cos-,'u(k, —k„)+2 cos-,'u(k, —k,)+2 cos-,'u(k„—k,)

ly4~l =3+2 cos-,'u(k, —k„)+2 cos-,'u(k, +k,)+2 cos-,'u(k„+k, )

Imyq~y25* ——2Lsin~u(3k, +k„)+sin~u(k, —k„)—sin4u(k, +3k„)]
Imy35y45* ——2l sinx'u(3k, —k„)+sin~u(k, +k„)—sin~~u(k, —3k„)]

Imp~span* ——2l sin-„'u(3k, —k,)+sin~u(k, +k,)—sin~~u(k, —3k,)]
Imy2~y45* = 2Lsin~~ u(3k, +k,)+sin~~ u(k, —k,)—sin~~ u(k, +3k,)]
Imps, y4~*——2L sin~~u(3k„+k, )+sin~~u(k„—k,)—sin~~u(k„+3k, )]
Imy25y35* ——2Lsin4'u(3k„—k,)+sin~u(k„+k, )—sin4u(k„—3k.)].

(4.6)

(4.7)

(4 g)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

The parameter u in (4.6)—(4.15) is the lattice constant.
There are 6ve distinct zeros a&q(k) given in (4.1). The residues, R,~(k) associated with these zeros are listed

below.

o,,l'=1, 2, 3, 4:

R((k)=,4Jgs'o, [(ot+og) ly, gl'(co) g»)—(co( ggs)—4J»—'oga6 P ap(Imp. syps*)']/ g (co(—I;). (4.16)

0,=5, 6; l=1, 2:

R...,(k) =(~,—g»)L —k@+2(Ii'—4C)'I'+41»'~. g apl~»l']/ ll (»—~;). (4.17)

n=5, 6 l=3, 4:

R...(k) =(~,—g»)L ——,'a ——,'(a —4C)'I'+4X»'~. P apl~»l']/ II (~~—~,). (4.18)

~= 1 2 3 4- t=s.

R, (k)=1—167» o'5o6 Q ,oo(pmIy yps ) /g(ug —e;), (4.19)

ca=5, 6 l=S'
R55,~(k) =R~6 5(k) =0. (4.20)

These expressions can be used to write the explicit
forms for the magnon-number functions, C . However,
a simplification follows immediately in this approxima-
tion, for a self-consistent solution of these C and
(2.17) is expressed by

and

01 t72 OB1 y

03=04= 0~2 ~

05= 0'6= (Tg'.

(4.21)

(4.22)

(4.23)

C 5—C 6=—gq, g(R55, ~
—R66,~)/(eP"' —1), (4.24)

E

the six sublattice magnetizations are equal pairwise
when only J» is nonzero. Any difference between 05
and a6 must arise from a difference between C5 and C6
since S5——S6=S~. However

and, from (4.17)—(4.19), the difference of the residues is
zero (1=5) or proportional to o5 &rq(/= 1. ,—2, 3, 4). Thus
(4.23) and the vanishing of C ~

—Cq are consistent with
one another. This result is physically reasonable, for if
only J» is nonzero, sites 5 and 6 are in exactly the
same environment.

The spins on the octahedral sites are not in identical
environments even if only J» is nonzero, but the sym-
metry of their environments is such that the sums over
the reciprocal lattice give identical contributions, and
(4.21) and (4.22) give self-consistent results. The dif-
ferent environments are manifested in the zeros and the
residues through the functions in (4.6)—(4.15). Note
that reversal of the s axis has the same effect on these
functions as performing the permutation (12)(34) on
the sublattice labels. Then if (4.21) and (4.22) hold, 8
and C, and also the co~(k), are invariant under reversal
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of the s axis, but the permutation (12)(34) operates on
the residues. Let C + denote that portion of C which is
obtained by summing over that portion of the Brillouin
zone for which k, =& ~k, ~, respectively. Then, taking
Ci and C2, for example,

c'1 C'1++4'1- c'ly+c'2+ C 2 ~ (4 25)

Similarly, C»= C 4. Since Si——S2——S» and SS=S4=S»,
the equalities (4.21) and (4.22) give self-consistent
solutions.

It should be emphasized that (4.21)—(4.23) are only
sufhcient conditions for self-consistent solutions. The
possibility has not been excluded that other self-
consistent solutions might exist. However, the reduction
to o.» and 0.» was first found numerically from the con-
vergence of results of iterative computations using the
residues (4.16)—(4.20) with (4.23), and so it appears that
(4.21) and (4.22) give stable solutions, at the least.

Even with the reduction from six to three coupled
implicit equations for the 0- which is allowed by
(4.21)—(4.23), the complexity of the problem is such
that a digital computer is needed to obtain a solution.
The sums over the first Brillouin zone are converted to
triple integrals, which are in turn approximated by
Gaussian quadratures. More accurate results are ob-
tained by integrating over the precise Brillouin zone,
but good first approximations are obtained if the
accurate structure factors are replaced by their averages
over the unit sphere.

1
7 &(k) —+ p(P) =— dory s(k) =3 sin8k/8k, (4.26)

4x

where 0 is the solid angle, ks=k '+k s+k ' and, for
the spinel lattice 8= 11'~'(u/8). It is shown in Appendix
8 that (4.26) gives a considerable simplification in the
basic equations. The triple quadrature needed with the
accurate structure factors is reduced to a single one,
over k, since angular integrations become trivial in
calculating the C . The upper limit on the remaining
integration is adjusted to preserve the normalization

ga 1=X. The agreement of the results obtained using
the averaged and the accurate structure factors is so
good that only a few calculations have been done with
the accurate structure factors to spot-check the accuracy
of the more numerous calculations using (4.26). All

calculations" have been done in terms of a dimension-

~ Programs for these computations were written for a CDC G-20
using a PQRTRAN compiler. The zero-temperature results were
obtained with the averaged structure factors by iteration using
Sg, —S~1 and —S~2 as initial values of the o- . Values of the o- at
successively higher v. were obtained using the o- from lower z as
initial values for the iterations. Calculations were made for 42
values of w up to the Curie temperature. At low z, convergence
was obtained to 1 ppm in three or four iterations, while very near
rg, at ~=2.851, 5500 iterations gave convergence to within 30
ppm. The three-dimensional quadratures used with the accurate
structure factors and correct Brillouin-zone conlguration made
the more accurate calculation much slower. The symmetry of the
equations made it possible to reduce the integration to one
quadrant of the zone. A considerable saving was also obtained by

TAsLz I. Sublattice magnetizations for various values of v.

Accurate structure factors'
&A O'B1 O'B2

Averaged structure factors'
&A &B1 t7B2

0
0.05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.4409 —2.4884 —1.9951

2.3608 —2.3052 —1.8298

1.9074 -1.6853 —1.2832

1.3185 -1.1150 —0.82862

0.0966 -0.0791 -0.0578

7o =2.8044

2.4488
2.4483
2.4472
2.4442
2.4403
2.4355
2.4298
2.4227
2.4137
2.4022
2.3879
2.3702
2.3488
2.3234
2.2937
2.2593
2.2199
2.1749
2.1237
2.0656
1.9997
1.9249
1.8397
1.7424
1.6303
1.4999
1.3453
1.1566
0.91230
0.54137

—2.4716
-2.4710
—2.4698
—2.4663
—2.4609
—2.4521
—2.4384
—2.4193
—2.3947
—2.3652
—2.3312
—2.2930
-2.2509
—2.2049
—2.1551
—2.1015
—2.0440
—1.9822
—1.9160
—1.8449
—1.7683
—1.6856
—1.5957
—1.4973
—1.3884
—1.2662
—1.1262
—0.96053
—0.75191
—0.44296

—1.9773
—1.9768
—1.9759
—1.9731
—1.9686
—1.9612
—1.9492
—1.9319
-1.9094
—1.8821
—1.8505
—1.8150
—1.7759
—1.7334
—1.6877
-1.6390
—1.5872
-1.5323
—1.4741
—1.4127
—1.3474
—1.2781
—1.2039
—1.1239
-1.0369
—0.94088
—0.83261
—0.70648
—0.55021
-0.32248

2.81
2.82
2.83
2.851

0.48710
0.42557
0.35300
0.07020

-0.39828 -0.28780
—0.34773 —0.25288
—0.28823 —0.20951
—0.05723 —0.04156
~o =2.8518

ssAveraging of the structure factors affects the accuracy seriously only
for 7/vo &0.9. Much more computer time was required for the more
accurate calculation but a few values of the o~ were computed in that way
to establish the reliability of the less accurate calculation.

less temperature parameter,

r=7sT/12Jgg. (4.27)

Typical results for the sublattice magnetizations are
given in Table I. The good agreement between the two
sets at smaller values of 7- is apparent. Similar calcula-
tions were also performed to obtain the predicted value
of the Curie temperature. These numbers and the
ratios of the sublattice magnetizations from the two
calculations are compared in Table II. It might be
argued that calculations based on the ordered lattice
should not be applied above the transition temperature,
119'K, and particularly not near the Curie temperature,
848'K. However averaging of the values of S~i and
S~2 to simulate the effects of disordering gives a value
of rc for the averaged structure factors which is very

tabulating the functions of the structure functions over one octant
(the maximum needed) for each integration mesh. The mesh was
re6ned sufBciently to assure that it had no distinguishable effect
on the calculations. Self-consistency was obtained to within 100
ppm in up to 9 iterations from the values of the averaged calcu-
lation. Calculation of the Curie temperature using the accurate
structure factors and the precise Brillouin zone proceeded in an
analogous manner from the explicit results obtained with the
averaged structure factors.
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3.0 ALE II. Curie temperature and ratios
of sublattice magnetizations.

2.0 Accurate structure factors Averaged structure factors

I.O

'Tg

&Bl/&A
&B2hB1'

2.8044—0.81532
0.72605

2.8518—0.81849
0.73061

tn

3

-2.0

-3.0

-5.0
0 0.2 0.4

ka/27r
0.5 0.8 I.O

p&G. 1. Renormalized magnon spectra. The solid lines represent
doints computed with the averaged structure factors at the
dimensionless temperature a=aT/12Jgg. The circles and bars
represent the measured values of the acoustical and optical mag-
non spectra, respectively (Ref. 12), plotted using JAB =2.55 &&10-2
eP. The triangles represent the same data for the acoustical mode
plotted using the value Jgg=2. 13)&10 eV obtained from the
Curie temperature.

nearly that given in Table II.The sublattice magnetiza-
tions are also averaged when SB———',(SB1+SB2)is used.
It should be noted that if the exchange integral, Jggg,
is evaluated using the experimental Curie temperature

and the more accurate value of v~, then

JAB=2.13X10 ' eV(Curie temperature) . (4.28)

The renormalized dispersive modes computed using
the averaged structure factors are plotted for various
values of v in Fig. 1. The corresponding graphs for the
nondispersive modes follow from the data of Table I
and Eq. (84). The spectra computed with the accurate
structure factors have been shown by GM to be
nearly isotropic. ' Their results correspond to the low-
temperature case here. The acoustical and optical
magnon spectral data" have also been plotted in Fig. 1,
using energy units of 12J» where

JAB=2.55)&10 2 eV (spectral data) . (4.29)

This value was chosen in order to position the acoustical
spectral datum at ka/22r=0. '7 as shown in Fig. 1. The
remainder of the data fell as shown. With (4.29), room
temperature corresponds to v-=0.85, in reasonable
agreement with the optical spectra. (Since the experi-
mental data yields only the magnitude of the roots,
~o2&~, the liberty has been taken of attaching signs in
accord with the theory. ) The comparison of the theory
and experiment is good, but is neither unique nor opti-
mized. The effect of altering J» has been illustrated in
Fig. 1 by plotting the acoustical spectral data using the
value of J» obtained from the Curie temperature.
Even at smaller wave numbers, the difference is quite

0.8—

FIG. 2. The sublattice magnetiza-
tions, normalized to the zero-tem-
perature values, are plotted against
the dimensionless temperature. The
dashed curve represents the cor-
responding values from the Bloch
T'~' law. The triangles and circles
represent data for 0-g and ag, respec-
tively, obtained by Riste and Tenzer
from neutron-diffraction data (Ref.
24).

O
b

b

0.6—

0.4—

O.P. —

0
0 0.5 l.o l.5 2.0 2.5 3.0
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0.98

0.96
o

I-
b

0.94

Bl

0.92— B2

0.90
0 100 200

T/oK
300 400

PIG. 3. Normalized sublattice magnetization 0 (T)/a(0) versus
P. The solid lines represent calculated values. The broken lines
are from Fig. 3 of Boyd (Ref. 25).

distinct. The fits using the spectral data and the Curie
temperature are more nearly consistent in the RPA
than are the fits from linear spin-wave theory and the
molecular field theory.

A comparison is given in Fig. 2 of the values of
o (7)/o (0) computed with the present theory, with the
7'~' law, and the neutron scattering data obtained by
Riste and Tenzer. '4 The latter has been plotted using
the value of Jg~ obtained from the Curie temperature.
The RPA curves are somewhat better "squared-up"
than is the T'~' curve, but the correction is still not
adequate.

The need for better correction is also apparent from
comparison with NMR data obtained by Boyd" at in-
termediate temperatures, as shown in Fig. 3. Notice

(K) PHYLA Qa gas a gN+JABrrA(&B1+&B2)

—8&AB'~A Ps «t ~Br(mrs'+P24')

+~2(V»'+&4.-')]/(8' —4C)'"

8+(8'—4C)"' Pret P4e2)
X coth — ——cot- —

i

2 2/GOy
—M2

8—(8'—4C)"'( P4es Pce4—
i

coth —coth, (4.30)
Ms ru4 4 2 2

where s is the number of nearest neighbors. Note that

that no discontinuities are seen in Boyd's curves at the
phase transition temperature, 119'K. The curves of
o.A(T)/oA(0) in Fig. 4 have been plotted using for
T&119 K the values of J~~ obtained from the specific
heat measurements of Kouvel' and of Dixon et al. ,"
while the curve for T& 119'Khas been plotted using the
value of J~~ obtained from the Curie temperature. A
distinct discontinuity is observable in either case, al-
though it is much reduced using the larger J~~ from the
specific-heat data. " (It is interesting to note tha, t
Domenicali" has observed a field and orientation-
dependent change in the bulk magnetization of single
crystals of magnetite upon warming or cooling through

temperatures in the neighborhood of 119'K.) If the
"squaring-up" of the magnetization curves were im-

proved, however, the amount of the discontinuities in
Fig. 4 would be reduced, and might even become
undetectable.

It is laborious but straightforward to express (X)
more explicitly for magnetite. The result, given below
without proof, is more compact than might be expected
thanks to a considerable amount of recombination of the
residues, R p.

l.0

0.8

o 0.6

b

I-

b
~ 0.4—

0.2—

Fro. 4. The normalized sublattice mag-
netizations a(T)/a(0) are plotted versus T
using, for T&119'K, the value of J~g ob-
tained from the Curie temperature, and, for
T &119'K, the values of Jgg obtained from
the speci6c heat data (Refs. 9—10). The dis-
continuity in the curve is only reduced, but
not eliminated, by changing from the values
of Jgg from Kouvel's data (Ref. 9) to the
value of Jgg from the data of Dixon et al.
{Ref. 10).

0
0 IOO 200 300 400 500

T/oK
600 700 800 900

"T.Riste and L. Tenzer, J. Phys. Chem. Solids, 19, 117 (1961).
~5 E. L. Boyd, Phys. Rev. 129, 1961 {1963).

6 This comment should not be construed as favoring either value. Indeed, Kouvel's value (Ref. 9) of the specific heat appears to
be more nearly compatible than is the value of Dixon et al. (Ref. 10) with values of the speci6c heat of the substances Ni& ~ Fe2+~0$
measured by Pollack and Atkins, (Ref. 27) but the extrapolation which is required is rather large.

'7 S. R. Pollack and K. R. Atkins, Phys. Rev. 125, 1248 (1962)."C.A. Domenicali, Phys. Rev. 78, 458 (1950).
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the nondispersive mode res does not contribute to (X).
A calculation of the specific heat, C, based on this ex-
pression shows that at low temperatures the value of
C obtained in the linear spin wave calculations~ will

not be changed appreciably even though (4.30) is more
complicated than the (3C) of the simple-harmonic-
oscillator model of that calculation.

S. SUMMARY AND CONCLUSIONS

A theory has been derived which gives for a ferri-
magnet of m sublattices the renormalized magnon spec-
tra in the RPA. The magnon spectra and the sublattice
magnetizations are obtained as self-consistent solutions
to a set of e-coupled implicit equations. The ratios of the
sublattice magnetization at the Curie temperature are
obtained as the self-consistent solutions of a second set
of e-coupled implicit equations. The Curie temperature
itself is determined as a function of these ratios of the
sublattice magnetizations. The zero-point motion and
the relative signs of the sublattice magnetizations follow
from the theory. It has been shown that older results
for simple ferro- and antiferromagnets follow as special
cases. The magnons considered here all have infinite
lifetime, but magnons of given wave number are found
to differ, in general, in their amplitudes, their directions,
and their phases, from sublattice to sublattice.

Calculations based on the general theory have been
made of properties of the magnetic insulator, magnetite
(Fes04). The acoustical and optical magnon spectra are
found to be in good agreement with experimental data
for the exchange constant given in (4.29). This value of

J~~ is in reasonable, but not good, agreement with a
value (4.28) obtained by matching the theoretical and
experimental Curie temperatures. The values of J~~
based on data taken above 119'K are found to differ
significantly from values of J~~ obtained from either
measurements of the low-temperature specific heat.

The experimental data for magnetite is in need of
further refinement, but even now it seems adequate to
support the statement that theoretical interpretation of
data taken above 119'K requires a value of J» of about
2.5)& 10 ' eV, while the low-temperature data requires a
smaller J~~, on the order of 1&(10 ' eV. It would be
desirable to make measurements of one physical prop-
erty of magnetite both above and below 119'K. (for
example, the magnon spectra) in order to obtain a
better check.

It is shown in GM' that the magnon spectra pre-
dicted by linear spin-wave theory agrees better with
the experimental results" if a small ferromagnetic
coupling between the sites of octahedral coordination,
J~~———J~~/10, is included in the calculation. The
same result is expected to hold in the present renor-
malized spin-wave theory. An estimate of the effect
on J~~ of the second-order transition at 119'K can be
obtained by considering the data for the electrical

conductivity of magnetite. " "The reduction by nearly
two orders of magnitude which this quantity undergoes
upon cooling through the transition temperature, and
the related ordering of the ferric and ferrous ions on the
81 and 82 sites, indicates that the overlap integrals
of the electronic wave functions for these sites are con-
siderably reduced. Thus it seems reasonable to expect
that J», which depends in part on a similar overlap
of the electronic wave functions, is also reduced in
magnitude in passing from above to below 119'K.Thus
including J» should not alter seriously the present
results.

The quantitative change in the crystallographic con-
figuration in passing from the fcc phase above 119'K
to the orthorhombic phase below 119'K is quite small,
and so it probably should not be expected that the
change in the overlap of the electronic wave functions is
due to a substantial change in the crystal-field splitting
of the electronic energy levels. The wave functions for
the d electrons of the Fe ions are expected to be much
larger in magnitude along certain directions than in
others. Then if the wave functions are but little affected
locally by the change in the crystal field, the change in
orientation of the ions would lead to an alteration of the
overlap of wave functions of electrons on different ions.
This would be noticeable in Jg~ as well as in J».
Further investigation of this problem has been initiated.

The high-temperature values of J~~ given in (4.28)
and (4.29) may be more consistent with one another
than the 20% difference in the numerical values would
indicate. There is empirical evidence" that the ex-
change constants in m.agnetite, as in several other insula-
tors, are proportional to the —10/3 power of the volume,
U. Then J~~ will depend on temperature, because of
thermal expansion, in accord with the relation

Jg~(T) =Jg&(Ts) L1—10n(T—Ts)$, (5,1)

where n is the coefricient of linear expansion. If To is
taken to be the temperature of the spectral data,
300'K, and n as 16X10 '/'K, " the value of J~~(Tc)
is then calculated to be 2.3)&10 ' eV. This differs from
the Jzz of (4.28) by about 8%. The agreement is quite
satisfactory considering the simplicity of the RPA
used herein. Note also that temperature correction of
the type stated in (5.1) will also improve the "squaring-
up" of the RPA curve in Fig. 2, and will reduce the
step in the magnetization curve in Fig. 4.
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function, it is seen that in the RPA the a-dependent
terms factor out. Thus the spectral function, and so
also C o, is e independent. Then (2.13) and (2.16)
follow as valid.

It is apparent that whenever the a-dependent Green's
functions can be put in the form of (2.31) with 2o re-
placed by (LS +, exp(aS *)5 )), and (~I r—i(k)j
independent of a (as in the RPA), the corresponding
spectral function will be a-independent. The 4 ~ which
follows then implies (2.13). This includes also cases in
which more complicated types of correlations are in-
cluded in the approximation to the equation of motion
of 5 + which gives the form of LceI—rl(k)) '

p."
APPENDIX A

Consequences of Callen's theorem" for the moment-
generating function defined in (2.13) are discussed in
this Appendix. A number 4 ~ is de6ned as the ratio of
two expectation values

o=(exp(aS *)S S +)/(LS +, exp(aS ')5 j ). (A1)

Then, in a manner exactly parallel to Callen's proof for
a simple ferromagnet, the expectation values are ex-
panded using the commutation relations (2.2) and
(2.3) to obtain a relation between the moments ((S ')")
for m=0, 1 and 2. These can be expressed as derivatives
using the moment generating function, 0„(u), since

((5 *)")=(n/«)"f) (&) I =o (A2)

In this manner a second order differential equation for
f) (a) is obtained which has the explicit solution
(2.13), provided C ~ is independent of the variable a.
In that event, u may be set to zero in (A1) and then
C o becomes the C of (2.15).

It is not obvious from (A1) that C c will be inde-
pendent of a. It appears that in general it will not be so,
but the arguments of Sec. 2 are readily modified to show
that C ~ is independent of u in the RPA. A spectral
representation for 4 similar to (2.15) is obtained
upon replacing in (2.7) 2o by(I 5 +, exp(aS *)S„j),
and 5 —

by exp(aS *)5 . The formal structure of the
Green's function in (2.24) is preserved if these same
replacements are made in (2.21) to (2.24). The equa-
tions of motion of the altered Green's functions have
precisely the form of (2.27) and (2.28), with B(t')
being exp(aS ')S (f'). This leads at length to an
equation in the form of (2.31) in which the inverse
matrix element is exactly the same as in Sec. 2, and all
thea dependence is in the factor (LS +, exp(aS *)S —j )
which replaces the explicit 20- . No such replacement
occurs in the inverse matrix element. Then upon taking
the imaginary part of the a-dependent Green's function,
and using the analog of (2.25) to calculate the spectral

~ R. E. Mills, R. P. Kenan, and F.J. Milford, Phys. Letters 12,
173 (1964).

'4 R. E. Mills, R. P. K.enan, and I'. J. Milford, J. Appl. Phys.
36, 1131 (1965).

and

eg11= 12~ABoA+0)

egss = 12JAB(&B1+rrB2)) 0
y

&=16&AB oA(oB1+o'Bs)V(k)

(B1)

(B2)

(B3)

The frequencies (4.1) become

&1 e45 i

&s=ros=&s= eirt,

(B4a)

(84b)

(k)=l(8 +8 )+l((8 —8 )'+4@'", (B4c)

te,(k) =-', (g„+g„)——,'((g„—g„)s+4B)'is. (B4d)

With the signs of the 0. taken above, ~j and co3&0,
while ~2 and ~4&0. Calculation of the residues is com-
plicated only slightly by the fact that or& and co5 have
become degenerate so that only four distinct zeros now

appear. It follows from the sum rule (2.36) that the
residues should be added together for the zeros which

~SThis problem has been studied explicitly for a ferromagnet
(Ref. 36). After the a-dependent Green's function and the factor
LraI —g(k)] r are completely separated algebraically by a func-
tional technique, it becomes obvious that in general the latter
factor depends on the parameter a. It is then also apparent that
(2.14) can be valid even in approximations in which, because of
dynamical correlations, the magnons have a finite lifetime. The
generality of (2.14) was also studied by Callen and Shtrikman
(Ref. 3/) in a comparison of theories of this type to molecular Geld
theories.

s' R. E. Mills, Bull. Am. Phys. Soc. 10, 305, AC3 (1965).
H. B. Callen and S. Shtrikman, Sohd State Commun. 3, 5

(1965).

APPENDIX 8
The equations given in Sec. 4 for the application to

magnetite of this ferrimagnet theory are applicable to
any ferrimagnet with the inverse spinel structure. The
spherical averaging of the structure factors introduced
in (4.26) gives equations which are much simpler, but
still rather accurate. These latter equations will be
given here. The reduction to three independent r is
also included in the equations which follow.

The function C defined in (4.5) vanishes when (4.26)
is adopted since all the structure factors are strictly
real. In order to extract square roots in the expressions
for the zeros, the signs of 0~, 0~i, and (7~2 are assumed to
be+, —,—,respectively. Then with Jz&)0,
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have become degenerate. Prom (4.16)—(4.20), and
writing RB1,~ rather than ~11,~

——822, ~, etc.,

R~;,r(k) =0,
Rg;,s(k) = 1—-', r;, (85b)

&B /(oB'1+ o Bs) (85d)

RA, r(k) = —,', (86a)

(86b)R, ,(k) =0,
RA, r(k) = (—1)'+'(1/2)

XLo)i—o)s)/(cos —»)], l=3, 4. (86c)

Rs' r(k) = (—1)'+'(r'/2)
XL(o)g—o)r)/(» —o)4)], l=3, 4, (85c)

where

where SJr; is the spin magnitude of the 8; ions,

S12=Sgs(Sos+ 1)/pSB1(Sgr+ 1)], (813)

lattices are small. To first order in these small quantities,

C'A+ [1+4'gr]+ t 1+C~s]=0. (811)
The total magnetization is SA—SB1-SB2,to Grst order
in the small quantities C . This result can be seen from
the data of Table I to hold for magnetite.

An explicit expression for the Curie temperature is
found upon applying a bit of algebra to (2.40)-(2.44).
The equations are combined to give a quadratic equa-
tion in o»/o~r, from which

1—Srs )t'1—S12) S12 I

~»/~»= — + I ~
+, (812)

1+I' k1+Ic r Sgs

1 E. b(.)+
2S

L(»-»)b(~s)
073—C04

—(o)4—o)s)b(o)4)], (87)

The magnon-number functions reduce to 1
Io—=—Zs 9/(9 —v(k)').

Ã

For inverse spinels, with y(k) from (4.26),

Io= 1.8784.
Then

(814)

1

2
U»-~r)b(gs) 2 ( oB2 SBr(Sr)r+1)SA(SA+1)

re=-~ 1+
TB1)-(&+&0) +2o +la)oas/FBI

(Ref. 38) . (816)
Also

4'A
I r=o= +a(&s—o)s)/(o)s —o)4)

2S
(89)

with the b(o)) defined in (3.9).The o A, os' and o)ss then
can be obtained by an iterative calculation.

Since b(o)) becomes 0 or —1 at zero temperature as
or is greater or less than zero,

3rc(1+Io+2orr s/rrgr)
OA &B1 (817)

2SBr(SB111)(1+&Bs/&Bl)

The values of these quantities for magnetite are given
in the Table II of Sec. 4.

The expectation value of the Hamiltonian is given in
this case by

(X)= y,II,N Q g o.—
Cg j

~
r=s 1 Ps(o)r o)4)/((os o)4) (810)

2S 8N&ABrrA(&B1+—&Bs) 32JAB &A(rrB1+&B2)

Now eo1—+4=coa—~g&0, and so only one sum appears
in (89) and (810).Also the magnon number functions
at zero temperature are consistent with the initial
choice of signs. Unlike the case of antiferromagnetism
discussed in Sec. 3, determination of the zero-point
deviation requires solution of implicit equations since
the r; and the o)r depend on the o . The sum in (89)
and (810) is small, and so, from (2.16)—(2.18), the
deviations from perfect ordering on the individual sub-

'Y (k) f P&s Po)4)
i

coth —coth
i
. (818)

o)s—M4 L 2 2i
Here again, as in (4.30), the nondispersive modes do
not contribute. The physical origin of this curious fact
has not been ascertained.

"The similarity of this result for rg to the corresponding
(JAs/0) form of Kouvel's expression based on molecular-field
theory should be noted.


