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A theoretical investigation is made of the magnetic effects on the diffusion of ferromagnetic colloidal
particles dispersed in a current-carrying Quid medium. Specifically, the following problem is arialyzed:
Consider an infinitely long circular cylindrical metallic-based ferroQuid confined at its cylindrical surface
r'=a by an impermeable wall. The initial distribution of dispersed ferromagnetic particles is cylindrically
symmetric but otherwise arbitrary depending only on the radial distance from the axis. At time t'=0, a
uniform electric current is made to Qow through the ferroQuid in the axial direction. In the presence of the
magnetic Geld associated with the current Qow, an analytical solution for the subsequent spatial and tem-
poral behavior of the particle distribution function was obtained and then shown to reduce to the correspond-
ing classical diffusion problem in the absence of the magnetic force. The effect of the magnetic force on the
relaxation process and on the equilibrium distribution itself was then examined numerically for the specific
case where the initial probability distribution function is a delta function located at the axis.

I. INTRODUCTION
'AGNETICALLV responsive Quids called ferro-

-- Quids composed of ferromagnetic particles of
approximately domain size homogeneously dispersed
in a liquid carrier have recently been synthesized in
the laboratory. ' One particular class of ferroQuids
consisting of colloidal dispersions of ferrite particles
in organic-based liquids are made stable against particle
agglomeration by the addition of a surfactant. The
mechanism preventing agglomeration is here due to the
short-range repulsive force arising from the compression
of an absorbed layer of surfactant on the particle sur-
face balancing the attractive London and magnetic
forces. ' A most attractive ferroQuid from the applica-
tional viewpoint would consist of a colloidal dispersion
of magnetic particles in a metallic-based Quid. While
the synthesis of metallic-based ferroQuids stable against
particle agglomeration has so far met with limited
success, there is no reason in principle preventing their
ultimate production. The discovery of the existence
of stable ferrofluids has led to the development of the
phenomenology called ferrohydrodynamics' defined as
the Quid dynamic and heat transfer processes associated
with the motion of incompressible magnetically polar-
izable Quids in the presence of magnetic-6eld and
temperature gradients.

Our particular concern here is to investigate theo-
retically the magnetic effects on the process of diffusion
of ferromagnetic colloidal particles dispersed in a
metallic-based current-carrying Quid medium. Interest
here lies in the important fact that the usual situation
in which the di6usion process is driven exclusive1y by
particle density gradients is no longer applicable, but
that the equations describing the diffusion process must
be modified to take into account the eGect of the ex-

~ R. E. Rosensweig, J. %.Nestor, and R. S. Timmins, Chemical
Engineering Joint Meeting, London, 1965, Paper 5.14A.I.Ch.E—I.
(unpublished).

2 K. L. Mackor, J. Colloid Sci. 6, 492 (1951}.' J. L. Neuringer and R. E. Rosensweig, Phys. Fluids 7, 1927
(1964).

ternal magnetic force acting on the diffusing particle
resulting from the interaction of the applied magnetic
field and the particle's induced magnetic dipole moment.

We choose a particularly simple geometry which
makes the analysis amenable to exact mathematical
treatment. Specifically, we examine the following situa-
tion: Consider an infinitely long circular cylindrical
metallic-based ferroQuid confined at its cylindrical sur-
face r'= a by an impermeable wall (cylindrical coordi-
nates, r', 0', s'). The initial distribution of dispersed
ferromagnetic particles is cylindrically symmetric, but
otherwise arbitrary, depending only on the radial dis-
tance from the axis. At time t'=0 a uniform electric
current is made to Qow through the ferroQuid in the
axial direction. In the presence of the magnetic field
associated with the current Qow, we wish to determine
the subsequent spatial and temporal behavior of the
particle distribution function with specific emphasis
on its long-time behavior, i.e., its behavior near the
equilibrium distribution.

II. MATHEMATICAL FORMULATION

particle
surface

j&&B dp+pp(mp V)H, (1)
particle
volume

where the first term represents the integrated pressure
force acting on the surface of the particle, the second
term is the Lorentz force, and the last term is the
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A. External Force on Ferromagnetic Particle
Partaking of the Conduction Process

The mks system of units is used throughout. We
assume that the ferromagnetic particle is itself metallic
so that it partakes of the electrical conduction process.
The external force on a colloidal particle having a
magnetic dipole moment mo diffusing through a current-
carrying conducting Quid medium and itself partici-
pating in the conduction process is
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p8dS+
particle
surface

jXBdt+etsp(mp v)H=O.
particle
volume

Substituting the above equation into Eq. (1), we obtain

F= (1—e)tip(mp v)H (3)

for the external force acting on the particle. When c= 1,
the force is zero, as we should expect, since we are now
reduced to a one-component magnetic Quid continuum
in which the induced pressure force on the particle
surface is balanced by the sum of the Lorentz and
magnetic-moment forces acting on the particle. Now
the local loading fraction e depends on the local particle
concentration and so the diffusion process is essentially
nonlinear (see next subsection). Limiting ourselves only
to investigations of dilute ferroQuids, i.e., ~&&1, we
neglect e in comparison to unity in Eq. (3) resulting
in the linearization of the equations governing the
diffusion process.

If the induced dipole moxnent always points in the
direction of the local inagnetic field, ' then Eq. (3) be-
comes (neglecting e in comparison to unity)

F= (tspmp/H) (H v)H= (tspmp/H)L-, 'vtP —HX v XHj,
where we have made use of the vector identity (H v) H
= pv(&') —HXvXH. For theparticular configuration
under consideration, vXH= jz' and H= p

jr'8' where
r"', 8', z' are the unit vectors along the corresponding
cylindrical coordinate curves.

Substituting in the above equation, we obtain

F=—stspmp ji",
that is, the external force acting on the particle is con-
stant in magnitude and directed radially toward the
axis. It should be emphasized that implicit in the above
analysis is the assumption that the particle material
and the Quid material have essentially the same elec-
trical conductivity so that the current density remains
spatially uniform throughout the cross section.

magnetic force acting on the particle's induced magnetic
dipole moment. Here po represents the free-space
permeability.

Now the macroscopic momentum equation for the
mixtlre when no gross motions are taking place is

—Vp+jXB+tsp(M V)H=O, (2)

where M is the magnetization per unit volume of
mixture (i.e., dipole moment per unit volume of
mixture). The last term of Eq. (2) can be written as
(e/e&)tip(mp' v)H where e is the volume loading frac-
tion (i.e., the volume occupied by the ferromagnetic
particles per unit volume of mixture) and s~ is the
volume of a ferromagnetic particle.

Integrating Eq. (2) over the volume of a particle
and using Gauss' theorem on the pressure term, we
obtain

B. Smoluchowski's Diffusion Equation and.

Boundary Conditions

The generalization of the ordinary di6usion equation
when the diffusing particle is under the inQuence of
outside forces is given by Smoluchowski's equation4

af/at'= DVpf V—((F/mp) f), (5)

where f(r', t')dr' is the probability of finding a particle
in the interval dr' between r' and r'+dr' at time t'. The
coefficient D is the diffusion coeKcient (assumed con-
stant), F is the outside force acting on dispersed
particle, m is the particle mass, and P=6srbs)/m, where
b is the particle (assumed spherical) radius and rt is the
coefficient of viscosity of the surrounding Quid.

Examining the right-hand side of Eq. (5), one can
define a probability ilux density J (i.e., probability of
particle crossing unit area per unit time) whose negative
divergence equals the right-hand side, i.e.,

J=—Dv f+ (F/mp) f. (6)

Substituting Eq. (4) for F into Eqs. (5) and (6) and
remembering that the problem at hand involves cylin-
drically symmetric diRusion in the radial direction
only, Eqs. (5) and (6) become

af (a'f 1 af af n
„+—, , +n, + ,f, —

at' Ear" r' ar' ar' r'
(7)

J,=—(Daf/ar'+n f),
where n=tspmp j/2mp.

We seek a solution of Eq. (7) subject to the following
initial and boundary conditions:

f(r', t') -+ fp(r') as t'~ 0. (9)

subject to the conditions

f(r, t) —& fp(r) as t~ 0, (12)

af/ar+yf=0 at r=1 for all t)0, (13)

where the dimensionless parameter p= a/nD. Thus, by
casting the system in the above nondimensional form,

4 S. Chandrasekhar, Selected Papers orl, Poise and Stochastic Proc-
esses, 'edited by N. Wax (Dover Publications, Iuc., New York, 1954),
pp. 42-43; Rev. Mod. Phys. 15, 1;,(1943).

The requirement that no particle shall cross the im-

permeable cylindrical wall at r'= a yields

af/ar'+(n/D)f=O at r'=a for all t')0. (10)

Finally, introducing the dimensionless independent
variables

r=r'/a; t=(D/~')t',

the system of Eqs. (7), (9), and (10) becomes

af a
+( -+v

/

—+-f,
at ars Er 3 ar r
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the single parameter p serves to describe completely the
inQuence of the magnetic force on the diffusion process.

III. SOLUTION

Seeking a separable solution of the form e "'R(r),
with X representing the separation constant, and sub-
stituting into Eq. (11),we obtain the following ordinary
differential equation for R (r):

r(dsR/drs)+ (1+yr)dR/dr+ () r+y) R= 0. (14)

R(r) =r '/'e v"/'N(r). (15)

Substituting into Eq. (14), we obtain the following
differential equation for N(r):

4r'(d'I/dr') = f(y' —4X)r' —2yr —1jtt. (16)

Making the following change of independent variable

s= (y' —4){)'/'r,
Eq. (16) becomes

4s'(O'I/ds') = $z'—2y/(y' —4){)'/'z—1]tt (18)

which is recognized as Whittaker's equation'

4s'(d'I/ds') = (s'—4kz+4nt' —1)I (19)

with t/t=0 and k=-'y(y' —4){) '"
The solution of Whittaker's equation, regular at

s=0, is'

Q(z) = t!IIr.,s(z) =My/s{ys 4/, )r/s, s(z)
= z'/'e '/'iF i(-', L1—p/(p' —4X)'/']; 1;s), (20)

where iFi(a; 1; z) is the confluent hypergeometric func-
tion de6ned by

00 8"
iFi(a; 1;z) =1++ a(a+1) (a+I—1) . (21)

qb~l (tt!)'

Returning to the original variable r, using Eq. (20) in
Eq. (15) and suppressing the constant multiplier
(y' —4){)'/', the solution of Eq. (14), regular at the
origin, is

R P.,yr) =exp{—-,'Ly+ (y' —4) )'"$r}
XiFi(s$1—y/(y' —4X)' 'j 1 (ys —4X)'"r) (22)

and making use of the recurrence relation

(b—a) iFi(a—1; b; s)
= (b a —s)i—Fi(a; b; s)+zdiFi(a; b; s)/dz

leads to the following characteristic equation:

G(),v) =Ll+v/2(v' —4) )'"j
Xexp( 1L~+ (y2 4$)1/2j}(L (ties 4$)1/2

X iFr(-,'L1—y/(y' —4X)'/']; 1; (y' —4)i)'/')

+rF i(-', L
—1—y/(y' —4){)'/s]; 1 (y' —4){)'/s)}= 0

(24)

whose roots yield the eigenvalues ) I,. It is shown in
Appendix A that Eq. (14) can be cast in self-adjoint
form having the weight factor re&" which remains of one
sign in the region under consideration. Thus, the eigen-
values of the Sturm-Liouville system, Eqs. (14) and
(23) Land hence the roots of Eq. (24)] are all real. '
Further, it is shown in Appendix A that the roots of the
characteristic equation are nonrepetitive and in Appen-
dix 3 that the eigenvalues are all nonnegative. Using
the fact that iFi(0; 1;y) = 1 and iFi (—1; 1;y) = 1—y,
it is seen that A=AD=0 is a root of the characteristic
equation independent of p. For each value of p, the
roots of Eq. (24) generate an infinite set of discreet
nonnegative eigenvalues X/, (){o——0) lying in the interval
0&X&( oc. By examining Eq. (22) one would suspect
that the eigenfunctions R(){s,y, r), belonging to those
eigenvalues ){/, for which ){i)y'/4, are complex func-
tions since for ){s)y'/4 the exponential as well as the
confluent hypergeometric terms involve complex param-
eters and imaginary arguments. We know, of course,
that the functions R(){/„y,r) must be real since they are
the solutions of the Sturm-Liouville system Eqs. (14)
and (23) involving real coeflicients and real eigenvalues.
However, an independent proof that the eigenfunctions
R(){&,p, r) given in Eq. (22) (with X replaced by X/, ) are
real is given in Appendix C.

It is shown in Appendix A that any two eigenfunc-
tions R(Xr.,y, r), R(){t,y,r) belonging to different eigen-
values XI,/) ~ are orthogonal to each other with re-
spect to the weight factor re&". Mathematically, from
Appendix A,

Substituting Eq. (22) into the boundary condition
Eq. (13), i.e., re /"R (Xq,y, r)R ()u,y, r)dr =0, (25)

dR/dr+yR= 0 at r= 1, (23) and

re'r"Rs ()t/„y, r)dr =
1

re—{&~"»'""rFis(-'L1—y/(ys —4){s)'/'] 1 (y' 4)a)'/'r)dr—
~ 0

where G(){,y) is given by Eq. (24).

e& dRP.g„y,r) dG(),~)
, . (26)

E D. Rainvill. e, Interntedsate 1MJferentsa/ Eqnatsons (The Macmillan Company, New York, 1964), Chap. 11.
Pan//book of Matbe/natsea/ Pnnetsons, edited by M. Abramowitz and I. A. Stegun (U. S. Department oi Commerce, National Bureau

of Standards, Washington, D. C., 1964), Appl. Math. Ser. 55, Chap. 13, p. 507, formula (13.4.11).
E. L. Ince, Ord/nary Digeentsa/ Eqnatsons (Dover Publications, Inc., New York, 1956), Sec. 10.7, pp. 237-238.
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On the assumption that our Sturm-Liouville system generates a complete set of eigenfunctions, the results, Eqs.
(25) and (26), form the basis by which the initial condition can be satisfied. Thus, if the initial probability distribu-
tion function fp(r) is quadratically integrable with respect to the weight factor re&' in the interval 0&r&1, i.e.,

1

res"fps(r)dr finite,

then

fp(r) = P &pR(l~s, y,r),

where, using Kqs. (25) and (26),
I 1

fo(r)re&"R(Xq,y, r)dr re && 4"»"",F '(—'L1—~/(~s —~,„)itsj 1 (~s 47,„)itsr)dr
0 0

Finally, using the above result, the formal solution to the diffusion problem is

QO Jpi fp(r)rer"R(Xq, y, r)dr
f(,t) = E R(Xs,y, r)e ""

&~ Jo'« " '""'""iFi'(lLI—v/(vs —4»)'"j 1 (vs —4»)'"r)«
(27)

where R(»,p, r) is given by Eq. (22) with X& replacing X, and X& (Xp=0) are the roots of the characteristic Eq. (24).

IV. SOME SPECIAL SOLUTIONS AND THE EQUILIBRIIIM DISTRIBUTION

A. External Force Absent, i.e., y=O

It is at first of interest to determine what the general solution Eq. (27) reduces to for the case when the external
magnetic force is absent, i.e., &=0. When &=0, the eigenfunctions Eq. (22) reduce to

RP &,o,r) = e """&""iFi(-',; 1; 2i(Xp)'"r). (28)
Making use of the identity'

V

iFi(v+ s; 2v+1; 2is) = I'(1+v) e"~ — J„(z),
28

where I'(1+v) is the gamma function of argument (1+v) and J„(s) the Bessel function of the first kind of order v,

Kq. (28) reduces to, with v=o,
R(Xs,o,r) =Jp((»)' 'r).

That is, the eigenfunctions reduce to the Bessel functions of the first kind of order zero.
Substituting Eq. (29) into Eqs. (27) and (24), the solution Eq. (27) takes the form

Jp' rfp(r) Jp((»)'"r)dr
f(r, t)=2 P J ((7 „)1/sr)e—est

J"((l.)'")

(29)

(3o)

and the characteristic Eq. (24) reduces to
J,(gx) =o. (31)

The system of Eqs. (30) and (31) is recognized as the solution, given by Carslaw and Jaeger, to the classical
initial value problem of radial diffusion (heat conduction) in an infinitely long circular cylinder with an impermeable
(insulated) wall located at r=1. That Eqs. (27) and (24) should reduce to the solution (30) and (31) is made
obvious by the fact that when &= 0 our original system of Eqs. (11) through (13) reduces to the ordinary diffusion
equation with the usual insulated Aux condition at the wall, i.e., itf/itr =0 at r = 1.

S. Initial Distribution a Normalized Delta Function Located at the Axis

so that 2sr fp(r)r dr= 1.
0

' Reference 6, Chap. 13, p. 509, formula (13.6.1).' H. S. CarslaIv and J. C. Jaeger, Coldlotiott of Host ist Solids (Clarendon Press, Oxford, England, 1947), Chap. VII, p. 178, formula 11.

For numerical purposes, in Sec. V, vre shall consider the special case vrhere the initial probability distribution
function is a normalized delta function located at the axis. Symbolically,

~() 1

fo(r) = (32)2'
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We use the notation Rs ——R(Xq,v, r), Ri——R(Xi,y, r) and
the prime to denote differentiation with respect to r.
Consider the differential Eq. (14) for the two eigen-
functions RI, and E& belonging, respectively, to the
eigenvalues XA, and X~, ) ~/X~, i.e.,

l.2

2Vrf '
rRs"+ (1+yr) Ri,'+ (Xsr+ y) RI,=0,
rR~"+ (1+yr)R&'+ (&ir+y)«=0.

(A1)

(A2)
0.8

0.6
Casting Eqs. (A1) and (A2) in self-adjoint form by
multiplication by e&", we obtain

0.4

0.2

(.e"R,')'+ (~,r+~)e"R,=0,
(re&"Ri')'+ (),)r+y)e&"R( 0. ——

(A3)

(A4)

I I I I I I I I I

0 O. I 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 I.O

FIG. 2. Variation of the distribution function 2p'rf with dinien-
sionless radial distance at various dimensionless times for the
case y=1.0.

mean diffusion speed and that the reverse is true
when y&2.0.

For the particular case considered here, the numerical
results further indicate that the equilibrium distribu-
tion is reached to within 5% in a dimensionless time of
the order of four times the relaxation time, i.e., t=4/Xt
=0.2878. In terms of dimensional time, however, the
time taken to practically reach the equilibrium dis-
tribution depends on the dimension of the diQusion
region and the diffusion constant through the relation
t'= (a'/D)t

The variation of the probability of finding the particle
anywhere in the annulus located at r, i.e., 2mrf(r, t)
with dimensionless radial distance for the same dimen-
sionless times as above is shown in Fig. 2. Of particular
interest is the existence of a maximum which is con-
tinuously displaced towards the surface; the maximum
becoming Qatter on account of the random motions ex-
perienced by the particles. Also to be noted is the
manner in which the function continuously adjusts
itself with time so that the integral under the curve
always remains equal to 1, as it must.
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Multiplying Eq. (A3) by R&, Eq. (A4) by Rz, sub-
tracting and integrating between the limits 0 and 1,
yields

(Xs—Xi) re&'RsRi dr
0

)RI, (re&'R() ' R( (rer—"Rp') '(dr.

Integrating by parts, yields

(Xi,—X~) rer"RsR~ dr = (rer")RqRi' —R~Ri'j) p'. (AS)

and the fact that the right-hand side of (AS) vanishes
at the lower limit, yields

re~ "Rq ('tis, y, r)R~ (X~,y,r)dr =0. (A6)

To evaluate Jp're&"R'(Xz, y, r)dr we first replace Eq.
(A1) by rR"+(1+yr)R'+('tr+y)R=O, where X now
plays the role of a continuously running parameter
having a corresponding solution denoted simply by
R. We now proceed in the same exact fashion as
above obtaining the follow'ing expression equivalent to
Eq. (AS):

Using the boundary condition Eq. (23) in tlie right-hand
side of Eq. (AS), i.e.,

Rp'(1)+yRs(1) =0,
Ri'(1)+yR((1)=0,

The integrals
1

APPENDIX A

re~'R (Xs,y, r)R (X~,y, r)dr; re&'R'() g,y,r)dr.

1

(X—Xs) re7 "RRs dr
0

= (re&"ttRRg, ' RpR' j)p'—
=e~LRP.,~,1)R'P „~,1)—R( „~,1)R'(Z,~,1)j.
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1 1

re~"—RqRq' + re~"Rq" dr
0 0

Using the boundary condition Eq. (23), i.e., R(li&,y, i) Integrating by parts, the right-hand side becomes
= —(1/y)R'(Xi„y, i), to replace R(Xi„y,i) in the above

expression, yields

e& yR (X,y, 1)+R'(X,y, 1)
re&"RRp dr= —R'(X Iy, 1)

1 I
pre—&"RIP +y r(e&'RI, ')'dr.

0 0

Taking the limit of the above expression as X ~ XI, and

remembering that

-~Rg,~, i)+R'(X,~,i)- dG(Z, ~)
lim
X-+Ns

since yR(XI„y,i)+R'(Xi,y, i) =0,

we obtain

The integrated terms cancel since Ri'(1)= yR—q(1)
Differentiating out the integrand of the last integral
and combining integrals, the right-hand side of Eq.
(B2) reduces to

re&'(Rg'+yRi)' dr

and hence from Fq. (B2)

re&'Rq'(gati,

y, r)dr

re& "(RI,'+yRp)' dr re&'RP dr (B3)

e& dR(X„y,r) dG(k, y)
Thus, since the integrands in both numerator and

(A7) denominator of Eq. (B3) are positive, X& is positive.

APPENDIX 3
EIGENVALUES ARE NON-NEGATIVE

Casting the differential Eq. (14) for the eigenfunction
R P.i,y, r) belonging to the eigenvalue X& into self-adjoint
form by multiplying through by e&" yields, using the
same notation as in Appendix A,

hare~"Ri, =(re&"RI,')' ye~ "Rq—. —(Bi)

where G is given by Eq. (24).
Incidentally, the result of Eq. (A7) can be used to

prove that the roots of the characteristic equation are
nonrepetitive. For, if )I, were a multiple root, then

(dG/dpi)i=i, =0. This result forces the left-hand side
of Eq. (A7) to equal zero, which is impossible unless

R(z„~,r)=—0.

APPENDIX C

The eigenfunctions given by Eq. (22) (with X& re-

placing X) are real.
We need only concern ourselves with those eigen-

functions whose eigenvalues XI,)y'/4.
Let p= (Q,&

—y')'~p. Then the eigenfunction Eq. (22)
becomes

RP...&,r)=e "~ e '"~ P,(;++i~/-P];1; iPr). (Ci)

Since the first factor e &""is real, we need only concern
ourselves with the character of the product of the last
two factors.

We now make use of the following integral representa-
tion for the conQuent hypergeometric function":

,Pi(a;1;s)= e"t -'(1—t)- dt, (C2)
I'(a)I'(1 —a) p

Multiplying through by g~, and integrating between valid for E,c(1.In our case, R,a=-, so the restriction

the limits 0 to 1, yields on a is satisfied. For our case, Eq. (C2) becomes

rgk2 dr
0

i~i(p+iV/2p 1;ipr)

sin~ (ip+ iy/2p) e'~"' ( t l'"I
dt,

p Lt(1—t)j'" k1 t)—
(R&E(re~ "Rk')'+ye~ "Rqg)dr. (B2)

"Reference 6, Chap. 13, p. 505, formula (13.2.1).
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where we have made use of the identity

r (a)r (1—a) =sr/sinn-u.

Now

sin (sr/2+ iysr/2p) =cosh (ysr/2p)

e '&"tstF—(-'+iy/2P; 1 i iPr)

cosh(sr7/2p) ' e'o"('—&&

dt. (C3)
s tt(1—t)j»s&1—t)

"Reference 6, Chap. 6, p. 256, formula (6.1.17).

Letting u= 1 1;—du= d—t; t——,'=-',—u (C3) becomes

e '&"—"tF (-'+iy/2p; 1 i ipr)

cosh(sr'/2p) ' e'&"&1—"& t'1 —u) '»'&

o (u(1—u)j'ts( u )
cosh(ysr/2p) ' e 'o"&~ &&

du. (C4)
o Eu(1—u)y" &1—ui

Comparing the right-hand sides of Eqs. (C3) and (C4),
we see that e '&"rFt(sr+i'/2p; 1;ipr) is also equal to
its complex conjugate, hence it is real. Thus, the eigen-
functions R(hs, y, r) are real.
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Excitation Syectrum of the Bose Liquid
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(Received 23 August 1965; revised manuscript received 11 October 1965)

The assumptions and predictions of the Brueckner-Sawada method (including recent refinements) for
the derivation of the excitation spectrum of the high-density boson system are examined using Green s-
function techniques and a new method of solving the scattering-matrix equation. In the case of the real inter-
action potential of He4 atoms, the spectrum obtained in our approximation has the correct form but the
depletion has a meaningless value. It is pointed out that a probable cause of discrepancies is inconsistent
omission of certain self-energy terms.

INTRODUCTION

HERE are several microscopic approaches to the
derivation of the excitation spectrum of the zero-

temperature boson system, ' which have been used to
derive the phonon part of the spectrum. To obtain the
roton minimum, methods for a nondilute gas must be
used. Some clari6cation of the reason for the appearance
of the roton dip was already given by the argument of
Feynman' showing connection between quasiparticle
energy e(k) and the liquid-structure function S(it,to).
The purely microscopic derivations have concentrated
almost exclusively on the case of hard-sphere bosons.
Brueckner and Sawada' (BS) treated the hard core as
a screened delta-function potential, and found quali-
tative agreement with the Landau curve. Parry and
ter Haar4 found that the roton minimum disappears if
the depletion eGect is included in these calculations.
Even poorer agreement was found when an attractive
tail was added to the hard core, and they concluded
that the hard-sphere boson gas is not as good a model

'For review, see, e.g., P. C. Hohenberg and P. C. Martin,
Ann. Phys. (¹Y.) 34, 291 (1965).

s R. P. Feynman, Phys. Rev. 91, 1301 (1953);94, 262 (1954);
R. P. Feynman and M. Cohen, ibid. 102, 1189 (1956).' K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957);
106, 1128 (195'l).

4W. K. Parry and D. ter Haar, Ann. Phys. (N.Y.) 19, 496
(1962).

for liquid helium as has been assumed. Liu, Liu, and
Wong' showed, however, that a qualitatively correct
excitation spectrum is found if, instead of this treat-
ment, the hard-sphere potential is replaced by the
two-body pseudopotential earlier considered by Lee,
Huang, and Yang. '

The approach used in the quoted papers is called the
Brueckner-Sawada method. Because it still forms one
of the main e6orts to microscopic derivation of the
excitation spectrum of liquid helium II, we consider it
worthwhile to study some aspects of the approximations
and predictions of the theory. In the next two sections
the quasiparticle spectrum, the depletion, and the
reaction matrix equation are derived using Greens-
function techniques at zero temperature. The BS
method is then shown to have the following properties:
Lil The quasiparticle energy is assumed to be given by
the poles of the single-particle Green's function. (2g In
this, only the self-energy resulting from first-order
terms of the effective interaction with the particles in
the condensate is included. [3] The effective inter-
action is given by the BS equation for the scattering
matrix, in which the propagator between successive

' L. Liu and K. W. Wong, Phys. Rev. 132, 1349 (1963);L. Liu,
Lu Sun Liu, and K. W. Wong, ibid 135, A1166 (1964)..' T. D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 1135
(1957).


