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i.e., if it were wavelength-dependent. Thus the three
shell-model force constants are equivalent to one wave-
length-dependent rigid-ion model force "constant"; this
wavelength dependence is negligible for nondispersive
modes. Equation (A3) can be written, for small tt,

2 (k+ks)
Mto'= (k+ Jt )tc'a' — —k '/k hatt'+0 (s')

4f

The concept of elasticity is useful only for slowly vary-
ing deformations, i.e., when terms in ~'u' and higher are
small compared with the term in ~'u'. Thus the three
shell-model force constants are equivalent to one wave-
length-independent rigid-ion constant h'—= (k+ks) as
long as we are concerned only with elasticity data. The
modifications due to the use of the shell model appear
only at shorter wavelengths.
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An adiabatic theory of polarons is developed under conditions when the polarons are "nearly small, "
that is, when their binding energy is greater than or of the order of half the rigid-lattice bandwidth, but is
not so great that small-polaron theory is applicable. In such an adiabatic theory there are a set of minimum-
energy nuclear configurations, each of which has associated electronic wave-functions concentrated mainly
on one positive ion, but spreading slightly to its neighbors. At and near these configurations trial electronic
wave functions are taken in the form of linear combinations of single-ion functions for a particular ion and
its nearest neighbors, with coeKcients determined by minimizing the energy. Conditions for localized normal
modes to be associated with any minimum are examined. Properties of wave functions describing the nuclear
motion are studied within the framework of a generalized tight-binding approach. It is shown that, if localized
modes are not formed, then bandwidths will decrease with increasing temperature as in small-polaron theory,
but that when localized modes are present, then at nonzero temperatures, a discrete distribution ofband-
widths will occur, and the thermal average of these widths may increase with increasing temperature.
Optical absorption due to transitions between a wide valence band for which electron-phonon coupling is
neglected and an adiabatic nearly-small-polaron conduction band with localized modes is considered.
Results for absorption at absolute zero are similar to those obtained previously for a small-polaron
conduction band without localized modes, but the temperature dependence of the absorption obtained here
shows some new features. Parameters occurring in the theory are estimated using a continuum-polarization
model for electron-phonon interactions, and numerical values are found for a simplified model of a possible
conduction band in SrTi03. The calculations indicate that electronic states may exist from which both
adiabatic nearly small polarons and weak-coupling large polarons can be formed, and that the lowest energy
polaron state may suddenly change from one type to the other as electronic overlap integrals or electron-
phonon interactions are altered in magnitude.

I. INTRODUCTION

N excess electron in an ionic crystal produces a
polarization of the lattice around it by Coulomb

interaction with the surrounding ions. The complex of
electron plus its surrounding lattice polarization is
usually called a polaron, and the study of polarons is
thus equivalent to the study of electrons interacting
with a phonon 6eld. Different methods of approach to
the polaron problem are suitable according to the
strength of the electron-phonon coupling' '—for weak
coupling it is a fair approximation to assume that the

*The work described here, together with some previous work
on optical properties of small polarons (Ref. 1) has been used in a
thesis accepted for the examination for the Ph.D. degree in the
Faculty of Science at London University.
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ionic displacements follow the motion of the electron,
while for strong coupling the opposite approximation
that the electron adjusts to the ionic motion adiabatic-
ally is generally more suitable.

If one looks at the polarization as a function of dis-
tance from the center of the polaron, which may be the
instantaneous position of the electron (for weak cou-
pling), or its averaged position over motion in its self-
induced potential well (for strong coupling), then at
large distances the polarization is just that which would
be induced by a fixed point charge at the polaron
center, while at short distances from the center the
polarization potential Battens off. ' The distance below
which this potential flattens off may be said to define
a polaron radius.

If the radius is appreciably greater than a lattice
constant, a fair description of the system of one elec-
tron plus optical phonons is given by a Hamiltonian
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introduced by Frohlich, ' which was derived under three
main assumptions: (1) the total effect of the one-electron
periodic potential of the rigid lattice is assumed to be
taken into account by giving the electron an effective
mass which may differ from the free-electron mass; (2)
a continuum-polarization model is used to calculate the
strength of the electron-phonon interaction; (3) only
a single-mode frequency occurs, that of the long-
wavelength longitudinal optical phonons.

When the polaron radius is smaller than a lattice
constant, the above assumptions will not be valid, but
diferent approximations, depending on the smallness of
the overlap between electron wave functions on
neighboring sites may be made. ' '4 In this case of
"small" polaron theory, ' states of the system of one
electron plus phonons are built up from basic localized
states, each of which consists of a product of an elec-
tron state localized on a single lattice site and a set of
displaced lattice oscillator states, with displacements
depending on the site of the electron. Matrix elements
of the Hamiltonian between localized states are divided
into two types, diagonal and nondiagonal, according to
whether the set of oscillator occupation numbers re-
mains the same or changes between one state and the
other. The diagonal matrix elements give rise to an
energy band structure, with a bandwidth drastically
altered from that of the rigid lattice by the smallness of
the overlap integrals between the displaced oscillator
wave functions associated with one site and the next,
and this width decreases further as the temperature
rises. The nondiagonal matrix elements give rise to
scattering at low temperatures, while at high tempera-
tures band theory breaks down, and they act in a
diferent way to give a hopping motion from site to site.

A necessary condition for the polaron radius to be
small is that half the rigid lattice bandwidth 5'„, which

equals twice the absolute value J of the electronic-
energy overlap integral between electronic functions on
neighboring sites in the one-dimensional tight-binding
model of Holstein, ' should be much less than the value

2J&E "'(h(v)"' T&T( (1 2)

J&a. "'(E )'~'(kT)'I'(Aced)'~' T) Tg (1.3)

where ~ is the phonon frequency for the problem, and
T& is the transition temperature between the band and
hopping regimes.

Small-polaron theory is adiabatic as far as single-site
motion is concerned, in the sense that the lattice only
responds to the averaged motion of the electron over the
single-site region, but the treatment of transitions from
site to site by perturbation theory is nonadiabatic. For
values of overlaps J somewhat larger than those given
by inequalities (1.1) to (1.3) a full adiabatic approach
at the polaron problem may be more suitable. Such
no approach has been used by several authors in studies
of large polarons. ""In this paper an adiabatic theory
is developed under the conditions shown below in
Eqs. (1.4) to (1.6), i.e.,

and

((1/s) (s ~'./Es)')&&1

2JQ AGO
~

8 &&k~.

(1 4)

(1.5)

(1.6)

In these equations, s represents the number of
nearest-neighbor lattice sites to any given site, ~ is an
average phonon frequency, J is an electron overlap
energy, 8'„ is the rigid lattice bandwidth, and W is
the polaron bandwidth. In general, for a tight-binding
model,

of the modulus of the polaron self-energy, or polaron
binding energy Eg which would exist if the rigid-lattice
bandwidth were zero, i.e., we require for this one-
dimensional model that

2J=-,'8 „&&E&.

In order for the perturbation approach to intersite
transitions tobevalid further conditions on the smallness
of J have to be satisfied, viz.
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where q is a number whose order of magnitude is
given by

(1 8)

The exact relation of q to s depends on the lattice
structure.

In the adiabatic polaron theory developed here under
conditions (1.4) to (1.6), there is a set of minimum
energy nuclear configurations each of which has as-
sociated electronic wave functions concentrated mainly
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on one ion, but spreading slightly to its nearest neigh-
bors. In Sec. II a small quantity e&, whose order of
magnitude is given by the left-hand side of (1.4), is
introduced together with two other small quantities e2

and e3, describing the part of the electron-phonon
interaction of second order in the normal coordinates
and of anharmonic terms in the ordinary lattice po-
tential, respectively. An adiabatic potential at and
near minimum energy configurations is found to first
order in the e's by use of a variational method, with
trial electronic wave functions concentrated on one
positive ion but containing slight admixtures of
neighboring ion functions. Because of the slight admix-
ture of neighboring ion functions we call the polarons
in the theory "nearly small. " In small-polaron theory,
energies and wave functions at minimum configurations
are calculated to zeroth order in e~ only, and in the
usual treatment terms involving e2 and e3 are not in-
troduced either. Although for large-polaron theory it is
probably a good approximation to neglect interactions
quadratic in the normal coordinates and anharmonic
terms in the lattice potential energy, because the actual
lattice displacements around a polaron in this case
are very small, for small polarons these displacements
can be comparatively large (of the order of a tenth of a
nearest-neighbor distance), and so such terms can be
more significant. The terms proportional to the &'s

in the potential energy expansion about a minimum
represent local force constant changes, and thus tend
to produce localized-normal modes for motion about
this minimum. Conditions for such modes to exist are
discussed qualitatively. The inequality (1.5) comes in as
a necessary condition for an adiabatic theory to be valid.

In Sec. III properties of wave functions describing
the ionic motion are considered within the framework
of a generalized tight-binding model, and effective
masses are calculated in this model for two cases with

(i) no localized modes and (ii) only one localized mode
per minimum and no displacements associated with
the nonlocalized modes. The inequality (1.6) gives a
condition for a generalized tight-binding approach to be
suitable.

In Sec. IV, optical absorption due to transitions from
a wide valence band for which electron-phonon coupling
is neglected, to an adiabatic nearly-small-polaron con-
duction band with one localized mode per minimum
as for case (ii) above, is calculated (to lowest order in
the p's) by finding transition probabilities between
approximate stationary states of the electron-phonon
system by perturbation theory, with the electron-
radiation interaction as a perturbation. This section
may be regarded as an extension of the work of Ref. 3
on absorption due to transitions between a wide band
and a small-polaron band.

In Sec. V most of the parameters occurring in the
theory of Secs. II to IV are evaluated by use of a
continuum-polarization model of electron-phonon inter-

actions, and as an illustration numerical values of the
parameters are obtained for a simplided model of a
possible conduction band in SrTi03. A brief discussion
is given of the possibility that the lowest energy polaron
states may suddenly change from those of the type
considered here to those of a large-polaron, weak-
coupling model as the electronic overlap integrals are
allowed to increase, and some remarks about effects
connected with localized modes around polarons are
made.

H=Hp+T„.

Here T„ is the lattice kinetic energy, and

Hp T,+V, ;+V——~,

(2.1)

(2.2)

where T, is the electron kinetic energy, V. ; is the
electron-ion interaction energy and V„ is the lattice
potential energy. Expanding V„ in terms of dimension-
less real normal coordinates q)„and ignoring terms of
higher order than the third in the q's we have

(2.3)

where the summations are over all the P's, co), is the
angular frequency of the mode X, and V» z &'& is a
symmetric tensor. In terms of the creation and an-
nihilation operators bqt and bq for the mode X, the
coordinate qz and its conjugate momentum pz may
be written

q~= (1/~2)(b~t+bx), (2 4)

p.= ('/~2)(b. t- b.) (2 5)

To develop an adiabatic theory we have two prob-
lems to solve, 6rst to find the stationary states of Ho
for the ionic configurations of interest, and then to
study the ionic motion with the eigenvalues of Ho

II. ADIABATIC POTENTIAL AT AND NEAR
MINIMUM-ENERGY CONFIGURATIONS

A. General

Suppose we have an excess electron in an ionic
crystal in interaction with phonons, and we consider
the adiabatic potential associated with such an elec-
tron for various fixed positions of the ions. Then,
provided the electron-phonon coupling is sufFiciently
strong, the lowest energy ionic configurations will be
those which tend to localize the electron within a region
centered about some lattice point. In this section we
study the adiabatic potential at and near the lowest
energy configurations under conditions when it is
possible to use a variational method in which trial
electronic wave functions are taken which are con-
centrated mainly on one positive ion, but which spread
slightly to neighboring ions of the same type.

We first split up the Hamiltonian B for one electron
plus phonons into two parts by writing



D. M. E A 6 LES

coming in as a potential. The second part of the problem
is discussed in Sec. III within the framework of a
generalized tight-binding model, whereas the first part
of the problem is studied in this section by a variational
method as follows. Let us consider a set of real
orthogonalized electronic wavefunctions (t(R(r, q), which
are concentrated on and moving with ions originally
at lattice points R, and which depend on electron co-
ordinates r and on the set of all lattice coordinates,
denoted by q. Suppose that we expand single site and
overlap electronic energies associated with these func-
tions in powers of the q's up to the second, and ignore
higher order terms; i.e., we put

and it is to be understood that the quantities occurring
in (2.14) are to be taken at a minimum energy ionic
configuration. We now define a quantity e by

o= max(og, pp, oo,b'), (2.16)

and assume that e is small. We shall later show that

where s is the number of nearest-neighbor lattice sites,
V3 is the anharmonic term in the lattice potential energy
given by

(2.15)

Eo(R,q) =—— yR(r, q) (T.+V, ;)yR(r, q)d'r
ZG bG &1' (2.17)

and
=Epo+Ep&+Eoo, (2.6)

where in (2.6)
=~o+J&.+Jp, (2.7)

Eo~=Z& E&,("(R)q&,

Eoo=p Z E&&, "&(R)q~q&, ,

(2.8)

(2.9)

while in (2.7)

J(R,G,g)—=—f ( (r q&(T.+Y ;&(R+s(.r, q&d'r

Then, from (2.6) to (2.11), (2.2) and (2.3), by expanding
in powers of e we find that the expectation value of
Bp satisfies

(H )=—Epo —P q E &'&(R)+-,'P q 'b —2Q b

+Qg qgt Po bo'(Eg('& (R)—Eg&'& (R+ G) }
—2

globo

J»,"(R,G))——', g q&,q&,

X(E&&, '"(R)+2&ebs J&,&, "&(R,G)}

and
A=&&, A&»(R, G)q&,

&o= 2 2 Av "&(R,G)q&qv.

(2.10)

(2.11)

+p 2 V&& », -"q&,q& q& +0(o'). (218)

We should remember that

a'+go bo'=1, (2.13)

and are to be determined by minimizing the expectation
value of IIp.

We next introduce three parameters 6y 62 and e3,
defined by

pl=s(2//Eox), op= (2Epp/Epz), o((= (2Vp/Epx) ~ (2.14)

The tensors E&,&,
.('& and J&,&,

('& in (2.9) and (2.11)
are chosen to be symmetric.

The electron-ion interaction V, ; is often split up
into two parts, the periodic potential for the rigid
lattice and the electron-phonon interaction, but since
we are dealing with matrix elements of this potential
between wave functions which themselves depend on
normal coordinates q)„such a splitting is not useful
for our problem at this stage.

Let us now suppose that the relative magnitudes of
Epj and J are such that a fair approximation to the
lowest electronic eigenvalue for q's near a minimum

energy configuration may be obtained by taking trial
electronic wave functions P of the form

/=a(q)QR(r, q)+g&bo(q)(tR+o(r, q), (2.12)

where the sum over G extends over all nearest-neighbor
lattice vectors, and the a's and b's are real variational
coefficients satisfying

and

1/'zp, x x"~
~'~ = 1/'u. v ~",

(2.19)

(2.20)

(2.21)

where P(V,Y') denotes any permutation of (V,'X").

q&, =q& ('&+q& ("+. . (2.22)

where the superscripts refer to the powers of t. in-
volved. Differentiating (Hp) of (2.18) with respect to

q~, equating the result to zero, and ignoring terms of
order e gives immediately

q&,
"&= {E&,'"(R)/~&, } (2.23)

Putting this value of q& into the terms of order e in

B. Minimum-Energy Configurations

It is now straightforward to find expectation values
of Hp at a minimum energy configuration by minimizing
the right-hand side of (2.18) with respect to the q's for
fixed a and b, and then minimizing the resulting energy
with respect to a and b, subject to (2.13).

First, we expand the lowest energy q's for fixed a and
b in powers of e, i.e., we put
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{8(Hp)/Bq&, }we deduce equating the result to zero, we 6nd that

Jo+P qzJ& (R,G)+p P q&q&, J» (R,G)qg&1) = (~y)—1 g bso{E&,&»(R+ G)—E&,&»(R)}
G . (2.35)bG=-

Q q&, {E&,&')(R)—E &'&(R+G)}
E~ o)(R)

+2+ bs J&,&')(R,G)+Q J» &'&(R, G)
G AG)g~ To determine the bG's for small departures of the

normal coordinates q from their values q&, (say) at a
minimum configuration, we put

E&,.&'& (R)
+E E» &'&(R)

607}&&,

(2.36)q&
=

q& m+ 8&,
E», "(R)E&,"'"(R)-—

p E V~&&
AG)g~ AGOG~~

~ (2 24) and expand be in powers of 8&,. Thus we write

Hence, substituting from (2.22) to (2.24) into (2.18),
we obtain, to erst order in e,

(Hp)= —Epp —Bp—2 Pe beJ~+2 Pe bs (Bo Cp)—
Bo+Vp,—(2.25)

bs= bo+b1s+bos+. (2.37)

where the nun1erical subscripts refer to the powers of
the 8's involved. Then, from (2.35) and (2.36), making
use of (2.26), (2.28), (2.34), (2.22), and (2.23), we find,
to the 6rst order in e, that

where

Bo=-,' Q ({E&')(R)}'/A ),
J = J(R,G,q),„,„(&,

Co= p P(E&,&')(R)E&,&')(R+G)/h&o&)

(2.26)

(2 27) and

bo= (J-/P), (2.38)

b1e ——(J /P)p&, 8g{P&,(R,G)+Q&,(R,G)}, (2.39)

(2 28) bos=(J /F) Q 8&,8» t {P&,(R,G)+Q&,(R,G)}
XX'

Bo———', P(E&,&' (R)E&, &' (R)E».&'
(R)/&&&&p&, ho)&, ) (2.29)

and

XQ (R,G)+S (R,Gg, (2.40)

where, as in (2.27), J is the overlap energy at the
minimum, and P&„Q&„and S» are defined by

+Q(E&, &')(R)/h&o&, .)J», , &'&(R G)}, (2.41)

(2.42)

V =V (q) (2.30)
P&,(R,G) = (1/J ){J&,&"(R,G)

Minimizing (2.25) with respect to bs, we find that (to
first order in p) bs, u, and the energy at the minimum
Eml~ satisfy

bs J /F, —— (2.31) Q (R G) = (1/P) {E '"(R+G) —E "'(R)},
a= {1—z(J~/F)'}'"~{1—-',z(J~/F)'} & (2.32)

and S (R,G) = {-,'J &,
.&')(R,G)/J„}. (2.43)

E; =—Epp —Bp—(zJ o//F) Bo+Vo—
where we have introduced the notation

P= 2(Bp—Cp) .

(2.33)

(2.34)

In (2.26), (2.29), and (2.34), Bp is the polaron binding
energy that would exist if all c's were zero, J32 is the
change of polaron binding energy due to terms in
single site energies of second order in the normal co-
ordinates, and F may be understood by noting that @P
represents the difference in energy on the adiabatic
potential curve that would exist between a minimum
and a saddle point between two minima if all e's were
zero.

C. Con6gurations near Minimum

For general q's, u and b may be determined in our
variational method by minimizing the expression
(2.18) for the energy with respect to the b's Differentiat-.
ing the right-hand side of (2.18) with respect to be, and

.+ Z f7»8&8&,
XX'

where

&» =p4vbpp& —Qe L(J '/P)

(2.44)

X{(P&+Q&)(P& +Q&, )+2S» }j
—pE», , ")+2 Z V&,x &

-"'{Ex""'(R)/~&,-}.(2.45)

The quantities P&8& and Q&8&, in (2.39) and (2.40) repre-
sent, respectively, the fractional change, due to change
ofq&, fromq&, to (q&, +8&), of overlap Jandof theenergy
difference, to zeroth order in e, between the point g},
and a saddle point on the adiabatic potential-energy
surface.

Substituting from (2.36) to (2.40) into (2.18), using
(2.41) to (2.43), and consistently ignoring terms in o',
we find, after some algebra, that to fi.rst order in e

and second order in the 0's the energy near a minimum
satis6es
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From (2.44) and (2.45) we see that, to zeroth order
in e, phonon frequencies are unchanged by the presence
of the polaron. Hence, using (2.23), the polaron-binding
energy Eb for zero J satisfies E$—Bp. Further, from
(2.8), (2.23), and (2.26), Bp pEpi. Thus, since the
rigid lattice bandwidth 8'„satisfies 8'„2sJ, the
condition that pi of (2.14) be small may be rewritten in
the form (1.4).

C,=~A, ,

where A, is positive and

(2.47)

Ai&~Ap&~&&A;&~A;+i&~. (2.48)

Because the last term in (2.46) represents appreciable
ionic displacements only within a small region, we know
that only a limited number of A, 's are significantly
different from zero. Each of the $ s associated with
these A, 's will be composed of displacements of ions
within a limited distance of the polaron, and in parti-
cular the first few ( s will contain an appreciable
fraction of nearest-neighbor displacements.

Now, as discussed above in subsection C, at a mini-
mum energy configuration the magnitude of the first-
order term in the single site energy Ep& satisfies Epp~280,
to zeroth order in p, and so, from the definitions (2.14)
of the p's, and use of (2.41), (2.42), (2.43), (2.23),
(2.26), (2.28), (2.34), (2.7), (2.10), (2.11) and the fact
that we expect F Bp (see Sec. V), we deduce that the
contribution to the energy expression (Pzz Ui, z qi qz )
from the last three terms of (2.45) is of order Bpp.

Thus, if we introduce quantities v, which are related
to the q's in the same way as the quantities P, are to the
8&'s (i.e., if g= U8, then v= Uq, where U is a unitary
matrix and g,e, v, and q denote vectors with components
$i, 8i„vi„and qq), then we expect, for a minimum q
configuration, that

(2.49)

Further, if we let t be a unit vector in q space in the
direction from the origin to the miniroum configuration
being considered, and let ~, be a unit vector in the
direction corresponding to n„ then, since, from (2.33),
to lowest order in e the energy E; at the minimum
satisfies

Epp (2.50)

D. Possibility of Localized Modes

The last three terms in (2.45) only contain contribu-
tions from ions within a limited region of the solid. Let
us diagonalize these terms separately, i.e., we put

E=E; +Qy iphd)i8i'+Q, piC, f, 'h&o, (2.46)

where the $, 's are obtained by a unitary transformation
from the 8i,'s, pp is a mean-phonon frequency (for
definiteness let it be the unweighted arithmetic mean),
and we choose C, so that

v, = (f 8,)(2Bp/Aper)'~'.

Hence from (2.49) to (2.52) we deduce

(2.52)

(2.53)

If the C, 's of significance are all of the same sign we may
deduce from (2.53) and (2.47) that

(2.54)

For further discussion of the magnitude of A~ it is
helpful to distinguish between cases where the second,
third or fourth term of Uiq of (2.45) is the largest.
If we consider the expression (Pzi, Uiz. qi, qi, . ) then we
can show, by use of equations mentioned in the argu-
ment leading to (2.49), that the contributions of the
second, third, and fourth terms of (2.45) to the energy
are in the ratio 6]:62'.63. Hence it is probable that the
ratio of the contributions of the second, third, and
fourth terms of (2.45) in the expression (Pi,i, Uqi 8i8i )
are also in the ratio e~.e2.e3. Thus the term dominates
which corresponds to the largest e,. The terms involving
E),), &" and V),q),"&" could exist for small polarons
as well as for nearly small ones, and to make a study
of these terms would require the introduction of a
particular force-constant model. However, the term
proportional to (J '/F) in (2.45), being dependent on
wave-function spreading, is peculiar to nearly small
polarons, and can be examined without too many
further hypotheses.

We here make a study of the special case arising when

&i)&&p, pp; Q&)F)„' Q),Qv))&u, . (2.55)

The first two inequalities in (2.55) mean that effects
of wave-function spreading are of more importance
than those of electron-phonon interactions quadratic
in the normal coordinates or of anharmonic terms in the
lattice potential energy. The last two inequalities imply
that terms in the energy arising from a dependence of
the amount of wave-function spreading on lattice
coordinates are larger than those arising from de-
pendence of the magnitude of overlap integrals on
ionic displacements.

Now, using the definitions (2.42), (2.34), (2.26), and
(2.28) of Qi, F, Bp, and Cp, we find that

(2.56)

We rewrite (2.56) as

(2.57)

where (2.57) defines a weighted average-phonon fre-
quency ppo. Under the assumptions (2.55), using (2.45),

then the displacement l at the minimum in the direc-
tion of i is given by

(2Bp/Aper) '~', (2.51)

where ~~ is a mean phonon frequency weighted by the
factors q) &0). Thus values of v, at the minimum satisfy
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and taking into account the remarks of the previous
paragraph, the energy expression (2.44) becomes

E~E;„+Pi—,'Atone)P ——,'(2J„/F)'hppq go rto', (2.58)

where

Eq. (13) of Ref. 18, we deduce that if

Ag& ep

localized modes occur, but if

(2.61)

(2.62)
rt G=Q y Qiei(F/2M) tt) 't'. (2.59)

localized modes do not occur, where eo is dined by
Using (2.57) we see that the sum of squares of coef-
6cients of 8& in the expansion of pG is unity. However,
the pG's are not necessarily orthogonal. Taking suitable
orthogonal linear combinations $, of the rto's (s=1 to z,
where z is the number of nearest-neighbor lattice sites),
and completing an orthonormal set with any suitable
expressions $, (s)s), we obtain an expression for the
energy of the form (2.46) (with C, =O for s)z), and
so by considering the extreme cases where all the pG's

are the same, or where they are all mutually perpen-
dicular, we 6nd that

z(2J /F)'&Ai& (2J /F)'. (2.60)

'~ A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and G. Turnbull (Academic
Press Inc. , New York, 1963), Suppl. 3."I.M. Lifshitz, Nuovo Cimento SuppL 3, 716 (1956).

Now let us return to the general expression (2.46)
and examine conditions for the term (g, zrC, $, 'tttp) in
the energy to produce localized modes. Each term
(-,'C, (,'htp) represents an addition to the potential
energy within a certain limited region of the crystal,
i.e., it represents local force constant changes. Most
theoretical work on localized-mode formation'~ has
been done for mass defects without force-constant
changes; such defects introduce extra terms in the
kinetic energy over a limited region instead of in the
potential energy as for the force-constant case. In one
and two dimensions any mass defect will produce a
localized mode, while in three dimensions the difference
in mass of the impurity from that of the host atoms
must exceed a certain minimum value for localized
modes to be formed. If m' is the mass of a defect and m
the mass of the atoms of a host crystal with one atom
per unit cell, and we write (srt' —yg)/m= e', the condi-
tion on e' for localized modes to exist was discovered
by Lifshitz" many years ago. In our case (pAipr'ttrp)
represents a term in the potential energy analogous to
the mass-defect term in the kinetic energy with A&

replacing e' above. If further, we suppose that b is
composed mainly of coordinates of modes of one branch
of the phonon spectrum (which is likely, at least for our
special case (2.55) above, because then $t contains the
largest contributions from modes with the biggest
displacernents, which in an ionic crystal are probably
the longitudinal-optical modes) then we might suppose
that a formula analogous to the condition of Lifshitz
holds as a condition for the term (-,'Ai]rphtp) to produce
localized modes. Making this assumption, by use of

0=8~3 ~~o2
d'w Do)

(2.63)
$ppp

—pp (w)j pp

In (2.63) V, is the volume of a unit cell of the crystal,
coo represents an extreme frequency of the optical
modes, co is a mean frequency, A~ is a spread of fre-
quencies, tp(w) is the frequency of the mode of wave
vector w for the branch of the phonon spectrum being
considered, and the integration is over all phonon wave
vectors w. The right-hand side of (2.63) follows if
we assume co)&Ace, and that the average value of
1/Lppp —tp(w) j is of order (2/h&p).

Thus, if Ai e, we have in (2.61) to (2.63) conditions
on e for the existence of localized modes. Since each
term in P, z in (2.46) gives a tendency to change the
frequency associated with $, by a factor of . about
(1&zrA,) for small A„using (2.63) we see that (2.61)
states the condition that this potential change of
frequency should be greater than half the phonon
band width.

2J& Ao). (2.64)

In the figure the dotted lines indicate that if J were
zero the potential energy curves would continue to
rise quadratically. Thus, at a minimum point on the
lower curve, from (2.23), (2.36), (2.44), and (2.45),
to lowest order in e we And that the energy separation
E, satisaes

(2.65)

E. Potential along Lines Joining Minima

So much for the values of IIO for the lowest energy
electronic states of the form of our trial functions of
(2.12) for ionic configurations at and near those which
give the lowest energy. The lowest eigenvalues of Ho
for large displacements from the minimum energy con-
figuration, and the form of the energy curves for ex-
cited-electronic states are not known in detail, but,
from the work of Yamashita and Kurosowa, ' we expect
the general form along lines joining two minima to be as
indicated in Fig. 1, with the minimum separation be-
tween the ground and excited states equal to 2J to
lowest order in e. We thus expect that a necessary condi-
tion for an adiabatic theory to hold is that this separa-
tion should be greater than a mean phonon frequency,
i.e., we require
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adiabatic potential associated with R by b;t(R) and
b;(R), then the eigenstates IX„it) of the Hamiltonian
{(Hs)+2'„}describing the ionic motion that would
exist if (Hs) continued to be harmonic at all distances
from the minimum, may be written as

Fro. 1. Sketch of expected form of lowest and Grst excited-state
adiabatic potential energy E along a line joining two points of
minimum potential on the lower energy surface in g space.

where to obtain the right-hand equality to make use
of the de6nitions (2.26), (2.28), and (2.34).

III. WAVE FUNCTIONS DESCRIBING
IONIC MOTION

A. Generalized Tight-Binding Method

The erst part of the adiabatic problem, that of end-
ing the eigenfunctions and eigenvalues of the part Hp
of the Hamiltonian H of (2.1) was treated in Sec. II
for low-energy ionic configurations by use of a varia-
tional method, with trial functions of the form shown
in (2.12).The second part of the problem, the investiga-
tion of the wave functions describing the ionic motion
with the eigenvalues of Bp coming in as a potential,
would in general, be very difficult. However, if the
potential wells at the minima in the potential are
sufficiently deep, then a generalized tight-binding
method should be of use, and in this section we study
the wave functions describing the ionic motion by such
a method, concentrating on two cases when (i) no
localized modes are formed around the polaron or (ii)
there exists one localized mode associated with each
minimum and there are no mode displacements as-
sociated with the nonlocalized modes.

If we denote the creation and annihilation operators
for the ith normal mode for the minimum in the

where the product is over all modes i, and
I OR) denotes

the vacuum state for the set of modes associated with R.
Having chosen the labeling i for the set of modes
associated with one minimum, we can choose the
labeling for those associated with the other minima in
such a way that the translation operator which changes
R into R' transforms the annihilation operator b;(R)
into b;(R'), and similarly for creation operators. Thus,
it is meaningful to divide matrix elements between
states as given by (3.1) into two types, diagonal and
nondiagonal, according to whether or not the set of
mode occupation numbers e; is identical for both states
or not.

Now, if the potential wells associated with minima are
suKciently deep relative to the hills in between them,
the overlap between different functions with the same
set of occupation numbers e; will be small, i.e., we have

(3.2)

Hence, if following Sewell' and Holstein's' approach
for small-polaron theory, we suppose that the polaron
band structure is associated with the diagonal matrix
elements of the Hamiltonian between states for different
minima, ' while the nondiagonal matrix elements just
give scattering at low temperatures, then we may study
the band structure by use of a generalized tight-binding
model, in which the band states are built up as Bloch-
type linear coinbinations

I
X„~)of a set of orthogonalized

states
I
X'„R) obtained from the set

I
X R) for a fixed set

of occupation numbers. Thus we take band states of
the form

PR exp(~1 R)
I
x'-R),

gl/2
(3.3)

where E is the number of cells in the crystal. However,
the actual method of forming the orthogonalized set of
states IX'„a) from the set IX„a) is not obvious, since
the overlap between states

I x„a) and
I
X„R ) does not

become small as (R—R') becomes large, and in fact,
it is shown in Appendix A, for the case where all the e's
of Sec. II are neglected, if a continuum polarization
model for the electron-phonon interaction is used and
there is no dispersion of phonon frequencies, that

(X.aIx„a )=X+0(C/I R—R'I), (3.4)

"This approach is only applicable if the dispersion of phonon
frequencies is greater than some minimum value, probably of the
order of AE, where hE is the uncertainty in energy of electron

'states due to scattering. For dispersion smaller than this value but
still under conditions when localized modes are not formed, then
an approach due to Nagaev may be more suitable (Ref. 20).
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for large (R—R'), where K and C are constants.
Notwithstanding this fact, provided that the actual
value of the individual overlaps between the states

~
&») is small, then it is probable that we can form the

orthogonalized set
~

X'») in such a way that

(3.5)

for all R. This is shown to be possible in Appendix 8 i
all overlaps are constant (independent of ~R—R'~),
or if all overlaps are zero except in a small region, or for a
combination of these two factors. With a term of order
(C/~ R—R'~ } occurring in the overlap a proof that an
orthogonal set can be formed to satisfy the relation
(3.5) has not been found. However, as overlaps propor-
tional to (1/r) are in some sense intermediate between
overlaps independent of r and those of short range, it
would be surprising if such an orthogonal set did not
exist.

If we assume (3.5), it is then straightforward to show
that the matrix elements between states of the Hamil-
tonian between orthogonalized functions satisfy

(~ R IH,
~

&' R')—(~ Rl (H,—HR') )X R') y (3 6)

where H, = f (H»)+T~}, and HR is the Hamiltonian of
which

~
&» ) is an eigenfunction. Hence, choosing our

origin of energy suitably, we obtain that the energy E&
associated with a Bloch-type function is given by

~~= & exp(~k (R'—R)}«»l(H.—HR) IX»).
R~QR (3.7)

Now, at the point of maximum overlap of
~
X») and

~X».), which will occur at the saddle point in the
potential energy function lying on the line joining the
minima associated with R and R', the difference in
energy (H, HR.) will be equ—al, to lowest order in», to
the energy overlap integral between electronic states
associated with ions originally at R and R', since to this
order in e it is only these overlaps which change the
potential energy curve from the simple harmonic form.
Since these overlaps have been assumed small even
for nearest neighbors, they will be negligible for any
more distant neighbors. Thus, the bandwidth just
depends on matrix elements as given by (3.6) for
R'= R+6, where 6 is a nearest-neighbor lattice
vector. Now, provided that the energy (H,—HR+G) only
changes slightly in the region of signifj. cant overlap of
~X») and ~X„,R+G), then we may put (H, H~~G)—
equal to the value J, in the n1atrix element, where J,
is the electronic energy overlap integral at the saddle
point. Hence in our generalized tight-binding approxi-
mation we find, using (3.7) and the remarks above, that
the bandwidth 5' satisfies

+—g(x R I (H» HR+G)
~
Xra, R+G)

Ps(x»
~

—Xn,R+G), (3 8)

where q is the quantity, of the order of twice the num-
ber of nearest neighbors s, which relates bandwidth to

overlap integrals in a tight-binding calculation. (For a
simple cubic lattice q=12 and s=6, while for the NaCl
structure q= 16 and s= 12.) The condition for the right-
hand equality of (3.8) to hold may be seen by consider-
ing the case of no dispersion of the normal-mode fre-
quencies, when the coordinate q (say) which describes
motion from one minimum to the next may be con-
sidered as a normal coordinate if terms proportional to
e in the potential energy are ignored. Now the separa-
tion of the harmonic curve from the adiabatic potential
curve is of order J, over a region where the potential
energy (i~&'ho&) changes by an amount of order J„
and over this region the lattice wave function changes
by a factor exp( —J,/hc»). Thus, the criterion for the
applicability of the right-hand equation of (3.8) is that

exp(2 J,/her)))1, (3.9)

and
b;(R+6)=p;+X; (3.10)

(3.11)

where X; are mode displacements, and u;; and c;; are
expansion coefficients, satisfying

11—G"I'+2 IG' I'—2 l~' I'=1
jets

(3.12)

For a single oscillator with an added term in the
potential energy of order c times the original one, it is
easy to show that the ratio (c/a) of the coeflicients in
the equation of the form (3.12) is of order». Thus,
extrapolating to the case of many modes and addi-

which is roughly equivalent to the previous criterion
(1.5) for the adiabatic theory to apply, but slightly
stronger. Since it is necessary that the system stay
near one minimum for a time long compared with a
mean reciprocal frequency of the lattice (1/&o) for the
tight-binding approximation to be suitable, another
necessary condition for the validity of our approxima-
tions is that the bandwidth 8' should satisfy

(1.6)

We should note that in the perturbation approach to
small-polaron theory, valid for small overlaps J, a
tight-binding method is used for the total-wave function
of the system instead of just for the part of the wave
function describing the ionic motion as discussed here,
and the result obtained for the bandwidth is just of the
form (3.8). Thus it seems that the conditions (1.5)
and (3.9) may not be of significance for our problem,
and that (3.8) is valid for all J sufficiently small for
(1.6) to hold.

Having obtained (3.8), our next task is to put the
creation and annihilation operators associated with one
minimum in terms of those associated with the next,
or more conveniently to put them both in terms of some
sets P; and P;t, which we choose so that
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tional potential energy terms of order e times the con-
tribution from the original terms in a localized region
as in (2.44) and (2.45), we expect that the c; s will be
small, satisfying

(3.13)

We shall assume that the c;,'s can be neglected for
the remainder of this section. Making this approxima-
tion, and noting that the vacuum state associated with
a displaced oscillator (b+d) is related to the vacuum
associated with b by

)O~)=exp( —b&d) ~0) exp{—P d~ '}, (3.14)

where ~0p) denotes the vacuum state with respect to
the p's, and S is the sum of squares of displacements
defined by

(3.16)S=g, /X, i
2.

The neglect of some terms of first order in e in
deriving (3.15) might seem to be inconsistent with in-
clusion of first-order terms previously. However there
are two special features about the effects of the terms
which were included before: (1) they can produce
localized modes of lattice vibration, i.e., qualitative
changes in the surroundings of the polaron; (2) they
can produce changes in the quantity S in (3.15) of
order eS, and since we expect S)10 (see Sec. V) the
effects of these changes on the polaron bandwidth are
not small. Neither of these special features is expected
to arise in connection with the ignoring of the c,; s in
deriving (3.15).

In order to make further progress we need to make
assumptions about the normal modes associated with a
particular minimum, and we consider first the special
case of no localized modes.

we deduce from (3.1), (3.10), (3.13), and (3.14) that
the diagonal overlap integrals Q between states
~X„a) and ~X„,R+o) satisfy

Q-=—(~-a
I
&..a+o)=A III' L{(P'—Zi ~'~A) "'

)& (P;t+X; )"'
~
e;!}exp( —P;tX;)j)0p) exp( ——',S),

(3.15)

b;(R+G) = bi„.+d)„.(R+G) =P;+X;, (3.18)

where di, ,(R) and di,.(R+G) are mode displacements,
and the right-hand sides of the equations define p;
and X;. Thus we have

W= qJ, exp{——',S(2n+1)}, (3.21)

where n is a mean phonon occupation number defined by

ns=g, ~, fX, [2. (3.22)

Thus the results are similar to those for small polarons,
with the bandwidth decreasing with increasing tem-
perature. However, the values of the displacements dq
will have slight differences from the ordinary small-
polaron values, due to additional contributions of the
order of e times these values. Using the relation (2.4)
between the b's and the q's, and (3.16) and (3.19),
we may write

S=-,' Z~ {qi, (R)—qx (R+G)}', (3.23)

where q}, are the displacements of the q's at the mini-
mum, given by (2.23) to lowest order in e. Hence
putting

S=So+Si, (3.24)

where the subscripts refer to the powers of e involved,
we find, using (3.23), (2.26), (2.28), (2.34), and (3.24),
that for the special case of no dispersion of phonon
frequencies,

X;={di„.(R+G)—di, (R)}=O(1/&i~2) . (3.19)

The right-hand side of (3.19) is a general result for
displacements of nonlocalized modes due to localized
perturbations.

Substituting from (3.17) and (3.18) into (3.15), and
using X;=O(1/iV'i'), we find that, to lowest order in
(1/&),

Q = exp( ——,'S)g;(1—I;X;X;*)=exp( ——,'S)
Xexp{—P;e;~X;~'}. (3.20)

Hence, from (3.8), (3.15), and (3.20) we deduce that
the bandwidth 8' satisfies

B. No Localized Modes Sp ——(P/ho)) . (3.25)

(3.17)f;(R)=f.+A, (R)=p;

In the case where the extra localized terms in the
potential energy expressions (2.44) and (2.45) are
su%ciently small that localized modes are not formed,
then, if one expands b;(R) in terms of the annihilation
operators for the original normal modes of the crystal
without the extra electron, the coe%cients will be con-
centrated about a certain X, X; (say), and the spread
of frequencies co}, for which the coefficients will be ap-
preciable will be proportional to (1/E), where 1V is the
number of cells in the crystal. For large crystals we
expect that negligible errors wi11 be made by making the
replacements

Making use of (2.24) and (2.31), a complicated ex-
pression for S» could also be obtained. We shall not
write this down in general, but note that its order of
magnitude will satisfy

(Si) eSO. (3.26)

Now a typical value of So for an alkali halide crystal
might be as high as 50, and in all materials for which
our theory applies we expect So&10, and so although
we are assuming e is small, the effect on the bandwidth
of the factor exp( ——',Si), may be quite large.

For the special case of (2.55), where wave-function
spreading is more important than electron-phonon in-
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teractions of second order in the normal coordinates or
anharmonic terms in the ordinary lattice potential
energy, then at the minimum con6guration the ex-
pression (2.24) for qi&'& reduces to

q~"'=(»~) ' Zo(~-/F)'
X{Ei&'i(R+ G)—E),&'&(R)}. (3.27)

and (3.31), and inspecting the coefficient of

iC» A)

that, to first order in (M/E), the relevant overlap
integral, which we call Q„„io&, is given by

(3.33)Q„„&'& {1—Q a;;}exp( —-',5),
ig» A)Hence, neglecting phonon dispersion and using (3.23),

(2.23), and (3.27), we deduce that

pJ i '-2(a, —C,)—2(C,—D,)-

kF) hca

where S=Xi2. Hence, using (3.8), to 6rst order in the
thermal occupation number e; of the nonlocalized

(3 28) modes, the bandwidth Wo associated with zero-

occupation number for the localized mode satisfies

where Bo and Co are given by (2.26) and (2.28), and Do
is defined by

PP' qJ, (1—np, ) e p(——S),
where p is defined by

(3.34)

Do ———,'Avo Pq {Ei&'&(R)Eg&'&(R+G+G')/h(o}. (3.29)

Here AvG denotes an average over all nearest-neighbor
lattice vectors G.

We expect that Si of (3.28) will generally be negative,
and so the bandwidth will be increased by wave-
function spreading effects. We should note that similar
additional terms in the bandwidth to those proportional
to exp( ——,'Si) with Si given by (3.28) were obtained by
Holstein in a two-site adiabatic small-polaron model in

Kq. (116) of Part II of Ref. 8.

C. One Localized Mode

If localized modes are formed around the polaron,
the general problem of finding the bandwidth at all
temperatures would be rather difficult. However, some
insight into the effect of localized modes is obtained here

by considering the special case when there is only one
localized mode per minimum, and when there are no
displacements associated with the nonlocalized modes.
Thus we assume that mode i = 1 is localized and

g= Q aiip
i&l

(3.35)

and n is a weighted average of the occupation numbers

n;, weighted by the factors u;;.
(b) If ni ——1 then, denoting the relevant overlap

integral by Q„„&'&, we may show in a similar manner
that to first order in (M/1V)

Q-'"={1-& a"}(1-5)
iQ» A~

X{1—a»+ Q ai;a, ,}exp( ——,'S). (3.36)
jg» A)

Thus, to first order in n, the bandwidth 8'1 associated
with n = 1 is given by

Wi=qv. (1—~n) I
5—11(1—a»+vn. .)

Xexp( —-,'5), (3.37)
where v is defined by

(3.38)

(3.30)I;=0, Z&1. and n„ is an average of the occupation numbers n;
weighted by the factors (ai;a, i). Hence from (3.34)
and (3.37), to first order in n, n, and ni, where ni is the
thermal occupation number of the localized modes, we
deduce that the thermal average bandwidth lT is

given by

IT'—q~.{(1—nw —ni)+ni(1 —a») I
5—1I }
Xexp( —2S) . (3.39)

We restrict our studies to low temperatures, that is to
cases where the occupation numbers m, of the non-
localized modes i & 1 satisfy

n, =1, i&{A}
n, =0, if{A},

(3.31)

where the set {A}contains M members, and we assume
that Now one expects that c;;, which is nonzero because

of the normalization required by the addition of
operators P; in the expansion (3.11) of b;(R), will

satisfy a;;&(1/E), and hence that p defined in (3.35)
will satisfy

(3.32)M&&S.

With these occupation numbers for the nonlocalized
modes, we now have two types of overlap integrals Q
to consider at low temperatures, i.e., those in which
the o
sa

(3.40)
ccupation number e1 of the locahzed mode

Thus we conclude that, if localized modes exist, a
discrete distribution of bandwidths will occur at non-

(a) If ni ——0 we find, by using (3.15), (3.16), (3.30) zero temperatures, and from (3.39) and (3.40) that
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if (1—att)
~

5—1
~

is sufficiently large, i.e., if the
localized mode associated with one minimum is not
orthogonal to that associated with the next, and the
electron-phonon coupling giving rise to the mode dis-
placement X~ is strong enough, then the mean band-
width will increase with increasing temperature.

Physically one might expect the mean bandwidth to
increase with increasing temperature on a localized
mode picture, since increase of temperature represents
greater local vibrations and hence a higher probability
of transfer to a different branch of the potential energy
curve. Thus, the surprising result regarding effective
masses is the increase of mass with increasing tempera-
ture obtained in the usual case without localized modes,
rather than the decrease in the localized mode case.

We should note that, for small polarons and small
dispersion of phonon frequencies, Nagaev predicted a
distribution of bandwidths such that the mean-square
width increases with increase of temperature. " He
did not find the distribution of widths explicitly, but
we can show that his results for the mean-square width
at low temperatures would be the same as ours for the
special case n~=n, a~~=0, p=0. However, u~~ ——0 would
imply that mode 1 were not localized, and so Nagaev's
results are applicable to a case not considered in this
paper, i.e., to the case in which localized Inodes are not
formed, but the dispersion in phonon frequencies is less
than some maximum value, probably of the order of
(1/r), where r is the scattering time for the polarons.

IV. OPTICAL ABSORPTION DUE TO TRAN-
SITIONS FROM A WIDE BAND TO A

NEARLY-SMALL-POLARON BAND

In this section we study optical absorption due to
transitions between a wide valence band for which
electron-phonon coupling is neglected to an adiabatic
pearly small-polaron conduction band. As in Ref. 3,
where a small-polaron conduction band was treated, we
use the straightforward method of finding transition
probabilities between approximate stationary states of
the electron-phonon system by perturbation theory,
with the electron-radiation interaction, for a radiation
Geld modified by the refractive index of the material,
as a perturbation. "As far as the conduction band is

~ E.L. Nagaev, Fiz. Tverd. Tela 4, 2201 (1962) LEnglish transl. :
Soviet Phys. —Solid State 4, 1611 (1963)g.

~'More sophisticated methods of studying optical properties
associated with small polarons have been used by H. G. Reik,
Phys. Letters 5, 236 (1963); G. M. Genkin, Fiz. Tverd. Tela 6,
1608 (1964) LEnglish transl. : Soviet Phys. —Solid State 6, 1265
(1964)j; E. K. Kudinov and Yu. A. Firsov, Zh. Eksperim. i
Teor. Fiz. 47 601 (1964) /English transl. : Soviet Phys. —JETP
20, 400 (1965)j. Reik and Genkin treat high-frequency conduc-
tivity due to polarons in one small-polaron band at high tempera-
tures, and obtain results which are qualitatively similar to those
given in Ref. 3 for this case, but there seem to be some quantita-
tive differences between the three sets of results. The calculations
of Reik and Genkin were not given in sufhcient detail for the pres-
ent author to 6nd the source of the discrepancies. Kudinov and

+ &' '(r 0) =it'(r 0)X &' '(0) (4.3)

where, for q's at or near a minimum energy conGgura-
tion, P is taken in the form of a linear combination of
electronic wave functions on one positive ion and its
neighbors as given by (2.12), and the lattice wave
function X,~ ~ satisGes

X,q „(q)=E 'I' Pit exp(ik' R)X' it(q). (4.4)

Here the sum is over all lattice points R, and X' R(g)
are a set of wave functions associated with a set of

Firsov study structure in the absorption coef5cient and refractive
index due to transitions from a deep atomic level to a small polaron
band, and obtain results for absorption very similar to those of
Ref. 3 for absorption due to transitions between two small-polaron
bands.

~ We have allowed the function u to depend on lattice coordi-
nates q, and later in a discussion of a tight-binding model we shall
assume that I is bulit up from electronic functions which move
round with the ions as the ions move. Thus, we have not completely
ignored electron-phonon interactions in one sense of this expres-
sion but, since we are assuming that the functions x are just the
free-phonon functions, then in another sense we are ignoring
interactions.

concerned, we concentrate on the special case of
Sec. IIIC, when there is just one localized mode as-
sociated with each minimum in the adiabatic potential,
and mode displacements are zero for the nonlocalized
modes. A wide valence band and a narrow conduction
band were chosen in Ref. 3 in view of possible applica-
tions to the transition metal oxides, and we treat the
case of a wide valence band and narrow conduction
band here, rather than the reverse, in order to facilitate
comparison with previous results. The importance
of the effect of electron-phonon interactions is much
greater for narrow than for wide bands, and hence the
neglect of electron-phonon coupling for the valence
band need not be inconsistent with strong sects of the
coupling on the carriers in the conduction band.

We write the wave function 4',~„(r,q) for an electron
of wave vector k in the valence band plus phonons as

%„a„(r,q) =iV—'~'uz(r, g) exp(ik r)X„(q), (4.1)

where r is the electron coordinate, q denotes the set of
all lattice coordinates, N~ is a function which is invariant
under the action of the translation operator through a
lattice vector, "E is the number of cells in the crystal,
and X„(q) is the wave function associated with a
lattice state

~

X ) defined by

I X-)=II' ((&~')"~/(~~!)"'}
I
o) (4 2)

Here b~t is the creation operator associated with a
normal mode X, eq is a mode occupation number, ~0)
is the phonon vacuum state, and the product is over all
modes X.

For the wave function @,~ „(r,q) describing a carrier
of wave vector k' in the conduction band in inter-
action with the phonons, we -take adiabatic tight-
binding nearly-small-polaron functions as described in
Secs. II and III of the form
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states ( ~X'„R)), which is an orthogonalized set formed
from the states

~
X~.R) defined as in (2.1) by

(b;t(R) )"*'
IX. R)=II ~OR),

(12!()1/2
(4.5)

where b, t(R) is the creation operator for the ith normal
mode for the minimum associated with R, I are mode
occupation numbers, and ~OR) is the vacuum state for
these normal modes.

Now, for radiation polarized in the x direction, the
absorption coeScient due to transitions between states
of the type described by (4.1) to (4.5) depends on
matrix elements 3f~t, „„dined by

8
M».„„.—= @„2„*(r,q)—e,R.„.(r,q) d2rd"q

ax

=—p exp(ik' R) f„(q)X„*(q)x'„R(q)d"q, (4.6)
g R

where J'd"q denotes an integration over all lattice
normal coordinates, and

l9

f2(q) —= uR*(r, q) exp( —ik r)~(r, q)d2r . (4.7)
Bx

The right-hand side of (4.6) follows directly from
(4.1), (4.3), and (4.4).

If we use a tight-binding type of approximation for
the valence-band wave functions, but allow the localized
functions to follow the motion of the ions, and if we
further suppose that the main contribution to the
matrix element comes from functions localized on the
same type of ions as those on which the conduction
wave functions lie, then the difference of the quantity
f2(q) at a point q near the potential minimum as-
sociated with R from its value fR (R) at the minimum
will arise from the change of u and b with q. Now from
(2.13) and the fact that b((a, we deduce that f/ changes
with q much more than g does. Hence, the fractional
change of the quantities f2 due to displacements as-
sociated with zero-point vibration about a minimum
is of the order of a sum of terms of magnitude of order
hb, where hb is the difference in value of b at the point q
from its value at the minimum. Since for general dis-
placements there is no reason why the signs of the Ab's

should be correlated, we deduce that

I ([fR(q)/f2-(R) 3—1) I
-""I»I.

& e '/2(&~/& )'" (4 8)

where s is the number of neighbors, e~ is de6ned in
(3.14), and 10 is a typical phonon frequency. The right-
hand inequality of (4.8) is obtained by the following
argument. The energy associated with zero-point dis-
placements of the q's along directions from the origin to

fj, (R)= f1,0exp( —ik R), (4 1o)

where f» is independent of R.
Thus, from (4.6), (4.9), and (4.10), using (3.5), we

deduce that

m», „„,-x-i pR exp[i(k' —k) Rff»G..(R), (4.»)
where G (R) is defied by

G„„.(R) =— x„*(q)X„R(q)d"q. (4.12)

In order to proceed further we need to obtain ex-
plicit expressions for G„„(R).In general, we may ex-
pand the annihilation operators f/;(R) in terms of the
creation and annihilation operators bqt and b~ for the
phonons for the perfect unexcited crystal in the form

&;(R)=21 &;)J1+Z12N;d/t+&;, (4.13)

where d; are mode displacements, and k;q and ns;q are
expansion coefficients. As for the ratio (c;;/u;/) in the
expansion (3.11), we expect that (m;1/k@,) e, and we
shall ignore m;~ for the remainder of the section. As
in Sec. III, we consider two special cases: (i) no localized
modes; (ii) one localized mode per minimum, and no
mode displacements associated with the nonlocalized
modes.

a minimum energy con6guration is of order Acr, where
co is a typical phonon frequency, while the energy as-
sociated with displacements from the equilibrium posi-
tions in a perfect lattice to the minimum is of order 80.
Hence, for displacements in the direction mentioned,
the ratio of the typical change hq of q associated with
zero-point motion to the value of q at the minimum,
which we call q, satisfies (hq/q ) (M&/Bo)'/'. Combin-

ing this fact with the assumption, related to that re-

garding the discarding of terms of higher order than
the second in the expansion of electron overlap energies
in (2.7), that t/ changes by a factor less than or of the
order of its own magnitude, when the q's change by
amounts q/, , we deduce that (Ab/b) & (A~/&o) "'.
Further, from (2.8), (2.14), (2.23), (2.26), and (2.31),
supposing I/ Bo (see Sec. V), we may deduce that
b~(ei/s)'/2 and so we find

Sl/2gf/ Zl/2$(g$/$)( ~11/2(//1(g/g )1/2

Now, bearing in mind (4.8), we assume, for q's near
the minimum associated with R, that

(4 9)

Although this approximate equality has only been
shown to be reasonable for the particular assumptions
made about the form of the valence band wave functions
and about the matrix elements as discussed in the last
paragraph, it may, of course, be a more general result.

Because of the term exp( ik r)—in the definition (4.7)
of fz(q) we may write
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B. No Localized Modes

In this case the expansion of the annihilation opera-
tors b;(R) for the normal modes for the minimum
associated with R in terms of operators b), as in (4.13)
will be concentrated at a particular energy, with a
spread in energy decreasing with increasing size of the
crystal. For large crystals we expect to make negligible
errors by making the replacement b;(R) ~ {b)„.+d)„.(R)},
where X; labels the mode about which the expansion for
b; is concentrated.

Thus the expression for the overlap integral G„„.(R)
will be similar to that for the overlap integral
g„(e Ie, 'f„(R')) occurring in Eq. (13) of Ref. 3,
the expression (4.11) for M),), „„will be similar to that
of Eq. (18) of Ref. 3, and all results for the absorption
coefficient obtained there should hold for the case con-
sidered here also. However, the actual values of the
mode displacements can be different in the two cases,
because in the present model these displacements will

be altered by terms proportional to the parameter e

introduced in Sec. II.

the localized mode. By use of (4.2), (4.5), (4.12), (4.14),
and (4.17) we can show that the overlap integral
G~„,.~~„,„,. ~ between such states satisfies

1 (1+n n *) '"'
G(„,.) („,„,') (R) =

(p'.)'" ' (I')"'(~'' )"'
X«a'I II {(b'+~'P)"*'(b")""}(P'+d*)"

Xexp( —Ptd) IOa') exp{——,
'

I
d

I
'}, (4.18)

where IOR') is the vacuum state with respect to P
and the p s, and is related to

I
0a) of (4.5) by

IQR)=exp( Ptd) I0a') exp{——IdI2} (4 19)

By inspection of (4.18) we see that the right-hand
side is zero unless m &~e;, for all i. Further, the coef-
ficients n; satisfy a; (1/E'I'), and so the probability
of a change of occupation number of any particular
mode by more than one may be neglected. Hence we
look at the case where

C. One Localized Mode
I =m; 1 i+{A},—

(4.20)

As in Sec. III, we suppose that mode i = 1 is localized,
and that d;=0 for i& j., where d; are the mode dis-
placements of (4.13). For convenience, we next re-
write the expansion (4.13) for the annihilation operator
for the localized mode b~(R) as

bg(R) =Q), kg), (R)b),+d(R) =—p(R)+d(R), (4.14)

where we have put m;&=0 as discussed previously, and
have made the replacement d~ ——d. The right-hand side
of the equation defines P. For i)1 we are assuming
zero mode displacements, and so we have

where we suppose that the set {A}contains r members.
Substituting from (4.20) into (4.18), and studying

coefficients of g; {(b;)"'(Pt)'},we find that

G(.;)(n,.; )(R)=(p)) '" ll (1+~'~'*) '"'

X g (e ~ a;)(d*)"d"H „exp( ,'D),——(4.21)
sg( Af

where we have written

b, (R)=Q), k;),(R)b)„ i)1, (4.15)
IdI'=D, (4.22)

where k;q will be concentrated near a particular X.
Now, inverting (4.14) and (4.15) we may write

b),——n), (R)P(R)+Q;y)„.(R)b,(R), (4.16)

where nq and pq,. are expansion coefficients, pq,. is
concentrated near a particular i, i(X) say, and the
extent in energy of the spread of appreciable coefficients
decreases with increasing size of crystal. In calculating
overlap integrals G ~ (R), we expect to introduce
negligible errors by making the replacement

b„—+ (1+~;a *)—')2{b;(R)+o,;(R)P(R)} (4.17)

for bq whenever it occurs. Here we have written eq=o.;,
where i=i P,) is the mode about which p),, is concen-
trated, and the term (1+n;n;*) '~' is a normalization
factor.

The initial states may now be characterized by a set
of occupation numbers e),=e;, where i=i(X), and the
final states by a set of occupation numbers e; for the
nonlocalized modes and an occupation number p for

and H„,„is de6ned by

with

"—= !2 {(—1)" '("G~)/(r —&)!D'}, (4 3)
t=o

=min(p, r) . (4.24)

2'I~'I '=1+o(1/&) (4.27)

If we characterize the mode X by a branch number s
and a wave vector w, then, by symmetry arguments,

n), (R)—=n„,(R) =no„, exp( —iw R), (4.25)

where no, is independent of R. We may then make
this substitution for n;{i=i(X)}in (4.21).

Additional simplification of (4.21) is made possible
by noting that, since in order to give correct commuta-
tion relations the transformation (4.16) must be unitary,
we have

(4.26)
Hence,
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and, to lowest order in (1/1V),

g;(1+m;n;*)—**"'=exp( —-', n), (4.28)

K(Q)= Q K„,„(Q), (4.31)

where n is an average phonon occupation number,
weighted according to the factors ~n;~'.

Now, from standard absorption theory, for radiation-
polarized in the x direction, the product of refractive
index m, photon energy 0, and absorption coe%cient
K(Q) satisfies

nQK(Q)
=A Av„g„.g&P& ~M».„„.~'8 (energy). (4.29)

Here, 35k~ „„ is the matrix element introduced in
(4.6), and A is a constant defined by

A= V '(4x.e' h'/m, 'c), (4.30)

where V is the volume of the crystal, e is an electronic
charge, m, the free electron mass, and c the velocity
of light in vacuo.

If we integrate (4.29) over energy, the delta function
is removed. Then using (4.11), (4.21), and (4.25), we see
that the matrix element is zero unless wave vector
is conserved, and so, for given initial wave vector k and
phonon occupation numbers, summation over k' just
selects that k' which conserves wave vector. Hence, if
we now divide the absorption coe%cient E into parts
K~, associated with emission of p-localized phonons
and absorption of r-nonlocalized phonons, i.e., if we put

&&((n)"D"+/p!r!)
~
H~ [' exp{—(D+n) }. (4.36)

When we compare the results (4.32) and (4.36) with
those obtained in Ref. 3 for a small polaron conduction
band without localized modes, we see that at T=O the
expression for the absorption here has just the same
form as obtained previously. However, the temperature
dependence is di6erent, as may be seen by considering
the partial integrated absorption 1'nQK, (Q)dQ with
net emission of s phonons in the two cases. For case 1
without localized modes, from Eq. (23) of Ref. 3, we
have

nQK, (Q)dQ ~ R, ,

where

R,= Q (D-''+'/(r+s)!r!)(n+1)'+'n"

(4.37)

&&exp{—(2n+1)D}, (4.38)

with ri ——max (0, —s). On the other hand, for case 2
with one localized mode, from (4.32) we may deduce
that

the average being over all initial wave vectors k which
conserve energy, and p„(E) is the density-of-states per
unit energy for the valence band, with energy measured
from the top of the band.

Hence, from (4.31), (4.32), and (4.33),

nQK(Q) =A g F(Q Eg —Ph(v—i+rhpp)

then in the integrated form of (4.29) we may carry out
the summation over sets {A}of size r, and average over
initial phonon occupation numbers to obtain, using
(4.11), (4.21), (4.22), (4.25), and (4.28), that

where

nQK, (Q)dQ ~ L, ,

L,= P (D'"+~/(r+s)!r!)n"
( II,+, „['

(4.39)

nQK, .(Q)dQ= A Q~ ( fj,p [
'((n)'D"+"/P!r ) [

H

&& exp{—(D+n) }. (4.32)

To proceed further, we specialize to the case where
both the width of the conduction band and the dis-
persion in frequency of the relevant nonlocalized modes
is negligible. In this case, for initial states with the
right energy, the sununation over k' in (4.29) just
selects the k' which conserves wave vector, and so the
dependence of the partial absorption coeKcient E„„on
energy is given by

K„„~F(Q Eg Pko i+r has),— —(4.33)

F'(E)=A»l f~p I

' (4.35)

where Ez is the energy gap, or& and ~ are the localized
and nonlocalized mode frequencies, and F(E) is defined
by

F(E)=F'(E)~.(E), (4.34)
where

Xexp{—(D+n) }, (4.40)

with ri ——max (0, —s) as in (4.38), and H defined by
(4.23).

At T=O expressions (4.38) and (4.40) are identical,
since H, p=!Hp

~

=1 for all integers n)~0. For general
temperatures it is difFicult to get simple results. How-
ever, for s= —m, where e is positive or zero, we can
show that, to second order in n', (L „~R „) satisfies

(L „/R „)=1+nn+L{D'/(n+1)}
—2D+-,'(n'+n+1)7n'+ . . (4.41)

Thus, for given D, the tail to the absorption at low
temperatures is stronger in the presence of localized
modes than in the absence of them, and so it may be
possible to test for localized modes by looking at the
temperature dependence of the absorption tail.

Another point to notice is that, although the total-
integrated absorption in Ref. 3 is independent of n, in
the case here with localized modes this is only true to
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ie 1 1)h(0 '"
U =+—2zr

w- e~ ea) V-V. DISCUSSIOÃ

Grst order in n, and to second order in n we have w, and V is given by
j'nnl)."(n)dn ~ (1y-'n')

A. Values of Parameters in a Continuum
Polarization Model

The calculations of the previous three sections have
been of a somewhat forrnal nature, and so we now try
to give a clearer idea of the meaning of some of the
parameters introduced by considering a special case
in which electron-phonon interactions are treated within
the framework of a continuum polarization model.

We erst look. at the expansion of the single site energy
Eo of (2.6) in order to estimate the values of the parame-
ters Eq(')(R) of (2.8). For this purpose it is convenient
to rewrite Ep as

Eo= — 4R(2'.+UR(r, q)+U'(r, q)}4Rd'r, (5 1)

Here ze= ~w~, e„and e, are the high-frequency and
static dielectric constants of the material, ao is the
phonon frequency, which is assumed to be independent
of w, V is the volume of the crystal, and the plus or
minus sign is chosen according to the direction of w.
Hence, putting

q =(1/v2)(b „'+b„),
from (5.3) and (5.4) we have

E ('&(R)= —v2V„exp(iw. R). (5.7)

Now, with running wave coordinates q„, the coef-
ficients E„&') and E &') may be related to a pair of
coeScients Eq&') and E), &') in the expansion in terms
of real coordinates by

U'= Uo'+ U1'+ (5.2)

where VR denotes the potential due to the ion whose
equilibrium position is at R, and V (r, g) is the potential
due to all the other ions. We next expand V' in powers
of the q's, i.e., we write

(1/v2)(E (1)+E (1))—E (1)

(z/~2)(E ('&—E „('))=E1.('&

and, because the energy is real we have

E „(~)—E„(~)*

(5.8)

(5.9)

where the subscripts refer to the powers of the q's
involved.

Now, except for small effects due to q dependence
or orthogonality requirements for the p's, the con-
tribution from the erst two terms in the brackets to
the integral in (5.1) will not have any (t dependence,
since we are assuming that Pa follows the ion. originally
at R. Further, for ions in a position with inversion sym-
metry, there is no contribution of erst order in the q's

to Ep from the term Vp', and so in this case we Qnd, using
(2.8), (5.1), (5.2) and noting the remarks above, that
to a good approximation

3~(~o/2 )'= (1/V.), (5 1O)

where V, is the volume of a unit cell, and transform
from a surrunation to an integration in the usual rnan-
ner, we find, using (5.5) and (5.7), that in our model Bo
is given by

(E.(»(R)~z e'w, 1
(5.11)

Acd zr e&~ eel
2

—1

Thus, expressions (2.26), (2.28), and (3.29) for Bo,
Cp and Dp can be put in terms of the E„&')'s without

difhculty.

If we make the simplication of replacing the first
Brillouin zone by a sphere of radius mp de6ned by

The second approximate equality holds because
Vz'(r, q) will not vary much with r over the region
of extent of the wave functions g.

Our next assumption is to suppose that V~' is the
same as the electron-phonon interaction in a continuum-
polarization model. It is convenient at this point to dis-
card our previous convention of choosing real normal
coordinates. We may then write

E&(l)(R)E1(1)(R~) E (1)(R)E (1)@(R~)

ho) ~w

= z P L ~

E„(')(R)
~

' exp( —iw (R'—R) }/h(0$

Si(wpr)=8, — —,(5.12)
mpr

where r= ~R'—R), and
(5.4)Uz'(r, q) =Q„V„(b t+b„) exp(iw r),

Z E) '"(R)Ii1—— AU1 &ad'r —V1 (R~9) (5 3) while C() and Do may be obtained by noting that the
quantity E» dered below satisfies

where b ~ and b are creation and annihilation operators
for polar-longitudinal phonons of wave vector w (it
is assumed that there is only one branch of the phonon
spectrum of this type), the sum is over all wave vectors

Si(x) —= sint/tdt. (5.13)

Another quantity of interest to calculate is the
polaron binding energy E„.Assuming that the parame-
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ters Jo and J are positive, and that effects due to
changes of phonon frequencies (which result from the
presence of the polaron) are negligible, we find using
(2.33) and (3.21) that, to lowest order in es and es,
for a carrier at the bottom of the band, E„satisfies

E„=Bo+(sJ '/F) sJo+—sJ,
Xexp{——,'S(2n+1)}, (5.14)

since in a simple tight-binding calculation the energy
at the bottom of the band lies at a level (sf,tt) below
the single site level, where J,~q is an effective overlap
energy.

Ke now discuss the magnitude of the polaron radius
~„.The precise definition of this is somewhat arbitrary,
but one possible choice is to use the de6ning relation

exp( G/r„) =b—/a J /—F, (5.15)

where the values of a and b are taken at a minimum
conaguration, and the second approximate equality
follows from (2.31) and (2.32), to lowest order in e.
Since we are assuming that b' is small, r„will be smaller
than the lattice distance G; hence, our use of the word
"small" in the title. "Nearly" is included so that we
can reserve the term "small polaron" for cases in which
wave function spreading to neighboring sites is com-
pletely negligible.

Next, we show how to estimate the order of magni-
tude of ionic displacements in our model, in order to be
able to ascertain the validity of the approximation of
neglecting terms of higher order than the second in the
q's in the expression (2.7) for the electronic energy
overlap integral. Let us define a localized-dimension-
less displacement q(R') at R' associated with the
branch of the phonon spectrum being considered by

q(R') —=1V '~' P q„exp(iw R') . (5.16)

Now, using (5.7), (5.5), (5.16) and the generalization
of (2.23) to nonreal normal coordinates, viz.

q
(o) =E„&"*(R)/hoo„, (5.17)

and replacing the summation over all wave vectors by
an integration over a sphere of radius mo given by
(5.10), we obtain, for a polaron at the origin, that

3 e'wo 1 1 '~' 1—cos(woR')
lq(R') I

=—
@co tg -', (woE') '

(5.18)

where M is the mass of the ions. Similarly, for the
displacements associated with nearest-neighbor posi-
tive ions, we have

(h/cVpco)'~'i q(G) (, (5.20)

where 6 is a nearest-neighbor lattice vector, and M+
is the positive ion mass.

If we are concerned with simple overlaps between
positive ion wave functions, then, judging from the
estimates made by Frohlich et al. ,

" using Gaussian
electronic wave functions, the condition that terms of
higher order than the second in the q's in expression
(2.7) for the electronic overlap energy can be neglected
is

{exp(GA+/2ro') —1}«1, (5.21)

where G= ~G~, 6+ is given by (5.20), and ro is the
radius of the electronic wave functions on the ions.

Finally, we calculate the angles made by the vectors
associated with the coordinates tlo introduced in (2.59)
with each other, and with the vector from the origin
in q space to the minimum associated with R. Denoting
by &G a unit vector in the direction associated with pG,
and by i a unit vector in the direction from the origin to
the minimum associated with R, we 6nd, using (2.59),
(2.42), (2.26), (2.28), (2.34), and (5.12), that

tlo gaol = s{1—(Co ER+o,a+o~)/—(Bo Co)}, (5.2—2)

and

[go f'( =-', (F/Bo)'I' (5.23)

These expressions can be easily evaluated for the model
being used in this section by use of (5.11) and (5.12).

Ke have now shown how to estimate a large propor-
tion of the quantities appearing in the theory of Secs. II
to IV by use of a continuum-polarization model of
electron-phonon interactions. Estimates of the magni-
tude of the terms of second order in q in the expansion
of the single site energies or of the size of the contribu-
tion to the energy of the ordinary anharmonic terms in
the electron-phonon interaction would require know-
ledge of changes of ionic polarizabilities due to the
presence of extra electrons, or information regarding
third-order elastic constants, and such estimates will
not be made here. However, provided that these effects
are neglected, we are in a position to 6nd values for all
polaron parameters, given only the lattice and dielectric
constants of the material, and an estimate of the elec-
tronic energy overlap integrals for a rigid lattice.

In order to deduce the actual ionic displacements
from (5.18) we would need to know the form of the
motion of the ions associated with the coordinates q„.
However, without knowing this motion in detail, it is
safe to say that for a crystal with two atoms per unit
cell, the order of magnitude of the displacements 6
of the negative ions nearest to the polaron satisfy

(h/M (u)'i'i q(0) i, (5.19)

B. Application to SrTi03

We continue our discussion by putting in 6gures for
polarons in a simple model for a possible conduction
band in SrTi03. This substance has the cubic perovskite
structure "above 108'K, i.e., it consists of five simple
cubic sublattices, one each of Ti and Sr and three of 0.
The unit cell is a cube of dimension 3.92 A, with a

~ R. O. Bell aud G. Rupprecht, Phys. Rev. 129, 90 (1963).



662 D. M. EAGLES

titanium ion at the center, oxygens at the centers of the
faces and strontiums at the corners. The 6rst-Brillouin
zone is also a simple cube of dimension 2m, with

=0.80)&10' cm '. Replacing this zone by a sphere
of radius mp of the same volume we And sop=0.99)&10'
cm '.

The results of a study of the fitting of the observed
lattice vibration frequency spectrum with the use of
theoretical-shell models'4 indicate that the material is
strongly ionic. The high frequency and static dielectric
constants at room temperature are e„=5.2 and e,=310,
respectively. ' " There are three longitudinal polar
branches of the phonon spectrum, whose phonon
energies at zero wave vector are 0.022, 0.058, and
0.099 eV. However, it has been shown that in a con-
tinuum-polarization model most of the electron-phonon
coupling is between electrons and the highest fre-
quency branch, " and we shall assume that this is
the only branch of interest, and shall neglect dispersion
of frequencies within it.

Band structure calculations using a tight-binding
model" give valence and conduction band wave func-
tions composed of mixtures of titanium 3d and oxygen
ion 2p functions, with the valence band consisting
mainly of oxygen functions and the conduction band

mainly of titanium functions. Judging from a graphical
presentation of the results, the width of the lowest
conduction band in these calculations is somewhat
greater than 1 eV, although the band is nearly Oat
along the [100] directions. In order to make a com-
parison with our theory we have to make the rather
drastic simplifications of neglecting degeneracy, and
assuming that the bandwidth is determined by direct
Ti-Ti overlap instead of by indirect overlaps via the
oxygens. On this assumption the quantity q relating
bandwidth to overlap integrals in (1.7) is given by
q= 12. The number s of nearest-neighbor lattice vectors
satisfies a=6. We shall, for our calculations, suppose
that the electronic energy overlap Jp is given by Jp ——0.1
eV, which implies a rigid-lattice bandwidth W„=1.2 eV.

Now, from (5.14), the polaron-binding energy E&
which would exist if electronic overlap integrals were
zero satisfies E'~~Bp, to lowest order in e2 and e3,
and using (5.11) and the figures for wp, e„and e, quoted
above, we And, for a continuum-polarization model,
that Bp=0.86 eV. Hence, with W„=1.2 eV, condition
(1.4) becomes 0.08«1, and so is satisfied, while, with
7=0.1 eV and Ace=0.099 eV, condition (1.5) also holds.
Thus it appears that, provided the final bandwidth satis-

"R.A. Cowley, Phys. Rev. 134, A981 (1964).
2'W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E.

Howarth, Phys. Rev. 126, 1710 (1962).
A. Linz, Jr., Phys. Rev. 91, 753 (1953)."D.M. Eagles, J. Phys. Chem. Solids 25, 1243 (1964) and 26,

672 (1965). There is an error in the second of these references.
The coupling constant with the lowest frequency longitudinal
modes in SrTi03 should have been given by oz(m, /m)'~s~0. 01
(not 0.001 as stated there).

'A. H. Kahn and A. J. Leyendecker, Phys. Rev. 135' A1321
(1964).

fies (1.6), our adiabatic nearly-small-polaron theory
should be applicable, and so we set out to calculate the
parameters of this theory within a continuum-polariza-
tion model, assuming for bandwidth calculations that
localized modes are not formed around the polaron.
Putting e„=5.2, e,=310, mp ——0.99)&10' cm ' and
&ps=0.099 eV, from (5.12), (5.13), (2.28), (2.34), (3.25),
and (3.29) we find Cp ——0.458p=0.39 eV, F=0.95 eV,
Sp=9.6, and

1 4Si(wpGv2) Si(2wpG)
Dp=8pX — 1+ +—

6 wpGV2

= 0.388p=0.33 eV, (5.24)

where the lattice constant 6=3.92 A.
Further, from (5.18), q(0) =3.6 and q(G)=0.8, and

so, assuming that the relevant modes are mainly com-
posed of titanium ions vibrating relative to all the
oxygens, '4 and that (5.19) and (5.20) apply, with
3f+——48 amu and M =3&(16=48 amu, we obtain
6+ 2&10 " cm and 6 1.1)(10 ' cm. In order to
obtain an energy overlap of the order of 0.1 eV we
probably require a wave function overlap of the order of
10 '=exp( —4.6), and hence an electronic radius rp for
the ion satisfying rp 0 9A. Th.us we find that ( Gh +/r p)

(0.1).As the actual overlaps are indirect via oxygens
we should, perhaps, note that for rp 1 A, {sGA /rps)

0.2. A similar equation to (5.21) will probably give
the condition for corrections to Ti—0 overlaps due to
ionic motion to be unimportant. Thus for direct or in-
direct overlaps we expect that corrections due to ionic
displacements will be small. We shall ignore any such
corrections, and so put J,=J =Jp= 0.1 eV.

Now with J =0.1 eV, using the values of 8p, Cp,

Dp and P ob tained above, and assuming electron-
phonon interactions quadratic in the normal coordinates
and anharmonic terms in the ordinary lattice potential
energy are negligible, from (3.28) we find Si———1.1.
Hence, S= (Sp+Si) = 8.5, and the bandwidth reduction
factor is exp( —4.25) =0.014. Thus, the polaron band
width W=0.016 eV, and, with 6~=0.099 eV, the
condition (1.6) is just about satisfied. The bare mass
ms in our simple model satisfies ms= (h'/2JpG'). With
Jp ——0.1 eV, this gives m~ ——2.48m„where m, is the free-
electron mass, and so the polaron mass m„ is given by
m~= m p exp(-', S)= 1.7)&10'ivy, .

Froin (5.14), putting in figures for 8p, S, Jp, and J,
we find that the polaron binding energy E„satis6es

E„=(0.86+0.06—0.60+0.01) eV= 0.33 eV. (5.25)

Finally, from (5.15) the polaron radius r~ may be cal-
culated to satisfy r„=1.7 A.

We have shown that for a simpli6ed model of a
possible conduction band in SrTiO3 the necessary condi-
tions for the applicability of our adiabatic theory of
nearly small polarons seem to hold. For the values of
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3

E„'= Q n;Aced;=0. 33 eV, (5.26)

while the ratio of the polaron mass m~' to the bare mass
m& will be given by

(m, '/mb) =1+-', P, n.,=1.6. (5.27)

i.e., we find nz„=4.0m, . If we consider the highest
frequency modes only, then" the polaron radius is
6.2(m, /mi) '~'= 3.9 A, i.e., the radius is about equal to a
lattice constant, and so the effective-mass approxima-
tion made in large-polaron theory may not be very
good. However, if corrections to the theory were made,
but still within the framework of an approximation
where the lattice displacements follow the instantaneous
position of the electron, it would be surprising if the
effective-mass ratio were changed drastically from
the values noted in (5.27). Thus, it seems that for
J=0.1 eV two types of solution to the polaron problem
may exist, both with about the same polaron-binding
energies, but with very different masses. For J)J„
where J, is some critical value of J, a weak. -coupling
large-polaron theory should given the lowest polaron
energy, while for J&J, the adiabatic nearly small
polarons discussed in this paper should be energetically
more favorable. The transition to weak-coupling large-
polaron theory with increasing J is somewhat surpris-
ing, and presumably need not be expected for all cases.
Thus, if the polaron binding energy were suKciently
large relative to Ace, one would expect that the transi-
tion to large-polaron theory with increase of J would
occur in a region where the strong-coupling, adiabatic
large-polaron theory were valid, and so in this case a
smooth transition would be expected.

We should note that the observed masses in SrTi03 as
deduced from thermoelectric power measurements"

'9 H. P. R. Frederikse, W. R. Thurber, and tA'. R. Hosier, Phys.
Rev. 134, A442 (1964).

electronic overlap integrals chosen, corrections due to
wave-function spreading to polaron masses bring about
appreciable reductions in these masses, but nevertheless
they are still made enormously large by polaron effects.

It is now of interest to compare our results with those
which would be obtained by the use of large-polaron
theory.

The bare mass mg for J0=01 eV is mb=248m„
and so, using an extension of a calculation of the
continuum-polarization model of electron-phonon inter-
actions to materials with several types of polar modes"
as applied to SrTi03, we 6nd that the coupling constants
o.~, n2, and n3 with the modes of phonon energies
Aco1= 0.022 eV, Aor2= 0.058 eV, and Aor3 ——0.099 eV are
ni=o 01(m. i/trs )'~'=0.02, n2=0. 05(mq/m )'I'=0 79
and na 1.83(m——q/m, )"'=2.88. Hence, a weak coupling-
type of model should be fairly good, and so the polaron
binding energy E„' will satisfy

are about 6m, at 78'K, and around 16m, at room tem-
perature. Thus, the observed masses are more consistent
with those expected for a weak-coupling, large-polaron
theory than with those of our theory. However, we
might postulate that the increased mass observed at
room temperature could be connected with a much nar-
rower band of our type starting at an energy a few
hundredths of an electron volt above the bottom of the
lowest band. This is very speculative, and we should
emphasize that both polaron theories discussed are
based on over-simplified models of the conduction band,
and that the actual rigid lattice band structure cal-
culations indicate a minimum energy in the t 100j
direction for the lowest conduction band, and bare
masses which are very anisotropic, being much larger
in one direction than the other two.

We conclude this section by making some comments
on the possibility of localized-mode formation in SrTi03,
assuming that nearly small polarons with parameters
used above are produced.

From (5.22) and (5.23) we find that the cosines of the
angles between the vectors (G associated with the co-
ordinates gG of (2.59), and those between these vectors
and the vector f in the direction from the origin in q
space to the minimum associated with R, satisfy

and

gG gG. ——0.34, iG—6'i =GV2
=O.27, )G—G'[=2G,

~& j~ =O.52.

(5.28)

(5.29)

With J =0.1 eV and 8=0.95 eV the inequalities
(2.60) satisfied by the coefficient A i in the expansion of
the potential energy about a minimum as given by
(2.46) to (2.48) become

0.26& a,&0.04.

Further, if the coordinate $i of (2.46) satisfies

$1+ QG 'QG)

we expect that

(5.30)

(5.31)

Ai=6(jG f)'(2J /F)'=0. 07. (5.32)

Now, judging from the phonon-dispersion curves ob-
tained from model IV of Cowley's work, '4 it seems that
for the highest frequency longitudinal branch of the
phonon spectrum (h~/co) 0.1. Hence, using the value
of A i given by (5.32), from (2.61) to (2.63) we see that
we are about on the borderline for the production of
localized modes. However, since 0.07&0.1, and also
because the fact that jG and f will contain some con-
tributions from other branches of the phonon spectrum
will tend to reduce Ai from the value of (5.32), it
appears probable that localized modes will not be
formed. The value of 0.1 eV chosen for electronic energy
overlap integrals is approaching the maximum for which
it is possible to use our tight-binding approach to
nearly small-polaron theory, since (i) inequality (1.6)
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will not be satisfied for larger value of J and (ii) in any
case large-polaron theory seems to give lower polaron
energies when J&0.1 eV.

C. Comments

From a study of a simplified model for a conduction
band in SrTi03 it appears that it is possible to Qnd
materials such that the necessary conditions for applica-
bility of our adiabatic nearly small-polaron theory hold,
while at the same time large polarons in a weak-coupling
theory can exist. As the overlap integral increases
through a critical value, the type of polaron with the
lowest energy changes from that discussed in this paper
to that of large-polaron theory. The effective masses
in the two types of theory are drastically different,
and so presumably are some other polaron properties
such as mobility. Thus, it seems that, as a function of
rigid lattice bandwidth, or alternatively as a function of
strength of electron-phonon coupling, which strength
depends on static- and high-frequency dielectric con-
stants and lattice constants, there may be a sudden
change of observable quantities connected with the
polaron. It might be possible to see such changes by
studying a suitable material in its dependence on tem-
perature or pressure.

We should note that such a sharp transition from one
type of solution to another was predicted by Toyozawa"
for electrons in interaction with acoustical phonons
but, because of the work of Feynman" on large polarons
where a continuous variation of polaron energy and
effective mass is predicted as a function of coupling
constant, it is generally thought that for optical phonons
no sharp transition should be expected. Our result
appears to indicate that taking into account the
structure of the lattice explicitly instead of making
use of the effective-mass approximation can change a
gradual transition into a sudden one. However, more
work is perhaps required on a study of whether the
necessary conditions (1.4), (1.5) and (1.6) for our
theory to apply are also sufficient, and also on the cor-
rections to an effective-mass approximation in a weak-
coupling type of theory for polarons of radii of the
order of a lattice constant, before we can be sure that a
sudden transition really occurs.

The most striking prediction within our theory, that
of a discrete distribution of effective masses when
localized modes are formed, might be dificult to
observe experimentally, since the predicted masses are
probably too large to be observable by cyclotron reson-
ance. Thus it would be desirable to develop a theory of
mobility under conditions when localized modes are
formed.

An observable effect of localized-mode formation on
the temperature dependence of wide-band to narrow-
band optical absorption is predicted in Sec. IV in

'0 Y. Yoyozawa, Progr. Theoret. Phys. (Kyoto) 26, 29 (1961)."R.P. Feynman, Phys. Rev. 97, 660 (1955).

that the expressions for the absorption coefficient ob-
tained there are not the same as predicted for a similar
absorption when there are no localized modes con-
nected with carriers in the narrow band. However,
since the absorption in both cases depends on the
density-of-states function for the wide band, which
may not be known, it may be difficult to isolate eRects
due to localized-mode formation. If a theory of absorp-
tion due to transitions within and between nearly
small polaron bands were developed, which would
require some knowledge of wave functions associated
with the excited-state potential curves shown in Fig. 1,
then it is likely that, as for wide-to-narrow band
absorption, results would be similar to those for small
polarons, but in this case any differences due to the
presence of localized modes around the polaron might be
easier to detect than in the wide-to-narrow band case,
especially if the dispersion in frequencies of the non-
localized modes were sufFiciently small for sharp absorp-
tion lines to be seen.

The conditions for the existence of localized modes,
given by (2.61) and (2.63), required that a small
quantity A & be greater than the fractional dispersion of
phonon frequencies for the relevant branch of the
spectrum, and so a very small dispersion is required.
This is most likely to occur in molecular crystals,
where the mode frequencies for optical branches often
lie close to the vibration frequencies for the individual
molecules. Provided that enough polarons are pro-
duced than of course one should be able to test for the
existence of localized modes directly by studying in-
frared absorption in the frequency range in which modes
would be expected to lie.

VI. CONCLUSIONS

In Sec. II, by expanding electronic single-site and
overlap-energy integrals as a function of lattice normal
coordinates up to second order, an expression for the
potential at and near a minimum-energy nuclear con-
6guration in an adiabatic theory of polarons has been
obtained under conditions when the polarons are
"nearly small, " that is when electronic wave functions
associated with the minimum are concentrated mainly
on one ion, but contain slight admixtures of functions
for neighboring ions. It has been shown that, in the
expansion of the potential energy about a particular
minimum as given by Eqs. (2.44) and (2.45), the follow-
ing three types of terms occur which tend to produce
localized modes of vibration for motion about the
ininimurn: (1) Terms arising from electronic overlap
energies which can arise because (a) the amount of
spreading of electronic wave functions to neighboring
sites will depend on lattice coordinates and (b) since
the electronic overlap integral depends on ionic posi-
tion, even for a 6xed amount of spreading, the overlap
energy depends on these positions; (2) terms arising
from second-order dependence of single ion electronic
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energies on ionic displacements; (3) anharmonic terms
in the ordinary lattice potential energy. The second and
third types of terms can also occur in small-polaron
theory, but the 6rst type cannot, since its occurrence
depends on wave-function spreading.

By use of a generalized tight-binding method for
obtaining wave functions, and by dividing transitions
between neighboring minima into those diagonal and
nondiagonal in oscillator occupation numbers as in
small-polaron theory, bandwidths as a function of
temperature for our adiabatic theory of nearly small
polarons have been studied in Sec. III for a few special
cases. If localized modes are not formed, results are
similar to those of the usual type of small-polaron
theory, that is, the bandwidth is decreased over that
for a rigid lattice by a factor exp{—i2S(2n+1) },where
S equals the sum of squares of differences of mode dis-
placements between one minimum and the next. Thus
the bandwidth decreases as the temperature rises, and
presumably in due course a temperature will be reached
at which the uncertainty in energy due to scattering
becomes equal to the bandwidth, and then a band
model will no longer be suitable. The actual value of
the parameter S differs somewhat from that which
occurs in small-polaron theory because of the slightly
modi6ed displacements.

If localized modes are formed, then calculations be-
come more difficult, but for the special case of only
one localized mode associated with each minimum,
and negligible displacements for the nonlocalized
modes, it has been shown that at nonzero temperatures
a discrete distribution of bandwidths will occur, with a
mean width which may increase with increasing
temperature.

The effect of localized-mode formation on optical
absorption due to transitions between a wide valence
band, for which electron-phonon coupling is neglected,
and an adiabatic nearly small-polaron conduction band,
has been treated in Sec. IV in the same model with only
one localized mode, by using the method of finding
transition probabilities between approximate stationary
states of the electron-phonon system by perturbation
theory, with the electron-radiation interaction as a
perturbation. In the model considered, the absorption
coefBcient E may be split up in parts E„,„ involving
emission of p-localized phonons and absorption of
r-nonlocalized phonons, and the integral of the product
of the refractive index e, and the phonon energy 0,
and E satisfies (4.32). At T=0 these results are identical
in form with those obtained in Ref. 3 for absorption due
to transitions between a wide band and an ordinary
small-polaron band without localized modes, but the
dependence of absorption on temperature for the two
cases is somewhat different. For a given strength of
electron-phonon coupling, the long-wavelength tail to
the absorption increases more rapidly with increasing
temperature if localized modes are present.

A continuum-polarization model of electron-phonon
interactions has been used in Sec. V to obtain explicit
expressions for the main parameters occurring in the
theory of the previous sections, and numerical values
have been found for a simplified model of a possible
conduction band in SrTi03. The calculations indicate
that electronic states may exist from which both
adiabatic nearly small polarons and weak coupling,
large polarons can be formed, and that the lowest
energy polaron state may suddenly change from one
type to the other as electronic overlap integrals or
electron-phonon interactions are altered in magnitude.

b;(R) ~ {b„+d„(R)},
where

d (R) =(8/w) exp( —iw R),

(A1)

(A2)

with 8 independent of w and R.
Now, since d is small we may show, using Eq. (15)

of Ref. 3 that

(& R~x a)=g (1—(n +-', )~d (R)—d (R')~'
—ImLd„(R) {d„~(R')—d„~(R)}j)

=exp{—-', Sa a (2n+1)}, (A3)

where Im denotes the imaginary part, and SR R. is
defined by

sR R,-p. ~d.(R)-d„(R')
~

. (A4)

In obtaining the right-hand side of (A3) we make use of
thefact that in summing over wave vectors the contribu-
tions from the imaginary part of products of mode dis-
placements cancel in pairs.

Substituting for d„(R) from (A2) and replacing sum-
mation by integration over a spherical Brillouin zone of
radius zo, we deduce that

Sa a =b{1+LSi(war)/worf} = b{1+0(1/war) }, (A5)

where we have written r =
~
R—R'

~, the coefFicient b is a

APPEÃDIK A

In this Appendix we show that if all terms propor-
tional to e in Sec. II are neglected, and if a continuum-
polarization model is used for electron-phonon inter-
actions and dispersion of phonon frequencies is ignored,
then (3.4) holds for large

~

R—R'~.
Under neglect of terms in e, from (2.44), (2.45), and

(2.36), we see that inodes i for the minimum associated
with R are just the normal modes for the perfect crystal
displaced by an amount depending on R. For a con-
tinuum-polarization model of electron-phonon inter-
actions the quantity Ei&'& (R) defined in (2.8) is zero ex-
cept for modes X in the longitudinal-polar-optical branch
of the lattice vibration spectrum, and for these modes,
classiled according to wave vector w, the function
E„&'&(R) is given by (5.7) and (5.5). Thus, using
(5.17), (5.6) and the corresponding equation for g „,
we find that the annihilation operators b;(R) can be
chosen so that
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constant independent of r, and Si is the function
defined in (5.13).The right-hand equality in (AS) holds
because Si(x) tends to a constant value as x —&~.

From (A3) and (AS) we deduce that

("»I
"» )=It+o(c/IR —R'I), (3 4)

where E and C are constants.

APPENDIX 8

where F2 is a normalization factor, and bR" R are
expansion coefficients to be determined. For simplicity
we limit our considerations to states with real wave
functions, and hence we assume that overlaps and the
expansion coeKcients ba" R are real. Thus, from (87)
we find that

(X'»
I
X'» &=F2'{(RIR'&—2 ba--a(R" IR'&

R"gR'

In this Appendix we discuss orthogonalization of
the states Ix»& when the overlaps (x»I I» ) satisfy

(x„„Ix„,.)=z+L„, (81)

R"'gR
ba --a (R

I

R"'&+ &
RI I Rl I I

t

X(R'
I

R"'&—bR a.—bR' —R). (88)

IR&=~i{le»)—& 'Z lx-a&),
R'

(83)

where r=
I
R'—R I, E is a constant, L„ is nonzero only

for small r, and
E«1

82
L„«1, all r .

We show that under these conditions orthogonalization
can be performed without drastically altering the state

I
x»&.
We carry out the orthogonalization in two stages.

First, we define states
I R) by

Now, since ( R"
I
R') =0 except in a small region of the

crystal, the second, third, and fourth terms in the
bracket on the right-hand side of (88) will be smaller
than the last two by a factor ef the order of an overlap
integral, and so, ignoring these terms, setting the right-
hand side of the equation equal to zero and choosing a
symmetrical solution, we find that

ba R —,
' (R

I
R') = —',L,(1—E)—'.

Further, since the overlaps L„are small and are con-
fined to a limited region, we may deduce from (87) and
(89) that

Ii i (1—E) 'i'+——O(1/N), (84)

where F~ is a normalization factor and E is the number
of unit cells in the crystal. Using (81) and the assump-
tion that L„ is zero except for small r we may deduce
that

Combining this with (86) we see that

(810)

(811)

and that for R'WR

(R I
R') =I.„(1—E)—'+0(1/cV) . (BS)

Further, using (82), (83), and (84), we may show that

(86)

We have now completed the first step of our orthog-
onalization procedure, i.e., we have removed the
constant term from the overlaps. In order to carry out
the second stage we suppose that the final-orthogonal-
ized functions

I
x'»& may be written as

I
X») F2{ I ~&—2 bR"—R

I

R"&), (87)
R/I

Thus, if L„ is confined to a limited region, we have
shown that an orthogonalized set of states

I
X a'& can

be constructed from states satisfying (81) and (82) in
such a way that the new set only differ slightly from
the old set. However, according to (3.4) we expect that
actually L„(C/r) for large r, where C is a constant. We
have not succeeded in proving that an orthogonaliza-
tion procedure can be found such that (811) is satisfied
in this case, but as terms in the overlap which are
constant or of short range have been dealt with satis-
factorily, and L„(C/r) is in some sense intermediate
between the constant and short range cases, by inter-
polation we expect that such an orthogonalization is
possible.


