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Earlier work by the author and Das is extended to apply to new experimental results. The extensions over
previous work include: detailed treatment of 56 neighboring ions as compared with the earlier 24, the use
of the shell model, and inclusion of the crystal beyond the 56 neighbors in a continuum approximation.
Comparison with experiment indicates that calculations of field gradients using a shell model are good only
to within a factor of about 2. Possible reasons for the discrepancy are discussed.

INTRODUCTION

RECENT experimental results of Slusher and Hahn,!

Andersson and Forslind,?? and Ohlsen and Melich*
in alkali-halide solid solutions have made it desirable
to extend and apply to additional mixed-crystals cal-
culations made earlier by Das and the author.5~" The
treatment of lattice deformations near monovalent sub-
stitutional impurities in alkali halides described in this
paper differs from that in DDI in the following
particulars:

1. The shell model® has been employed here.

2. The number of ions near to the impurity treated
individually has been extended from the 24 (0,0,1)-,
(1,0,1)-, and (0,0,2)-type ions to make a total of 56 ions
treated individually.

3. The rest of the crystal beyond these 56 ions has
been included in a continuum approximation in the
energy minimization which yields their displacements
and dipoles.

4. Van der Waals interactions have not been in-
cluded. This choice is based on the results of DDI and
DDII where it was found that field-gradient tensor
components were less sensitive to inclusion of van der
Waals forces than to uncertainties in other parameters,
notably electronic polarizabilities; that the use of Born-
Mayer repulsion parameters without van der Waals
interactions led to heats of solution in better corre-
spondence with experiment than the use of Huggins-
Mayer repulsion parameters with van der Waals in-
cluded ; and that van der Waals interactions are difficult
to include with any confidence of accuracy.

The additional ions of type (1,1,1) and (1,0,2) have been
introduced because we wish to compare the newly

* This work has been supported by the National Science
Foundation.
1R. E. Slusher and E. L. Hahn, Phys. Rev. Letters 12, 246
1964).
¢ 2L.) 0. Andersson and E. Forslind, J. Chem. Phys. 38, 2303
1963).
( 3 L.)O. Andersson and E. Forslind, Arkiv Fysik 28, 49 (1964).
4W. D. Ohlsen and M. Melich, Phys. Rev. 144, 240 (1966).
5 B. G. Dick and T. P. Das, Phys. Rev. 127, 1053 (1962), here-
after referred to as DDI.
6 T, P. Das and B. G. Dick, Phys. Rev. 127, 1063 (1962), here-
after referred to as DDII.
7B. G. Dick and T. P. Das, J. Appl. Phys. 33, 2815 (1962).
8B. G. Dick, in Lattice Dynamics, edited by R. F. Wallis
(Pergamon Press, Inc., London, 1965), p. 159.
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available experimental data on field gradients at sites
as distant as (1,0,2) from the impurity with our calcula-
tions and the original set of ions used in DDI is too
restricted in extent to expect it to yield very accurate
predicted field gradients at these more distant sites.

The results of this work point out the limitations of
commonly used ionic-crystal models for the purpose
of calculating effects as subtle as electric field gradients
near defects in ionic crystals. In view of the success of
these models in accounting for many properties of
perfect crystals such limitations in their application to
crystals with defects are, perhaps, somewhat un-
expected. In order to expose deficiencies of a model
rather than deficiencies of a calculational scheme it is
necessary to employ the model with as few additional
approximations as seem feasible. This paper gives an
account of such an effort.

In Sec. I the energy expressions to be minimized in
finding ion displacements and electronic dipoles are
given, and in Sec. II expressions for field-gradient
tensor components at various sites are written in terms
of these displacements and dipoles. The modifications
of the calculation which are necessary in order to
incorporate the shell model are derived in Sec. III. The
results of the calculations are presented in Sec. IV
and compared with experiment in Sec. V.

I. DISPLACEMENTS AND DIPOLES

Except for the modifications mentioned in the
Introduction, the calculation is the same as that
described in DDI to which the reader is referred for
further details. As will be shown below, introduction of
the shell model involves only a slight modification of the
calculation, and so we will ignore this feature for the
moment. Figure 1 shows one example of each of the ion

"types to be included explicitly along with the direction

of its displacement. The displacements of 4-, B-, C-,
D-, and E-type ions are assumed to be radial and are
given, in units of the perfect crystal nearest-neighbor
distance a by &;,1=4, - - -, E. In addition to the ion dis-
placements shown in Fig. 1, each of these ions is allowed
to polarize. The dipole vectors are chosen to be radially
directed and in units ea are denoted p;, =4, - - -, E.
To evaluate the displacement and dipole parameters
the change in crystal energy AE which arises from
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610 B. G.
introducing a single subsitutional impurity is minimized
with respect to these parameters. We may break up AE
into four parts:

AE=AE,+AEA+AE+AE,,

where AE, comes from nearest-neighbor repulsive inter-
actions, AE, is electrostatic energy, AE, is the self-
energy of the electronic dipoles, and AE, is a continuum
estimate of the elastic and electrostatic energy of that
part of the crystal outside the region of the 56 4, -- -, E
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ions. This region will be referred to as the “outer
crystal.” We assume that the Born-Mayer repulsive-
interaction constants between the impurity and its
nearest neighbors alone differ from the pure crystal, all
other interactions being the same function of ion
separation as before.

If the repulsive energy of an anion-cation pair in the
host is given by 4 exp(—7/p) and that of the impurity
ion with an 4 ion is B exp (—7/c), then to second order
in the displacement parameters

a? 2 2
AE,=6(Be¢"—Ae*?)4-6[ (a/p)AeP— (a/o)Be—“/”]£A+6l: (—2~—a>A e“‘/P—i-—a—zBe*“/”:'fA?

? 2a

20 p 20

a2

2a
+4 8‘“/"[6<—2"—> (2¢8*+£c)+12V2(a/p) Erts—6(a?/ p?) €A$C+8<—‘“ ~> 138

" p

o p

1 a 2a* a2 a
+8(v/6)(a/p)bnknt (20/5"p) kcks+ (}u—-——>sBsE4-(}-—-z—)gEﬁ]. R
(10)2\p  p? J

In application of Eq. (1) we will explicitly assume that the repulsive interaction between the impurity ion and
its nearest neighbors is the same function of ion separation as that deduced for the pure crystal composed of these

ions.

The electrostatic energy, further described in DDI, is
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are the total dipoles associated with the various ions.
Here ¢g=+1 for an anion and —1 for a cation impurity.
The dipole self-energies are given by
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where «; is the electronic polarizability of ion ¢ and we
have used the facts: eg=ag, ag=ap=a.

The continuum estimate AE; is handled exactly as in
DDI except that the electrostatic hexadecapole is taken
to be that due to all the 4, - - -, E ionic dipoles and the
forces giving rise to the elastic strain are chosen to be
those due to the C and E ions. The radius of the hole in
the continuum is taken as 3a. Then following the treat-

ment in DDI:
8 20 2
Ept+ EE]

AE.= KeI:EA+(2)]/2£B'—'8$C’—

(32 ()12
6 2
+K,,l: EE‘FEC:I
5y
with

¢? 1400 (1—e) (10&2—e+9)

Ko=— (6)
a 310 (Se+4)?

K, =8CuaAd?e2%7/2TxC 2p%. (7

In DDI this outer crystal part of the energy was
considered for the cases studied there but, being small,
was not minimized along with the other energy terms.
This procedure has been questioned by Fukai.® As will
be seen below, it makes little difference in the present
calculated field-gradient components whether these
terms are included or not.

II. FIELD GRADIENTS

Once the displacements and electronic dipoles at
lattice sites have been found by minimizing AE the

(0,0,1) site
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F16. 1. Labeling of axes and neighbors in the vicinity of an
impurity ion. The case shown is that of a cation impurity. The
shaded, open and filled circles are impurity, host anions, and
cations, respectively.

field-gradient components at various lattice sites due to
the total dipoles at other sites may be calculated. This
has been done as described in DDII (Sec. IT and
Appendix). Field-gradient components at (0,0,1) and
(1,0,1) sites are calculated including the contributions
of all 4-, B-, C-, D-, and E-type ions. All the nearest
neighbors of (0,0,1) and (1,0,1) sites are included among
these contributors. This is not true for (1,0,2), (1,1,1),
and (0,0,2) sites which have nearest neighbors which are
not among the 4- through E-type ions. In these cases
field-gradient components have been calculated by
including contributions from all A- through E-type ions
and, in addition, from dipoles at the missing nearest-
neighbor sites calculated from the continuum approxi-
mation as described in the Appendix of DDII. The
resulting expressions for the field-gradient components
(in units 3e/a?) are:

Epo=Eyy=—3E.,=0.5929M 4 —1.1666M 41.0124M ¢+0.3384M p+0.01041M 5, ®)

E,,=E,=E,,=0;
(1,0,1) site

E..=E;,=—3E,,=0.1213M 4+0.2171M 3+0.1787M ¢—1.1034M p+0.8948M 1,
E..=2.3212M 4+4-0.7401M p—0.4704M ¢+0.1164M p—0.9496 M 1, %)

Euy=E,,=0;
(1,0,2) site

Epp=—0.2792M 4+0.6492M 3—0.04319M ¢—0.008125M p+0.01408 M z—0.05417M" ,
E,,=0.1071M 4+0.4138M 5 —0.03897M ¢—0.4626 M p—0.2812M 5+0.8891M" ,

E,,=0.1721M 4—1.0630M 5+-0.08216M ¢+-0.4707M p+0.2672M r—0.03473 M,

(10)

E,,=—0.1372M 4+0.9455M p+4-1.0295M ¢+-0.2780M p+-0.2792M g—0.1200M" ,

E,,=E,=0;
(1,1,1) site
E,,=E,,=E,,=0,

E.y=E,.,=E,,=0.4254M 441.6003M 5+0.04019M ¢+0.1110M ,—0.3900M z—0.1326 " ;

9Y. Fukai, J. Phys. Soc. Japan 18, 1413 (1963).

(11)
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(0,0,2) site

Eyo=Eyy= —3E,,=0.8803M 4—0.6106M 3—0.03705M ¢—0.2247M p+0.5901M z-+0.1111M"

w (a)er"“/P< 6 +
=g~ —trt )
! o/ Cumra®\n/5 A

E,y=E,,=E,,=0.
Here,

and terms containing M’ arise from the dipoles esti-
mated in the continuum approximation. The axes are
those of Fig. 1; all of the field-gradient tensors are
symmetric.

III. SHELL MODEL

The calculations described in Sec. I yield the ion
center-of-mass displacements £;, and electronic dipoles
u; by using a simple Born-Mayer approach to the
crystal. The ion-repulsion contribution to AE, as it
appears in Eq. (1), is based on the assumption that the
distance to be used in calculating the repulsive potential
energy between ions is the separation of the centers of
mass of the ions. In the shell model® (in its simplest
form) the ions are separated into massive cores of
charge X and massless shells of charge ¥V with XV =27,
the ion charge. In addition, the core and shell are con-
nected by an isotropic restoring spring of spring con-
stant k to give the ion a finite polarizability V%% In
using this model the repulsion is taken to act between
shells instead of cores (centers of mass) in contrast with
the calculation of Sec. I.

Since the shell model has proved to be a significant
improvement over the simple Born-Mayer model when
applied to problems involving lattice polarization, it will
be useful to modify the calculation of Sec. I so as to
incorporate the features of the shell model. This turns
out to be very simple and to involve only an alteration
of the polarizabilities and a reinterpretation of the ;.

Consider a single deformed-shell-model ion displaced
from a lattice site (Fig. 2). The dipole moment of this
ion with respect to the lattice site is

M=Xd+Yd;=Z¢+p, (14)

where the second equality shows how we have pre-
viously written this dipole moment as the sum of an

y

Shell F1c. 2. Notation
for the specification
of a displaced and
electronically polar-
ized shell-model ion.
The core is con-
nected to the shell by
an isotropic spring
(not shown) tending
to bring core and
shell centers into co-
incidence.

Lattice

Site X Core
X X

B. G. DICK
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(12)

(13)

ionic (Z%) and electronic part (u). There is a certain
amount of arbitrariness in this partitioning depending
on how we choose to interpret £. Consider two cases:

£=dc,
EI':dSy

where we distinguish the cases by the prime on £ in
case 2. The cases differ in the origin chosen to calculate
the electronic dipole. In case 1, u is core centered; in
case 2 the electronic dipole, which we will call ¢’ in this
case, is shell centered. In both cases the total dipole is
the same:

case 1,

(15)

case 2,

M=Zitp=2E1+u'. (16)
Using (15) it is easy to see that
I~L=Y(ds_dc): (17)
MI=X(dc_d8) )
and hence that
W=[(¥—2)/Yu (18)

remembering that X+V=_2.

Now, using the case-2 choice of notation, we can
write AE for the shell model. In AE, Eq. (1) the dis-
placement parameters which should appear are the
shell-displacement parameters, that is to say £/, since
the repulsion is between the shells and not the cores.
We can write this altered form of Eq. (1) for con-
venience as

(19)

AE,=Ri&/+3 Rt E!
2,7

where the R; and R;; are given as the coefficients of
&, £,¢ in Eq. (1) and we have ignored the additive
constant term. It is to be emphasized that this alteration
of AE, is the feature which introduces the shell model
into our calculation. The electrostatic energy AE, de-
pends only on total dipoles and may be written

AE,= Z CiyM M ;= Z Cii(Zigi+ud)(Z;E/+ui). (20)

The electronic dipole self-energy AE, of Eq. (4) involves
the electronic polarizabilities a4, ap. These polariza-
bilities are determined theoretically or semiempirically
considering the nucleus of the ion to be fixed and so the
dipoles which must be used in AE, when employing
Eq. (4) must be core-centered dipoles. We can write
this as

AE,=3" i ni(ud/as), (21)
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where the #; are numerical factors such as those occur-
ring in Eq. (4) which have to do with the number of ions
of type 4, type B, etc. By using Eq. (18) we may
express AE, in terms of p;':

AE,=3 i ni(ui?/al), (22)
ol =a((Yi—2Z:)/Y:)?. (23)

If we now combine Egs. (19), (20), and (22) to get
an expression for AE, we find that, except for the oc-
currence of &/ in place of «;, AE is the same function of
&/, ui, as we had in Sec. I for &;, u;. In this way, we can
see that the shell model may be incorporated into the
calculation described in Sec. I very simply : Replace the
electronic polarizabilities a; by modified ion polariza-
bilities given by (23) and regard the &; and p; of the
calculation as &/ and u/, i.e., the positions of shell
centers rather than core centers and shell-centered
rather than core-centered dipoles.

An alternative, equivalent, and less convenient
scheme would be to write AE in terms of unprimed
variables. In Eq. (19) use the easily proved relation

&' =ttpi/Ys; (24)

in Eq. (20) one may merely remove the primes because
of Eq. (16); and these combined with Eq. (21) give
AE in terms of unprimed quantities. In this case,
minimization of AE would yield core positions £; and
core-centered electronic dipoles p;. The value of the M;
is the same in either case.

We are interested primarily in calculating measurable
field-gradient components. As can be seen in Eq. (8)
through (13), except for the terms in M’ the field
gradients depend only on the total dipoles M; and not
on £; or u; separately. As explained in DDII the con-
tinuum estimates of dipoles which are involved in the
M’ terms are related to elastic displacements of the
crystal beyond the E ions produced by the displacement
of the outermost ions (in this case taken to be E and
C ions). For this purpose it is clearly more physical to
use the shell center displacements £¢’ and £z’ in Eq. (13)
than to use core displacements £¢ and £g. It is therefore
preferable from the point of view of simplicity and
physical plausibility to introduce the shell model into
our calculation by simply modifying the polarizabilities
and interpreting the £/, u;/ appropriately rather than by
altering the variables in AE,. To carry out this program
we must have values of the shell-charge parameters V.

Equation (23) shows that a;/>a; and o’ <a_ since
the shell charges V; are negative and greater than unity
in magnitude. This bears out a conjecture made in
DDILI. It was observed in both DDI and DDII that the
Sternheimer polarizabilities employed in those calcula-
tions led, in general, to better agreement with experi-
ment than use of Tessman, Kahn, and Shockley (TKS)
polarizabilities. Sternheimer polarizabilities are greater
for negative and smaller for positive ions than the TKS
polarizabilities. In DDII it was conjectured that the
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effect of introducing the shell model would be to reduce
negative ion and increase positive ion polarizabilities as
compared with supposed free-ion values, and we see this
conjecture confirmed in Eq. (23).

In the sections which follow we will drop the primes
on & and p; understanding, always, that primes are
implicitly present whenever a shell-model calculation is
involved.

IV. RESULTS OF CALCULATIONS

In order to deduce &; and u; we need to solve the 10
simultaneous linear equations

6AE/6£1= 6AE/3,U,=0, i=A, MY E. (25)

The coefficients are determined in terms of the Born-
Mayer parameters 4, p, B, o, the equilibrium nearest-
neighbor distance of the host crystal @, the modified
polarizabilities e/, a_’, the elastic constants Cy; and Cyg,
and the static dielectric constant e of the host crystal.
The Born-Mayer constants and lattice parameters from
the ‘tabulation of Born and Huang,'° the elastic con-
stants of Spangenberg and Haussiihl,!! and the dielectric
constants of Hojendahl? have been used. The modified
polarizabilities are not so directly available and involve
a certain amount of arbitrariness. For the ion polariza-
bilities before modification one might choose either the
TKS® semiempirical polarizabilities or the theoretically
calculated free-ion polarizabilities of Sternheimer.' One
would guess that the TKS polarizabilities would be the
most appropriate choice to modify since they are
ostensibly polarizabilities in the crystal environment
unlike the Sternheimer polarizabilities. To modify the
chosen polarizabilities one must still make a choice for
the shell-charge parameters V.

Havinga'® has observed that shell charges smaller
than those originally proposed by Dick and Over-
hauser!® may be justified by physical arguments and
give better agreement of dielectric theory with experi-
ment. Inelastic neutron scattering experiments support
this.l” Benson' has recently pointed out that the
original Dick and Overhauser estimates of the shell
charges are a factor of 2 too large because of an error of
interpretation of the tabulated data of Cuthbertson and

10 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
.(Oxford University Press, London, 1954), p. 26.

U K. Spangenberg and S. Haussuhl Z. Krist. 109, 4 (1957).

12 K. Hojendahl, Kgl. Danske Videnskab. Selskab Mat. Fys.
Medd. 16, No. 2 (1938).

18 J. R. Tessman, A. K. Kahn, and W. Shockley, Phys. Rev. 92,
890 (1953).

‘417{ M. Sternheimer, Phys. Rev. 96, 951 (1954); 107, 1565
(1957). -

15 E, E. Havinga, Phys. Rev. 119, 1193 (1960).

16 B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 (1958).

17 A, D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W.
Cochran, Phys. Rev. 131 1025 (1963) ; R. A. Cowley, W. Cochran,
B. N. Brockhouse and A D. B. Woods, bid. 131, 1030 (1963).

18G. C. Benson’ (private communication).



614

TasLE 1. Polarizabilities and shell charges.®

B. G. DICK

’
a;
a; a; ;' Sternheimer-
TKS Sternheimer Y; TKS-shell  shell
Lit 0.03 0.0316 —1.12 0.107 0.113
Nat 0.41 0.145 —2.40 0.82 0.291
K* 1.33 1.26 —4.35 2.01 1.91
Rb* 1.98 2.73 —4.95 2.86 3.94
F- 0.652 3.20 —2.40 0.222 1.09
Cl- 2.97 5.65 —4.35 1.76 3.35
Br~ 4.17 —4.95 2.65
I~ 6.44 —5.65 2.62
(—2.76)

a Polarizabilities in units 102 cm3. The Y; shown are the corrected
Dick-Overhauser estimates. The —2.76 value for I~ is that deduced by
Woods, Cochran, and Brockhouse (Ref. 20). This experimental value has
been used in calculating the ai’ =[(¥; —Z;)/Yi]%; for I~

Cuthbertson.”® Correcting this error brings the Dick-
Overhauser estimates near to the Havinga estimates.
Lacking enough inelastic-neutron-scattering experi-
ments to give a complete set of V; these revised
estimates furnish the only such complete set, and we
have (except for I-) accordingly used them here. TKS
and Sternheimer polarizabilities along with their shell-
model modifications are shown in Table 1.2

Table II shows displacements and electronic dipoles
as calculated from Eq. (25). The results for four differ-
ent choices for polarizabilities are shown in Table II:
TKS, Sternheimer, and their shell-model modified
forms. Table IIT shows the principal field-gradient
components calculated using &;, u; from Table IT in
Egs. (3), (8)-(13). Also in Table III is information on
the orientation of the principal-axis systems. The con-
ventions of Cohen and Reif? are followed according to
which the principal axes #/, 3, and 2’ are chosen so that
2 lies along the direction of maximum and &’ lies along
the direction of minimum field gradient. 9’ is chosen to
make x’, 4/, 2’ a right-handed set of orthogonal axes.

The results of Tables IT and IIT show the sort of
variations to be expected from uncertainty in choice of
polarizability. Of these cases the TKS-shell case is the
one we expect to be best. Two other alterations of the
calculation are of interest. Fukai has suggested that (1)
electronic polarizabilities are not particularly important
in calculations of this kind, and (2) that the results are
quite sensitive to the manner in which the outer crystal
is worked into the calculation. To check these con-
jectures we have considered two special cases: (1) set
the electronic polarizabilities of the ions equal to zero
thereby completely suppressing the electronic dipole
contributions; (2) set e=1, Cyy= o, C4=0. As can be
seen from Egs. (6), (7), and (13), this latter choice

19 C, Cuthbertson and M. Cuthbertson, Proc. Roy. Soc.
(London) A84, 13 (1910).

2 A. B. D. Woods, W. Cochran, and B. N. Brockhouse, Phys.
Rev. 119, 980 (1960).

2 M. H. Cohen and F. Reif, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1957),
Yol. 5.
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excludes relaxation effects of the outer crystal from
playing any role. These results are shown in Tables IT
and III for NaCl-Br as “No Pol.” and ‘“No outer.” In
the “No outer” case the TKS-shell polarizabilities were
used.

From these latter calculations one sees that: (1) al-
though the larger ionic displacements are not greatly
affected by putting electronic polarizabilities equal to
zero, the field gradients are significantly affected; and
(2) the alterations in displacements, dipoles, and field
gradients produced by neglect of the outer crystal are a
good deal smaller than those involved in the variations
of electronic polarizabilities considered.

For (0,0,1) and (1,0,1) sites the influence of the outer
crystal is slight, but this influence is greater at (1,1,1),
(0,0,2), and (1,0,2) sites. This is as one would expect.

From these facts we conclude that the calculations
are indeed sensitive to the inclusion and choice of
polarizabilities and further that we have taken into
account the detailed motion of as many ions as seems to
be reasonable in consideration of the uncertainty of the
polarizabilities.

We also see that among the polarizabilities tried, the
Sternheimer free-ion polarizabilities give results which
differ quite markedly from the other cases. This
extreme case, in previous work (DDI, DDII), seemed
to give calculations in best accord with experiment. As
we shall see below, this feature no longer survives in
these more elaborate calculations.

There are several other points worth noting:

The orientation of the 2’ principal-field-gradient axis
at (1,0,1) sites is seen to be either (1,0,1) or (1,0, —1).
A slight change in parameters can push this axis to one
or the other of these orientations because E,, and
E,, turn out to be nearly equal in magnitude. Thus,
because of this sensitivity no particular significance can
be attached to the discrimination which the calculations
purport to give between these cases.

Another difficulty is to be seen in the NaCl-K, (0,0,1)
site, Sternheimer case where the calculated field-
gradient components are significantly smaller than for
other choices of polarizabilities. What has happened
here is that the terms in Eq. (8) for E;; are both positive
and negative and turn out nearly to cancel among them-
selves. Thus the resulting E;; are small differences be-
tween inaccurate larger numbers and such unusually
small field gradients are not to be regarded as being
reliably given by this calculation.

V. COMPARISON WITH EXPERIMENT
AND DISCUSSION

Electric-field gradients at lattice sites near substitu-
tional impurities have been measured by observing first-
and second-order shifted satellite lines in nuclear mag-
netic resonance or loss of central line signal by a number
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TasLE II. Displacements and electronic dipoles.»
£aX10?  gpX102  £eX102  £HX10*  EpX10 paX10®  ppX10?2  peX10? upX10*  upX10?

NaCl-Br

TKS shell 2.589 0.6869 0.5337 0.3401 0.0987 —0.0664 —0.3037 0.3513 0.0635 0.0169

Sternheimer shell 2.909 0.8300 0.2928 0.6643 —0.0804 0.0064 —0.7035 0.9444 0.0397 —0.0032

TKS 2.816 0.7954 0.3474 0.5785 —0.0309 —0.0023 —0.5954 0.7737 0.0496 —0.0010

Sternheimer 3.622 0.9136 0.3178 1.065  —0.1177 0.0263 —1.481 2.086 0.0297 —0.0106

No Pol. 2.328 0.6210 0.5637 0.0939 0.2222 0 0 0 0 0

No outer 2.716 0.8542 0.6573 0.2825 0.3442 —0.0517 —0.2747 0.3066 0.0618 0.00813
KBr-Na

TKS shell —4.577 —1.207 —1.48 —0.2816 —0.5642 —0.3119 —0.3135 0.3204 0.1541 0.0759

TIICS —4.557 —1.108 —1.704 —0.2039 —0.5575 —0.5784 —0.1903 0.1771 0.1873 0.1467
NaCl-K

TKS shell 4.924 1.517 1.347 0.3184 0.6679 0.3073 0.2192 —0.2225 —0.1831 —0.0647

Sternheimer shell 4.924 1.293 1.845 0.2080 0.6360 0.7912 0.0676 —0.0590 —0.2374 —0.1931

TKS 4.919 1.363 1.706 0.2346 0.6490 0.6544 0.0995 —0.0905 —0.2369 —0.1543

Sternheimer 5.064 0.6162 2.986 0.0946 0.4569 1.913 0.0210 —0.0107 —0.0600 —0.5622
KI-Rb

TKS shell 1.755 0.4579 0.5827 0.0906 0.2251 0.1070 0.0978 —0.0996 —0.0438 —0.0273

TKS 1.783 0.3180 0.7478 0.0610 0.2046 0.3180 0.0561 —0.0485 —0.0721 —0.0841
KBr-Cl

TKS shell —2.203 —0.5906 —0.6615 —0.1663 —0.2599 0.0970 0.2062 —0.2216 —0.0649 —0.0226

TKS —2.332 —0.6169 —0.6128 —0.2518 —0.2276 0.0413 0.3623 —0.4232 —0.0579 —0.0073

= Displacements and electronic dipoles calculated from Eq. (25). For the shell cases one is to understand the entries in the table as primed quantities:
jon-shell displacements £;’, and shell-centered dipoles ui’. For the other cases the entries are core displacements §; and core-centered dipoles gi. ,

TasiE III. Calculated principal field-gradient components and principal axes.2

(0,0,1) (1,0,1) (1,1,1)
Shell Shell Shell
Stern- Stern- Stern- Stern- Stern- Stern-
TKS heimer TKS heimer TKS heimer TKS heimer TKS heimer TKS heimer
NaCl-Br —5.088 —9.200 —3.367 —5.708 —3.887 (a) —4.654(a) —3.510(a) —4.009(a) —1.228 —2.634 —0.7528 ~—1.400
2.544 4.600 1.684 2.854 3.103 3.252 3.143 3.085 0.614 1.312 0.3764  0.700
2.544 4.600 1.684 2.854 0.784 1.402 0.367 0.924 0.614 1.312 0.3764  0.700
No Pol. No outer No Pol. No outer No Pol. No outer
—2.026 —3.442 3.330(b) —3.408(a) —0.2496 —1.016
1.013 1.721 —3.146 3.345 0.1248 0.508
1.013 1.721 —0.184 0.060 0.1248 0.508
KBr-Na —1.990 —2.644 3.428(b) 3.566(b) —0.7212 —0.8630
0.995 1.322 —3.326 —3.508 0.3606 0.4315
0.995 1.322 —0.102 —0.057 0.3606 0.4315
NaCl-K 3.578 —0.4362 4.914 3.089 —5.804(b) —5.008(b) —6.083(b) —5.707(b) 1.450 0.656 1.726 1.349
—1.789 0.2181  —2.457 —1.544 5.663 4.421 974 5.530 —0.725 —0.328 —0.863 —0.674
—1.789 0.2181  —2.457 —1.544 0.141 0.587 0.109 0.177 —0.725 —0.328 —0.863 —0.674
KI-Rb 0.4724 0.7786 —1.054(b) —1.114(b) 0.190 0.244
—0.2362 —0.3893 1.012 1.100 —0.095 —0.122
—0.2362 —0.3893 0.04. 0.046 —0.095 —0.122
KBr-Cl 1.950 1.464 1.855(a) —1.721(b) 0.597 0.462
—0.975 —0.732 1.774 1.720 —0.298 —0.231
—0.975 —0.732 —0.081 0.001 —0.298 —0.231
(0,0,2) (1,0,2)
€] Shell
TKS Sternheimer TKS Sternheimer TKS Sternheimer TKS Sternheimer
NaCl-Br —4.096 —5.542 —3.700 —4.236 1.661(0.252, 0.968) 2.502(0.103, 0.995) 1.429(0.360, 0.933) 1.757(0.216, 0.976)
2.048 2.7711 1.850 2.118 —1.300 —1.765 —1.229 —-1.339
2.048 2.771 1.850 2.118 —0.361 —0.737 —0.200 —0.418
No Pol. No outer No Pol. No outer
—3.4072 —4.110 1.194(0.453, 0.891) 1.635(0.372, 0.928)
1.7036 2.055 —1.174 —1.359
1.7036 2.055 —0.020 —0.276
KBr-Na —3.922 —4.176 1.616(0.476, 0.879) 1.657(0.442, 0.897)
1.961 2.088 —1.501 —1.507
1.961 2.088 0.115 —0.150
NaCl-K 6.854 5.322 7.358 6.668 —2.848(0.472, —0.882) 2.770(—0.805, 0.593)  —2.904(0.430, 0.903) —2.826(0.487, 0.873)
—3.427 —2.661 —3.679 —3.334 2.622 —2.736 2.611 2.629
—3.427 —2.661 —3.679 —3.334 0.226 —0.004 0.293 0.197
KI-Rb 1.180 1.310 —0.5029(0.453, 0.892) —0.5127(0.453, 0.892)
—0.590 —0.655 0.4761 0.4750
—0.590 —0.655 0.0268 0.0377
KBr-Cl1 2.228 2.056 —0.8645(0.367, 0.930) —0.8047(0.367, 0.908)
—1.114 —1.028 0.7409 0.7193
—1.114 —1.028 0.1236 0.0854

a Principal field gradients in units of 1012 esu. The gradients are listed in the order E:rs», Eyryr, Ezr2+ as calculated for four different choices of ion polariza-
bilities. For the sites (0,0,1) and (0,02) the principal axes are parallel to the crystal axes with the z axis as labeled in Fig. 1 being the 3’ axis. For the site
(1,1,1) the g’ axis in the (1,1,1) direction the other two axes being any orthogonal pair of vectors in the plane normal to this 3’ axis. At the (1,0,1) site the
principal axes’ direction numbers are either z’: (1,0, —1), ¥’: (1,0,1), x’: (0,1,0) which we call ‘‘case (a)” or z’:(1,0,1), »’: (1, 0, —1), 2’:(0,1,0) which we
call “‘case (b).” The superscript on Eass for the (1,0,1) sites indicates whether the principal-axis system is that for case (a) or (b). At the (1,0,2) site the

principal axes’ z’, ¥', x’

Missing entries are absent because of the lack of Sternheimer polarizabilities for Br~and I~

direction cosines are in the form (—X\, 0, ), (—u, 0, =), (0,1,0). The two numbers in parentheses following E:s.r are X\ and u.
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TasLE IV. Quadrupole moments and antishielding factors used in
reducing the experimental data to field-gradient components.

Nucleus Q2 (I—yx)® vL®
Na2 0.1 5.53 11.262
K 0.07 13.8 1.987
CBs —0.079 50.3 4.172
CI —0.0621 50.3 3.472
Br® 0.34 100 10.667
Brdt 0.28 100 11.498
127 —0.75 180 8.519

s Electrical quadrupole moment in units 1072 cm? From the Varian
Associates NMR Table, fifth edition.

b Quadrupole antishielding factors from T. P. Das and R. Bersohn,
Plhgsésé)Rev. 102, 733 (1956); E. G. Wikner and T. P. Das, #bid. 109, 360
( .

¢ Magnetic resonance frequency in Mc/sec in 10 000 G. From G. E. Pake,
in Solid State Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc., New York, 1956), Vol. 2.

of workers.2~49.2.% Slusher and Hahn! have observed
the pure electrical quadrupole resonance itself in NaCl
mixed crystals. When single crystals are used and
variations of observations with rotation of the crystal
with respect to external fields are employed, it is
possible to identify the principal axes of the field-
gradient tensor giving rise to the quadrupole effects and
hence to establish the symmetry of the lattice site at
which the field gradients being measured occur.

The relationship of first- and second-order splittings
of nuclear magnetic resonance lines and pure quadrupole
resonance frequencies with electric-field-gradient com-
ponents at the ions showing these effects has been
outlined in DDII. Nuclear and ionic data required to
convert the experimental observations to field gradients
are given in Table IV. Table V tabulates this converted
experimental data and the corresponding calculated
results.

It appears from Table V that the semiclassical theory
which we have used gives principal field gradients to
within a factor of about 2. For sites near the impurity,
(0,0,1) and (1,0,1), the calculated values of ¢(=E,)
are too small while at the more distant (0,0,2) and
(1,0,2) sites the calculated values are too high. When
one considers the small magnitudes of the distortions
involved (they are of the same order of magnitude as
the amplitude of thermal motions) the performance of
the shell model in this connection is perhaps not too
disappointing. On the other hand, one might hope for
better results in view of the fact that the shell model,
even in a simple form, predicts phonon dispersion
curves with considerable success. It also appears that
asymmetry parameters and direction cosines of principal
axes (when these are not entirely determined by
symmetry) are not reliably given by the theory.

For all sites except (1,0,2) the TKS-shell calculation
of g comes nearer to the experimental value than any of

‘”H. :Kawamura, E. Otsuka, and K. Ishiwatari, J. Phys. Soc.
Japan 11, 1064 (1956).

2 175 Otsuka and H. Kawamura, J. Phys. Soc. Japan 12, 1071
(1957).
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the others. For the (1,0,2) site the predicted ¢’s using un-
modified TKS polarizabilities are insignificantly better
than shell-TKS versions. The apparent superiority of
Sternheimer polarizabilities noted in DDII does not
survive in the present more elaborate calculation.
Slusher? reports that the resonance designated as B
by Slusher and Hahn (see Table V) arises from Na2
nuclei at sites with 101 symmetry. This fact alters the
original identification of the resonance as arising from
the Na® at (0,0,1) in these crystals. Since this B reso-
nance occurred in NaCl-Br crystals, Slusher suggests
the possibility of unknown cation impurities. In hopes
of clarifying this situation field gradients at (1,0,1) sites
in NaCl-Li and NaCl-Rb have been calculated. The
unknown cation cannot be K+ since the (1,0,1) site
resonance for NaCl-K has been observed (Slusher and
Hahn’s resonance F) and is distinct from resonance B.
The results of these calculations are that the calculated
values of ¢(14+39%)Y2 at a (1,0,1) site in NaCl-Li,
NaCl-K, NaCl-Rb are 0.0512)10%, 0.0646X10%,
0.0905X 10* esu, respectively. These are to be compared
with 0.178X10* esu for NaCl-K and 0.0956X 10" esu
for the suggested unknown cation impurity. If we take
the NaCl-K case as an indication that the calculated
value of ¢(1437%)'? should be multiplied by a factor
of 2 or 3 to get an estimate of this quantity at a (1,0,1)

L7suon
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F16. 3. Variation in calculated principal field gradients which
result from variations of anion and cation electronic polarizabilities
in a NaCl-K mixed crystal, The dashed lines are for o, =0.9; the
solid lines are for e, =0.1. The cross hatched areas show the regions
in which intermediate values of ;. place the values g. The sites
at which the ¢ values are being calculated are shown at the left in
parentheses. The experimental values of ¢ are shown as crosses to
the right. Field gradients are in units of 10" esu and polarizabilities
are in units of 1072 cm?.

% R, Slusher and E. L. Hahn (to be published).
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TasrLe V. Comparison of calculations with experiment.
. Observed Calculated P
Nucleus _ _—
Crystal Sitea observed g(1+3p)1n g (143?12
NaCl-Br ( 101 Na® 0.0956° (B)
unknown cation
impurity?)

002 CBs, CI37 0.0226¢ (C,E) 0.0424
NaCl-K 001 Cl3s, C37 0.0824¢ (G,H) 0.0491

102 CBs, CI#7 0.0193¢ (D, 220 kc/sec) 0.0314

101 Na 0.179¢ (F) 0.0646

002 Na2 o 0.0736

112 Na2 0.0788 (4) oo

‘ Direction cosines Direction cosines
of principal 2’ of principal 2’
q 7 axis q 7 axis
KBr-Na 102 Br#! 0.00744 0.40d 0.73, 0, 0.684 0.0167  0.821 —0.442, 0, 0.897
0.0075 0.47+0.05¢  0.707+0.06, 0,
+0.0004° 0.707+0.06°
KBr-Cl 101 Br#! 0.0099 3 0.9 +£0.1¢  0.707, 0, —0.707¢ 0.0172  0.999 0.707, 0, 0.707
=+0.0003¢

KI-Rb 102 127 0.00234 0.6340.03¢  0.752-+0.003, 0, 0.00513 0.854 —0.453, 0, 0.892

0.6594-0.0034

a Sites shown have been identified by rotation measurements. For the NaCl impurities: Slusher; for KBr: Ohlsen and Melich, Forslind and Andersson;
for KI-Rb: Forslind and Andersson. The field gradients ¢ are given in units of 101 esu.

b The calculated values given are for the TKS-shell case,

¢ Slusher and Hahn (Ref. 1). The letters indicate the Slusher and Hahn designation of the resonance line. The identification of these resonances has been

revised from that of Ref. 1 by Slusher (private communication).
d Forslind and Andersson (Refs. 2, 3).
e Ohlsen and Melich (Ref. 4).

site, one is led to suspect such an unknown cation
impurity might be Lit+.

One might try to alter some of the more doubtful
parameters such as B or e/, ' 50 as to gain agreement
with experiment in a case, such as NaCl-K, where field
gradients at a number of sites have been measured. This
has been tried, but such agreement does not appear to
be possible within any reasonable range of these param-
eters. The effects on principal field gradients ¢ from
variation of ey and a_ are shown in Fig. 3.

It is interesting to speculate on the source of the dis-
crepancy between this calculation and experiment. One
might well expect the shell model to do better. In the
calculation of phonon dispersion curves the shell model,
even in its simplest form, is a significant improvement
over the Born-Mayer model.'”-20 In accomplishing this
the shell model is required to give an accurate picture
of the electronic dipole polarization. Since we have cal-
culated field gradients from calculated ionic and
electronic dipoles and we have reason to expect these
contributions to be reasonably accurate, it might be that
the discrepancies lie in contributions to field gradients at
nuclei other than those of these dipoles. In particular,
when the nearest neighbors of an ion are not in positions
of cubic symmetry with respect to this ion, the distor-
tions of its electronic cloud involved in its overlap with
its neighbors will lead to an electron distribution which
will in general have a nonzero field-gradient tensor at
the nucleus.

Rough estimates of this effect using the exchange-
charge model® indicate that these additional contribu-
tions might be of an order of magnitude appropriate to
explain the discrepancies. The exchange-charge model
is too crude, however, to use in this connection beyond
the estimation of orders of magnitude.

The relatively poor agreement between measured
and calculated field gradients might be interpreted as
casting doubt on the possible success of Mott-Littleton?
type calculations of formation energies of point defects.
It is possible, however, that field gradients are sensitive
to features of the deformation (e.g., overlap distortions
of the type just discussed) which play little role in
determining displacements and energies.
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