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Effect of Invariance Requirements on the Elastic Strain Energy of
Crystals with Application to the Diamond Structure*

P. N. KEATINGt
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(Received 17 December 1965)

After demonstrating inconsistencies in some of the better known elasticity calculations, an alternative
method of imposing the necessary invariance conditions on the strain energy of a crystal is presented. The
new method is equivalent to the Born-Huang procedure but, in addition to providing further insight, also
offers one or two operational advantages. For example, it demonstrates that all purely 6rst-neighbor inter-
actions are central only. The method is applied to the calculation of the elasticity of a two-constant model
of the diamond type of crystal, and this predicts the relation 2c44(cn+c~s) = (ou —c~s) (cn+3c~s), which is
very well satisled by the experimental data for diamond, silicon, and germanium.

I. INTRODUCTION

~HE calculation of the elasticity, cohesive energy,
and lattice dynamics of crystals by means of

microscopic models has always formed an important
part of solid-state physics. Since the earliest work by
Born and co-workers, '' there have, in fact, been so
many such calculations that no attempt will be made
here to give even a sketchy account of them; only
speci6cally relevant work will be referred to in the course
of the present contribution. The purpose of this con-
tribution is to show several inconsistencies which have
arisen in some of the better known calculations because
of the use of unsatisfactory force-constant models, to
present a method whereby a physically realistic set of
force constants may be chosen, and to describe calcula-
tions of the elasticity of the diamond type of crystal
based on a corrected force-constant scheme and using a
relatively new and more convenient calculational
method.

The conditions which are imposed by rotational in-
variance on the coefficients of an expansion of the
potential energy in terms of the atomic displacement
components were derived by Born and Huang, ' and
many of the more recent calculations satisfy this re-
quirement. However, many calculations have been
based on a force-constant set which has not been ex-

plicitly subjected to these conditions and the use of
nearest-neighbor central and noncentral force constants
has been fairly widespread. ' '4 On the other hand, the
existence of noncentral first-neighbor interactions has
recently been questioned by Lax, ' who treated a one-
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dimensional finite lattice and showed that, in this case,
the 6rst-neighbor noncentral constant vanishes. The
extension of these arguments to Qnite three-dimen-
sional structures is complex, and it is not certain that
the Lax result can be extended to this general case;
however, the implications in his result are obvious.

In the next section of this contribution, we show
how some of the classic calculations of Born give
unreasonable results, and thereby add emphasis to
I ax's point" that rotational invariance must always
be imposed. In the third section, we present an alterna-
tive method of imposing the necessary invariance con-
ditions on the elastic strain energy which is essentially
equivalent to the Born-Huang method' but oGers
several operational advantages, as well as providing
additional insight. One such advantage allows us to
show quite generally that the purely 6rst-neighbor
noncentral constants must always vanish. In the fourth
section, we apply these formal results to the calculation
of the elastic constants of the diamond type of crystal,
using a method which is an extension of a method erst
used by KitteP and which is simpler to apply than the
Born long-waves method. '

II. FAILURE OF THE EARLY BORN
CALCULATIONS

The classic calculation of the elasticity and lattice
dynamics of a crystal is that published by Born and
von Ka,rman' for the simple cubic case and surrunarized

by Kittel. ' Two nearest-neighbor force constants tr' and.
P' (central and noncentral, respectively) and several
second-neighbor constants are employed. The calcula-
tional method used is an early version of the long-
waves method whereby the force on an atom is calcu-
lated in terms of the force constants and atomic dis-
placements. The equations of motion of the atom in
terms of the components of the strain gradients are
then compared with the macroscopic equations of
motion, and relations between the force constants and
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the elastic coe%cients are thereby obtained. Born and
von Karman obtained' ~

C~i= n 8; Ci2= — 8; C44=

(where a is the lattice constant) in the limit of negligible
second-neighbor interactions. Not only are these ex-
pressions inconsistent with the results of Kittel s calcu-
lations $Eq. (4.34) of Ref. 2j, but they are also clearly
unsatisfactory physically. For example, the bulk modu-
lus is 8= (cii+2ci2)/3= (n' —2P')/3u, using the Born-
von Karman results. However, this is the modulus
which determines volume changes under hydrostatic
pressure and should be independent of P', the first-
neighbor noncentral constant, since only the inter-
atomic distances change under this type of deformation
and there are no angle changes. Furthermore, the nega-
tive value of c» is clearly unsatisfactory for this model.

Another classic calculation of elasticity and lattice
dynamics was also published by Born, ' for the diamond
type of crystal, and it was this work which caused the
author to initiate the present study. During the course
of a calculation' of the second-order electric moment of
this type of crystal, it became necessary to estimate the
relative magnitude of some of the atomic force constants
via elastic-constant data. Important differences were
noted between the results obtained by a static calcula-
tion and those obtained by Born.' Using the long-waves
method, Born obtained' 4

ci,——(n"+p")/4a,

ci,——(n"—2P")/4a,

3P"(~"+0"/4)
C44 =

4a(n"+p")

where 4u is the lattice constant, 0," is the central first-
neighbor constant (proportional to Born's A'), and P"
is the noncentral first-neighbor constant (proportional
to 8'). These res—ults are again unsatisfactory physi-
cally. The bulk modulus again depends on P", whereas
there are no angle changes under hydrostatic pressure.
Furthermore, the compliance constant s~~ calculated
from these expressions has a very unphysical singularity
at P"=n" and is eegatiwe in the range n"(P"(2a".

These difficulties led us at first to suspect that they
were due to inadequacy in the Voigt elasticity formalism
of the type suggested by Laval. ' However, arguments
put forward by Lax' " show that the Voigt formalism
is perfectly adequate for the purposes intended. This
fact suggests that it may be the force-constant models
which are invalid, since the Born long-waves method
is satisfactory. This reasoning, together with the doubts
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289, 369 (1957).' M. Lax (private communication).

about the force constants already raised by Lax, s

shows that a more careful study of the types of force
constant which are acceptable is necessary. This is the
subject of the next section.

III. SUITABLY INVARIANT FORM FOR
THE STRAIN ENERGY

The elastic strain energy of a crystal is subjected to
various physical requirements and these may be di-
vided into two classes: the general conditions, such as
rotational and displacement invariance, and those im-

posed by the symmetry of the crystal structure. It is
the primary purpose of this section to consider the e8ect
of the general conditions on the form of the strain
energy V of a large crystal and thereby on the types of
force constant which are acceptable. We shall consider
any general type of deformation and will assume that
the elastic strain energy depends only on the positions
of the nuclei. "However, the requirement that the en-

ergy be invariant under an arbitrary displacement of
the lattice as a whole ensures that V can depend only
on the Chgererioes between nuclear positions, i.e.,

V= V(x,—xi) = V(x,i),

where xI, ~
——xI,—x~ and where xI, is the position vector

of the kth nucleus after deformation. But V must be
invariant under a transformation in which the atoms
are further displaced in such a way that a rigid rotation
of the crystal is produced. The x&& are not invariant
under such a transformation; they transform as vectors.
The only invariants which can be formed from the x&&

are the scalar products between them and functions of
such products. Hence we de6ne

&aimn= (xtci' xmas Ri Xme)/2p p

where a is a lattice constant, XI, i is Xi—Xi, and XI, is
the position vector of the kth nucleus in the undeformed
crystal. The final term is included so that X&& vanishes
when the deformation is removed; this does not affect
the invariance properties of X, since the material vector
X~ does not change under these transformations. Thus
the strain energy is a function V(X» „)of the large
number of )A,.~ „.The similarity between the above
discussion and the arguments presented by Lax' to
establish a form for the macroscopic energy is not
deceptive. The XI,~ „arethe microscopic analogs of the
El,~ of Sec. 2 of Ref. 5.

Since the XI,& „aresmall, we assume that they can be
used as a basis for a series expansion of V. The constant
term in such an expansion is clearly unimportant, and

"This is valid in nonmetallic crystals even when the electrons
are treated in detail, since the Born-Oppenheimer approximation
ensures that the electrons follow the nuclei in full. Thus a shell-
model strain energy must have the form of Eqs. (3) and (4) when
expressed in terms of only the nuclear positions after imposing the
condition (see Refs. 8, 19, for example) that the forces on the
electrons are always negligible.
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the linear terms must vanish so that the potential
energy is an extremum at equilibrium. Because the
change in potential energy under any infinitesimal uni-
form strain from. equilibrium must be zero, the terms
which are linear in the components of the displacements
us~=xs~ X—sq must vanish. This, in turn, causes the
terms which are linear in the ) I, ~ „

to vanish and hence,
using the usual summation convention,

&= sIIslme " 4lmn&yqra+OP ) (2)

for small strains. It is interesting to note that this
condition is more stringent than the familiar require-
ment that the forces on every atom vanish at equi-
librium, since the latter is frequently satisfied for non-
vanishing linear terms merely by the cancellation of
contributions from diferent atoms due to the coordina-
tion symmetry which often occurs in crystals. The
{Bs~„„rq") must be positive definite to ensure that V
is not only an extremum at equilibrium but also a
definite minimum.

However, the expansion (2) is not yet the required
expression for the strain energy since there is a large
amount of redundancy in the X&& „,and this is unde-
sirable since it means that most of the coeKcients 8
are then not independent. This redundancy arises from
two sources. Firstly, Lax has pointed out' that only
three lengths are necessary to locate an extra point
with respect to an assembly of other points, provided
we are considering only small displacements and the
equilibrium arrangement of all the points is known. In
fact, only 3S—6 invariants are necessary to specify an
arrangement of E points in three-dimensional space,
and this is considerably smaller than the number of
)I,s~ „which can be defined from Eq. (1). Whilst the
invariance properties of the equilibrium crystal under
the operations of the space group of the crystal also
causes redundancy, the main source of diKculty lies
in the choice of only 3X—6 of the', '1/8Ã(IV+I)
X$E(iV+1)+2j ) 's defined by Eq. (1).This problem
is the subject of the following paragraphs.

Initially, we consider the description of a slightly de-
formed primitive structure. All primitive structures can
be considered as consisting of a large number of
parallelepipeds with atoms at each of the eight corners.
In the undistorted case, all parallelepipeds in the bulk of
the crystal are identical and each is a unit cell, of course.
We shall proceed to find a set of scalar products, both
necessary and sufhcient to describe the positions of the
atoms in the bulk, by building up distorted cells around
an initial cell in order to form the crystal. The arrange-
ment of the eight atoms on the corners of this first cell is
determined by 18 scalar products. A convenient, al-
though not unique, set is obtained by taking the
squares of the lengths of the 12 edges of the cell (i.e.,
12 diagonal products) and the 6 off-diagonal products
(essentially the angles between vectors since the di-
agonal products give the magnitudes of the vectors)

(b)

FIG. 1. (a) The Iirst cell around which the distorted lattice is
to be built up. ib) The erst cell with four of its six neighboring
cells.

represented by arcs in Fig. 1(a). The four atoms in an
adjacent cell which are not already fixed by the above
scalar products are determined by the 8 remaining
edge lengths of this cell and four more angles, as shown
in Fig. 1(b). The rest of the crystal is treated by
adding additional cells and using only those scalar
products (the lengths of all edges and some angles)
necessary to define the positions of the atoms. When
this is done, the lattice points in the bulk can be divided
into three types according to the number of necessary
scalar products associated with them. First, there are
the points lying along three lines passing through the
reference point 0 in the initial cell and parallel to the
three basis vectors of the undistorted lattice. Associated
with this type of point are three diagonal products
(edge lengths) and three off-diagonal products (angles,
essentially), as shown in Fig. 2(a). Secondly, there are
the points which make up the remainder of the three
planes in which the three reference lines lie. Each of
these points is associated with three diagonal products
but only one oG-diagonal product, as shown in Fig.
2(b). The third, general, class of lattice points are
those which do not lie in the above-mentioned planes,
and these are associated with the three diagonal scalar
products but no off-diagonal products Lsee Fig. 2 (c)j.

This nonuniformity in the distribution of the scalar
products through the crystal arises with every necessary
and sufhcient set of scalar products one chooses to
describe the arrangement of atoms and is clearly unde-
sirable. We remove this difficulty by invoking (a) the
invariance of a crystal under the operations of the
relevant translation subgroup, and (b) the assumption
that interactions over distances of the order of the
crystal dimensions are negligible. This latter assumption
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(b)

(c)

FIG. 2. Types of lattice point according to the number of scalar
products associated with them: (a) points on the reference lines,
(b) points in the reference planes but oB the reference lines,
(c) general points.

is, of course, necessary anyway if the concept of "bulk
properties" is to have any meaning. In this case, we
note that no extra distinctly diRerent scalar products,
or products of such products, arise in the bulk if we
consider all the lattice points to be of the type shown in

Fig. 2(a), i.e., associated with six scalars. In other
words, we shall retain an unnecessarily large set of
invariants which, however, does not give rise to any
new, and therfore dependent, coefficients. This set of
invariants is not an independent set; however, it is
suKciently restricted so that it is associated with an
independent set of coefIj.cients because of the lattice
invariance properties. It is a complete set for the bulk
of the crystal if the strain energy is, in fact, determined

by the nuclear positions only (i.e., for nonmetallic

crystals). In this case, even the smaller, independent
set of 3X-6 invariants is a complete set, since this is
sufhcient to completely specify the positions of all the
points of the distorted lattice for small displacements.

We write xt(l), xs(l), xs(l) as the position vectors of
three neighbors of the atom in unit cell (l) relative to
this latter atom and which become the lattice basis
vectors when the distortion is removed. The strain
energy of the bulk of the crystal may therefore be
written

where X „(t)=(x„(l)x„(l)—X„X„)/2uand. is sym-
metric in (m,n), where the sums over l, t' range over all
the unit cells in the bulk, and where {B„„„(/—l')} is
invariant under the operations of the translation sub-
group. In actual fa.ct, of course, (B„„.(l—l')} must
be invariant under all the operations of the space
group and must be positive dehnite. In addition, the
B „(1—l') must fall off rapidly enough as 1—t' in-
creases so that P ~B „„(l—l') is convergent. If the B's
have these properties and one uses the expression (3) for
the energy, then we have a suitably invariant form for
the strain energy and all the force constants are
independent.

We now extend these considerations to the case of
nonprimitive structures. One suitable set of scalar
products for a diatomic structure consists of the set
noted above, using the atoms on one sublattice, to-
gether with three extra scalars per unit cell of the
diatomic structure necessary to locate the 8 atom rela-
tive to the A atom. However, a more convenient set is
obtained by writing xt(l), xs(l), and xs(l) as the position
vectors of the 8 atoms in neighboring unit cells relative
to the A atom of cell (l) and writing x4(l) as the position
vector of atom B in cell (l) with respect to the A atom
there. The nine scalar products per unit cell are the 10
scalar products x (1) x„(l) (m,x=1,2,3,4) less one of
the off-diagonal products (xs x4, for example, is deter-
mined for small displacements if the other 9 scalar
products are known). Thus we can write the strain
energy as

V=-,' Q P' B „„(/—l'))t„.„(l')X„„(l)+,(4)
l,l' m, n,m',

n'=1

where the prime denotes that terms involving X34 are
not included (unless they arise in the course of imposing
invariance on the 8's under symmetry operations —see
Sec. IV). The extension to structures with a greater
number of atoms per unit cell is straightforward and
will not be included here.

If we wish to remain within the harmonic approxima-
tion, then we can drop terms in N2 from the X's and
Eq. (3) or (4) approximates to

n2nN mN n

where n is the ath component of the displacement of
the mth nucleus and the E p

" are linear combinations
of the 8„„.This form is now suitable for calcula-
tional purposes and, when derived from Eqs. (3) or
(4), has the correct invariance and other properties.

The expansion (5) is essentially the starting point of
Born and Huang' in their method of imposing rota-
tional and displacement invariance on U. In this latter
method, one tries to find a set of coefficients E,~

"
which satisfy the rotational-invariance condition '

B „„„(l—l'))t (l)X ~ (l')+ ~, (3) fnnX ng g mnX m (6)
l,l fm, n,m',

n' =1 ~ See, for example, Eq. (23.23) of Ref. 3 or (5.11) of Ref. 5.
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and displacement-invariance condition"

and the crystal-symmetry conditions. It is completely
equivalent to obtaining the correct form (5) from (3) or

(4), but the latter method offers one or two operational
advantages. It is, for example, somewhat more dificult
to apply (6) and (7) than to write down an expansion
in the form (3) or (4) and reduce it to the form (5).
Furthermore, the physical signi6cance of the force
constants is much more readily apparent in the form

(3) or (4) than in the form (5). As an example of this,
we see plainly from Eqs. (2), (3), or (4) that the only
nearest-neighbor harmonic interaction which arises be-
tween k and its nearest neighbor k' is the term in

(Ass qs )'. This term is clearly a central interaction and
thus there are no noncentral purely first neigh-bor inter
actions present in any nonmetallic crystal. This result,
which generalizes I ax's result' for a one-dimensional
lattice to all cases, can, in principle, be derived from
conditions (4) and (5), but this is more diflicult and
has not yet been carried out.

We note that we have also established that an arbi-
trary potential energy which is suitably invariant is
decomposable into parts which are separately invariant
and have therefore confirmed Harrison's suggestion";
the validity of this decomposition depends only on the
validity of the series expansion of V. In actual fact,
the result regarding noncentral 6rst-neighbor inter-
actions follows as soon as the decomposition is made;
Lax, for example, has pointed out' that pair forces
must be central. Finally, we see from Eqs. (3) and (4)
that the invariance requirements give rise to appreci-
able contributions to the anharmonic part of the strain
energy (i.e., terms in u', etc.) from the 8 „„(l—l'),
which lends some support to the crude procedure (see
Ref. 8, for example) of estimating the magnitude of the
cubic anharmonic coeKcients as Z& &s~E&'&/ aThis re-
sult, which is apparently new, is not too surprising if
we remember that, if the first-order potential coefficients
are not made to vanish by imposing the extremum
condition, Eq. (6) is a relation between the erst- and
second-order coef6cients. " Thus we might expect a
similar relation between the second- and third-order
coefficients if the Born-Huang invariance conditions'
were derived for an anharmonic strain energy. If one
wishes to include cubic terms in Eq. (5), one must, of
course, also include terms cubic in the X's in Eqs. (3)
or (4) before the approximation to the form (5). It is
clear that the procedure proposed here for imposing
the necessary invariance requirements is even more con-
venient in comparison with the Born-Huang method if
anharmonic terms are to be included.

To suinmarize, the proposed prescription for 6nding

"See, for example, Eq. (23.16) of Ref. 3 or (A.2) of Ref. 5.
'4W. A. Harrison, thesis, University of Illinois, 1956 (un-

published) .

a realistic set of force constants for monatomic or di-
atomic crystals is to write out expression (3) or (4),
eliminate those terms which are to be ignored for the
sake of simplicity by putting the corresponding 8's
equal to zero, and ensure {B„„„.(l—l')} is positive
definite and has the required invariance properties. In
Sec. IV, we shall apply this method to the calculation
of the elastic constants of the diamond type of crystal
in order to illustrate the mechanics and results of the
method and also to show how the inconsistencies noted
in Sec. II vanish if a physically realistic set of force
constants is used.

IV. CALCULATION OF THE ELASTICITY OF
CRYSTALS OF THE DIAMOND TYPE

The elasticity and lattice dynamics of the diamond
structure have been the subject of a large number of
calculations since the original work of Born.' This
latter calculation gives unrealistic results, as we noted
in Sec. II, because it is invalid by virtue of the use of a
noncentral first-neighbor force constant, prohibited by
the result obtained in Sec. III. The two-constant model
has been extended to include more constants, "—"
notably by Smith and Herman. Herman
eluded interactions out to 6fth neighbors in an attempt
to 6t both elastic and phonon-dispersion data and
showed that Smith was in error due to the neglect of
some antisymmetric second-neighbor terms. Harrison"
has used a model with three force constants, two de-
scribing central first- and second-neighbor interactions
and a second-neighbor constant representing the e8ect
of angle changes. Huntington" has used the 6rst-
neighbor central and second-neighbor noncentral part
of this model to obtain a relation analogous to the
Born relation. '4

Herman" could 6t the experimental data, but this is
hardly surprising in view of the large number of pa-
rameters used. In actual fact, it appears that this 6t
is not physically significant since, by dropping the
rigid-ion model in favor of a shell-model approach,
Cochran has shown" that a near-neighbor model can
then 6t the data. The shell model is more realistic
physically than the Herman model, and thus it appears
that distant-neighbor interactions are not too important
in diamond-like crystals. The shell model" introduces
a relatively large number of parameters but, for many
lattice dynamical purposes, is equivalent to a rigid-ion
model with a smaller number of force "constants"
which are wavelength-dependent (see Appendix); hence
the 6t with the lattice dynamical data. However, for
the nondispersive long-wavelength acoustic modes, the

"H. M. J. Smith, Phil. Trans. Roy. Soc. A241, 105 (1948).
~6 F. Herman, J. Phys. Chem. Solids 8, 405 (1959)."See, for example, N. S.Nagandra Math, Proc. Indian Acad. Sci.

Al, 333 (1934); K. G. Ramanathan, ibid A26, 481 (.1947); D.
Krishnamurti, tbtd A33, 325 (1951)..

» H. S. Huntington, Solid State Phys. 7, 213 (1958).
+ W. Cochran, Proc. Roy. Soc. (London) A258, 260 (1959).
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wavelength dependence of the rigid-ion force constants
is negligible (see Appendix), and thus, as long as we
wish to fit only the long-wavelength acoustic data (i.e.,
the elastic data), a small number of near-neighbor
constants should give an adequate description. We shall
therefore consider a model with only two types of
interaction, a nearest-neighbor central term and a
noncentral second-neighbor term. The long-range quad-
rupolar interaction introduced by Lax' falls off as r '
and will be ignored except for close neighbors, where it
will be absorbed into the two force constants. The
shell-shell interaction introduces more important me-
dium-range effects, ' ' but these will generally be small'
for third and more distant neighbors. The two-constant
model we use is somewhat similar to the Huntington
model, "but the noncentral interaction is different and
gives rise to rather different results, as we shall see.

The basic unit cell of the diamond structure is a
rhoinbohedron with two atoms (1 and 0 of Fig. 3) on
its major axis, which is directed along the L111)direc-
tion. The three neighboring unit cells of interest contain
atoms 2 and 5, 3 and 6, 4 and 7, respectively. We use

Eq. (4) for the strain energy and will obtain our two-

constant model by including only diagonal products of
the P's. Thus we write

V=-,' Q Q' 8 (0)X '(l)
m, n=l

+ P (x0;(l) x0, (l)+a')', (g)
28 i,g&i

where the atomic labeling is as in Fig. 3 and the re-
quired symmetry has been imposed on the 8 (0).
The crystal symmetry requires that 8 „„(0)=42 (all
2rl) and 8 „„(0)=6P/5 (all m, n, nz&23) and the term
in X34' becomes included when we impose this symmetry
(i.e., 83434 81212 etc.). If both n, the central first-
neighbor constant, and P, the noncentral second-
neighbor constant, are positive, the condition of
positive definiteness is satisfied. Equation (8) can be
rewritten:

V= 2& Ql {L(2401+v01+2v01) + (2402 v02 2v02) + (N03+v08 2v03) + (N04 v04+2v04) }
+4P Q 1{f (3401+2402+ V12+2V12) + (N82 V32+2V02+2V03) + (2408+ N04+ V48 2V43) + (N42+ V02+ V04 2V42)

+ (181 v01 v03+2v31) + (N41+v41 2v01 2v04) j}+0(24) ' (9)

At this stage it becomes necessary to choose a method of calculation of the elastic constants. The Born-Huang
long-waves method" consists of a calculation of the sound-wave combinations of elastic constants in terms of the
E,z~" fusing, for example, (26.32) and (26.33) of Ref. 3j, followed by the use of Eq. (27.26) of Ref. 3 to determine
the constants themselves. There is always an appreciable amount of work involved and this is particularly true in the
case of nonprimitive lattices, such as diamond. We shall use an extension to nonprimitive lattices of a method
which seems to have been erst used by Kittel for the simple cubic case. We assume that the strain, while inhomo-
geneous in general, varies sufficiently slowly so that it may be considered constant over a few unit cells; it is only
in this case, of course, that macroscopic elasticity is a useful concept. The energy density U is obtained from V
by dropping the sum over all unit cells and dividing by the unit cell volume. From an equation such as (9) we
express the energy density U in terms of the displacement-gradient components I'„and the pv, ', the components
of the differences in internal strain between each pair pg of sublattices. The conditions BU/B(v, '= 0 establish the
relationship p„,= („0(I'„)and one can then write the energy density as U(N'„).This expression is then com-

pared with the well-known macroscopic expression to yield relations between the elastic coeKcients and the force
constants. The method is straightforward and involves a relatively small amount of computational work, as the
present example shows.

We write the strains as 4, ,=0I24/Ojx, e„,= (Bv/Bs)+ (Biv/Bv), etc. , and write the components of the internal strain
as I', v', 2v'. Equation (9) becomes

I'+v'+ iv' ' I'—v' —2v') '
U= eq+e„,+e„+0,„+ + e0+e„,—e„—e,„+

328 8 a i
24'+V' —2V' '

+(ee e„,+e„—e,„—ee' —-e'+ee')'

2V' '
+(e„—e„„+e„—e,.+—

+~~ e„—e„„+e„+e,„——
~ +~ e„+e„„—:e„+e,„—

a a) & a
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for diamond, silicon, and germanium, using the data
listed by Kittel. ~ We note from Table I that expression
(11) is very well satisfied by all these crystals. The
agreement is much better than that obtained from the
invalid Born relation' ' " and very much better than
that obtained from the Huntington relation. " The
Huntington second-neighbor interaction is somewhat
different from that utilized in the present work and is
equivalent to a strain energy in which there are the
additional contributions

—(4/5)P Q X„(l)X,„(l)],

FiG. 3. The crystal model. The open and 6lled circles represent
the atoms on the two diBerent sublattices.

where ez ——e„+e»+e„.By imposing the condition

BU BU BU —0
BN BV 88)

one obtains 24'= —af'e„„u'=—at e„,w'= —at e,„,where

f=(u—P)/(n+P). After substitution for I', etc., we

compare the resulting expression for the energy density
with the well-known macroscopic expression for cubic
crystals:

U = ', cll (e„'—+e»'+ e,.')+c12(e»e„+e„e„+e„e»)
+2C44(~2 +~ +~ 2 )

and obtain
cll = (n+3P)/4a,
C12= (n —P)/4a

C44=~P/~(~+0)

which are somewhat different from the invalid expres-
sions obtained by Born.'4 Because there are three
elastic coeScients and two force constants, expressions
(10) predict a relation between the elastic coeflicients
analogous to the well-known but invalid Born rela-
tion. '4 In the present case,

2C44(C11+C12)= (Cll C12) (Cll+3C12) (11)

is the predicted relation between the elastic constants.

V. DISCUSSION OF THE RESULTS
OF THE CALCULATION

TABLE I. The validity of relation (11) for diamond-like crys-
tais. (Elastic constants in 10" dyn/cm', force constants in 10'
dyn/cm).

Diamond Silicon Germanium

2C44(Cll+C12)
0.99 0.99 1.07

over and above Eq. (8). The Huntington model is less
adequate because it treats the second-neighbor inter-
action in an unsatisfactory way. For example, in this
latter model, a variational displacement of atom 1 along
the $111] direction has no effect on atoms 2, 3, 4,
whereas the shell-shell and shell-core interactions will

ensure that this type of second-neighbor interaction
should be comparable with the other second-neighbor
terms —as it is in the model used in the present work.
The success of the present model in fitting the elasticity
data suggests that long-range interactions are, indeed,
unimportant in these crystals and thus confirms that
the shell-model fit" of the phonon-dispersion data is
physically more significant than the fit obtained by
Herman. "

We note that the bulk modulus given by Eqs. (10)
is again dependent on the noncentral constant P, but
this is now satisfactory since the noncentral interaction
of the present model contributes to the strain energy
when the lattice constant is changed but the angles
are not. This is because xo~. x02 does not vanish when
the bond angle is at its equilibrium value (since this
value is not 2r/2 in diamond) and is one reason why the
present model gives results which are more realistic
than those obtained from the Huntington model, as
discussed in the previous paragraph. The compliance
constant s~~ does not now exhibit the unacceptable

The validity of the model chosen for this calculation
depends in part on Eq. (11) being well satisfied by the
relevant experimental data for crystals of the diamond
type. In Table I, we present theoretical fits of the
elasticity data, and values of

2C44 (Cll+C12)

(C11
—C12) (Cll+ 3C12)

(C» —~12) (~»+3~12)

I3

0/~
c» (expt)
c» (theoret)
c12 (expt)
c12 (theoret)
c44 (expt)
c44 (theoret)

1.29
0.85
0.66

10.76
10.76
1.25
1.25
5.76
5.75

0.485
0.138
0.29
1.66
1.66
0.64
0.64
0.79
0.79

0.38
0.12
0.32
1.29
1.31
0.48
0.46
0.67
0.65
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behavior noted in Sec. II for the Born results. Thus we
see that the inconsistencies which arise from the
invalid Born model are no longer present if a realistic
set of force constants is chosen.

Our analysis readily yields theoretical values of the
Kleinman internal strain parameter, ' which is the
ratio of the internal base strains with and without non-
central forces. Thus, since t =1 if P=O, the Kleinman
parameter is identical with the l parameter of this
article. We see that

, using Eq. (10).
cr+p (C11+C19)

Hence, we expect f to be 0.55 for silicon, 0.53 for ger-
manium, and 0.21 for diamond. These values predicted
for germanium and silicon are roughly 10% lower than
the experimental values of Segmuller and Neyer, "
while no experimental value is yet available for diamond.
The displacements of the two types of (111)plane under
(111) uniaxial stress are clearly comparable for ger-
manium and silicon. Thus the force constants k, k'

between neighboring Wannier states used in a previous
one-dimensional calculation' of the second-order electric
moment in these crystals are comparable, as was
assumed. The aside' regarding the reason why the Born
relation is less good for diamond is no longer very rele-
vant, of course. The fact that the @13 of that work is
not small in diamond is no reason for failure of the new
relation (11) since second-neighbor terms are now in-
cluded. Instead, the larger value of a13 suggests that
the second-neighbor constant is larger relative to the
first-neighbor constant in diamond than in either silicon
or germanium; this is conhrmed in the present work, as
the values of P/n given in Table I show.

It is also of interest to consider the elasticity of the
zincblende III—V compounds from the viewpoint of the
present treatment. An extension of the present theory
to these solids would be possible (by replacing P by the
mean value of P for the two components of the com-
pound) were it not for the increased importance of
long-range forces due to the presence of coulomb
effects. In fact, the deviations from relation (11) cor-
relate well with the values of e~*, the Born effective
charge, "as shown in Table II. Thus the anomaly dis-
cussed by Westbrook. ,

" for example, has now been
resolved.

2e L. Kleinman, in Proceedimgs of the Imtermatiortat Colferemce ort
the Physics of Semiconductors, Exeter, 196Z (The Institute of
Physics and the Physical Society, London, 1962)."A. Segmuller and H. R. Neyer, Physik Kondensierten
Materie 4, 63 (1965).

»Because of the delocalized nature of the charge in these
crystals, the Lorentz treatment of the internal Geld is not valid
and the Born charge is more useful than the Szigeti charge /see,
for example, E. Burstein, in Phonons and Phonon Interactions,
edited by T. Bak (W. J. Benjamin, Inc. , New York, 1964), where
the effective-charge data were also obtained j.

~ J.H. Westbrook, in Mechanical Pro perti es of Intermetulkc Com-
pounds, edited by J. H. Westbrook (John Wiley R Sons, New
York, 1960).

TABLE II. Deviations from relation (11) in zinc blende
III—V crystals. '

2C44(cu+c12) eB@

(cll cls) (cll+3cls) e

InAs
InSb
GaAs
AlSb
Gasb

1.22
1.16
1.13
1.11
1.11

2.7
2.5
2.2
2.2
2.0

& Elasticity data from O. Madelung, Physics of III-V Compoumds
(John Wiley Bz Sons, Inc. , New York, 1964).

APPENDIX

For the purposes of lattice dynamics, a shell-model
description of a harmonic crystal is equivalent to a
rigid-ion description with wavelength-dependent force
"constants" and this wavelength dependence is negli-
gible for nondispersive acoustic waves. We shall illus-
trate this by considering a one-dimensional infinite
monatomic lattice supporting longitudinal waves. We
take the strain energy as

V=-,'k P (u —u t)'+-', kr P„(u„—v )'
+-,'ks P„(tt„—v„r)',

where n and v are the longitudinal displacements of
the core and shell, respectively, of the mth atom (see
Ref. 8). This form is not rotationally invariant because
only one dimension is considered. The equations of
motion for core and shell are

Mu =k(u~t+u„ t—2u„)—kt(u„—v ), (A1)

0=kt(u —v„)+ks(e„+t+e t—2e„). (A2)

We can write the particular solutions of these equations
as u~=Ae'&"' "~l and e~=Be'&"' "*"l& where 8/A is
real because there is no phase difference —the shells
follow the nuclear motion in full. From (A2),

kr(A —8)= 2ksB(1—cosKa)

8=ktA L2ks(1 —cosKa)+krf —'.
Thus, Eq. (A1) becomes

2krks(1 —cosKa)
Moos = 2k (1—cosKa)+ (A3)

2ks(1 cosKa)+kr

We see that the lattice behaves as a rigid-ion model
would if the interatomic force "constant" were

kik2
k+

kt, +2ks (1—cosKa)
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i.e., if it were wavelength-dependent. Thus the three
shell-model force constants are equivalent to one wave-
length-dependent rigid-ion model force "constant"; this
wavelength dependence is negligible for nondispersive
modes. Equation (A3) can be written, for small tt,

2 (k+ks)
Mto'= (k+ Jt )tc'a' — —k '/k hatt'+0 (s')

4f

The concept of elasticity is useful only for slowly vary-
ing deformations, i.e., when terms in ~'u' and higher are
small compared with the term in ~'u'. Thus the three
shell-model force constants are equivalent to one wave-
length-independent rigid-ion constant h'—= (k+ks) as
long as we are concerned only with elasticity data. The
modifications due to the use of the shell model appear
only at shorter wavelengths.
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An adiabatic theory of polarons is developed under conditions when the polarons are "nearly small, "
that is, when their binding energy is greater than or of the order of half the rigid-lattice bandwidth, but is
not so great that small-polaron theory is applicable. In such an adiabatic theory there are a set of minimum-
energy nuclear configurations, each of which has associated electronic wave-functions concentrated mainly
on one positive ion, but spreading slightly to its neighbors. At and near these configurations trial electronic
wave functions are taken in the form of linear combinations of single-ion functions for a particular ion and
its nearest neighbors, with coeKcients determined by minimizing the energy. Conditions for localized normal
modes to be associated with any minimum are examined. Properties of wave functions describing the nuclear
motion are studied within the framework of a generalized tight-binding approach. It is shown that, if localized
modes are not formed, then bandwidths will decrease with increasing temperature as in small-polaron theory,
but that when localized modes are present, then at nonzero temperatures, a discrete distribution ofband-
widths will occur, and the thermal average of these widths may increase with increasing temperature.
Optical absorption due to transitions between a wide valence band for which electron-phonon coupling is
neglected and an adiabatic nearly-small-polaron conduction band with localized modes is considered.
Results for absorption at absolute zero are similar to those obtained previously for a small-polaron
conduction band without localized modes, but the temperature dependence of the absorption obtained here
shows some new features. Parameters occurring in the theory are estimated using a continuum-polarization
model for electron-phonon interactions, and numerical values are found for a simplified model of a possible
conduction band in SrTi03. The calculations indicate that electronic states may exist from which both
adiabatic nearly small polarons and weak-coupling large polarons can be formed, and that the lowest energy
polaron state may suddenly change from one type to the other as electronic overlap integrals or electron-
phonon interactions are altered in magnitude.

I. INTRODUCTION

N excess electron in an ionic crystal produces a
polarization of the lattice around it by Coulomb

interaction with the surrounding ions. The complex of
electron plus its surrounding lattice polarization is
usually called a polaron, and the study of polarons is
thus equivalent to the study of electrons interacting
with a phonon 6eld. Different methods of approach to
the polaron problem are suitable according to the
strength of the electron-phonon coupling' '—for weak
coupling it is a fair approximation to assume that the

*The work described here, together with some previous work
on optical properties of small polarons (Ref. 1) has been used in a
thesis accepted for the examination for the Ph.D. degree in the
Faculty of Science at London University.

t Acknowledgment is due to the Engineer-in-Chief, Post Once,
for permission to publish this work.' H. Frohlich, Advan. Phys. 3, 325 (1954).' G. R. Allcock, Advan. Phys. 5, 412 (1956).

ionic displacements follow the motion of the electron,
while for strong coupling the opposite approximation
that the electron adjusts to the ionic motion adiabatic-
ally is generally more suitable.

If one looks at the polarization as a function of dis-
tance from the center of the polaron, which may be the
instantaneous position of the electron (for weak cou-
pling), or its averaged position over motion in its self-
induced potential well (for strong coupling), then at
large distances the polarization is just that which would
be induced by a fixed point charge at the polaron
center, while at short distances from the center the
polarization potential Battens off. ' The distance below
which this potential flattens off may be said to define
a polaron radius.

If the radius is appreciably greater than a lattice
constant, a fair description of the system of one elec-
tron plus optical phonons is given by a Hamiltonian


