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A discussion is given in the reference cited showing that
in the almost-free-electron case, the APW method leads
to energies, and wave functions outside the spheres,
almost exactly characteristic of free electrons. Graphs
are also given showing that for an alkali metal like
sodium, the quantities like F„;; of Eq. (7), or the
summation over / in Eq. (14), can. be very small over
considerable ranges of energies, leading to the free-
electron behavior of the energy bands in such a case,
whereas for such an element as copper, this situation
does not hold at all. Of course, the wave functions
inside the spheres are entirely different from plane
waves. In the reference cited, the similarity of this
problem to the Ramsauer eRect in the scattering of
electrons by atoms is stressed, in which in certain cases

a single plane wave outside an atomic sphere matches
almost perfectly to the solution inside, without the
requirement of scattered waves. This is the same case in
which a single plane wave outside the spheres, or a
single augmented plane wave, forms very nearly an
exact solution of the energy-band problem.

I am much obliged to Professor Ziman for correspond-
ence and conversation relating to this problem, and to
my colleague Dr. Keith Johnson for valuable discus-
sions. Dr. Johnson is investigating further the relation
between the APW and Green's-function methods. '

Note added &r, proof Since s. ending in this paper, Professor Ziman
has pointed out to the author the very recent paper by P. Lloyd,
Proc. Phys. Soc. (London) 86, 825 (1965), who arrives at conclu-
sions similar to those of the present paper.
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Starting from Frolich s Hamiltonian for conduction-electron —optical-phonon interactions, an approxi-
mate Green's function G(p, t) is derived. The spectral density derived from this Green's function is shown
to possess an exponential tail at low energies, E/&yo«0. This demonstrates that Urbach's rule can be derived
from Frolich's Hamiltonian. The approximate Green's function G(p, t) is shown to be related to the inter-
mediate-coupling models for polarons.

I. INTRODUCTION
' 'HE low-energy tail of the direct absorption edge

of polar materials decreases exponentially in
energy. This phenomenon, known as Urbach's' rule,
has been observed in many materials. '

The major result of this calculation is showing that
Urbach's rule can be theoretically derived from Froh-
lich's Eamiltonian'

~=e„+a&sp a ta +p ig(q)(a ec&'r —a te s&')

Q(q)'= 4xn&ussl" q'(2sss)'",

e~ =p'/2m,

for electrons in a parabolic conduction band having a
linear interaction with optical phonons in a polar
crystal. Starting from this Harniltonian, the spectral
function' A(p, E) is evaluated using a modification of
second-order perturbation theory. This spectral density
has an exponential tail for E/ho~, (0. The exponential
tail in the spectral density leads to an Urbach's rule in

' F. Urbach, Phys. Rev. 92, 1324 (1953).
R. S. Knox, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1963), Suppl. 5.' H.; Frohlich, Advan. Phys. 3, 325 (1954).
4A, A. Abrikosov, L. P. Gorkov, and I. K. Dzyaloshinski,

Methods of Qgosstscm Field Theory srs Stutistica/ Physics (Prentice-
Hall Inc. , Englewood Cliffs, New Jersey, 1963).

optical absorption. This represents the first derivation
of an exponential tail caused by a linear interaction
between conduction-band electrons and optical phonons.

Previous theoretical discussions' ' "of Urbach's rule
were either based upon impurity eRects or conventional
perturbation theory. Toyozawa's' model of quadratic
coupling between localized exciton and optical phonons,
which is similar to an impurity model in form, has re-
ceived much attention. ' ' The semiclassical derivation
of quadratic exciton-phonon interactions, which neg-
lects the exciton recoil, predicts an exponential tail.
However, Keil" has recently shown that a quantum-
mechanical derivation of quadratic coupling does not
generally predict an Urbach's rule, and the usefulness
of Toyozawa's model is now in doubt. Some other
impurity models" " are based on the low-energy band

s Y. Toyozawa, Progr. Theoret. Phys. (Kyoto) 22, 455 (1959);
Technical Report of the Institute for Solid State Physics, Ser. A,
No. 119, 1964 (unpublished).

s W. P. Dumke, Phys. Rev. 108, 1419 (195'/).
D. G. Thomas, J. J. Hop6eld, and M. Power, Phys. Rev. 119,

570 (1960).
8 R. E. Dietz, J. J. Hop6eld, and D. G. Thomas, J. Appl. Phys.

325, 2282 (1961).' B. Segall (to be published).
~0 H. Mahr, Phys. Rev. 132, 1880 (1963}."D.Redfield, Phys. Rev. 130, 916 (1963).
's B. I. Halperin, Phys. Rev. 139, A104 (1965)."T.H. Keil, Phys. Rev. 140, A601 (1965).
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tail caused by the electric Gelds of impurities. Also,
recent calculations" on acoustical phonon broadening
of impurity levels show that a low-energy exponential
tail is always predicted. Impurity states can have a
low-energy exponential tail for a variety of reasons.

In contrast to these extrinsic explanations of Urbach's
rule, there remains the view that it is an intrinsic
effect. ' ' Experiments~' "on the low-energy absorption
edge of exciton states in type II—IV semiconductors
show structure which is clearly identi6able as caused by
optical-phonon-induced absorption. Thomas et ut. ~ and
Dietz et ul. showed that the edge in CdS and ZnO
could be explained by considering the exciton —optical-
phonon polar interactions. Recent calculations by
Segall' on Marple's" CdTe absorption edge data include
processes involving the absorption of two optical pho-
nons. The excellent agreement between theory and
experiment in these areas verifies that the correct
explanation for the absorption edge has been found.
However, a generalized Urbach's rule cannot be derived
by this conventional perturbation theory approach
because of the calculational difhculties of including
processes involving many phonons.

By starting with Frohlich s Hamiltonian, the present
derivation calculates an intrinsic property. Processes
involving many phonons are included by doing per-
turbation theory in an unconventional way. The physi-
cal basis for the approximate Green's function used in
the derivation is discussed in Sec. II. It is related to the
intermediate coupling polaron models. ""Section III
discusses some of the ordinary properties of this Green's
function, while the exponential low-energy tail of the
spectral density A(p, E) is derived in Sec. IV. The
relation between A(p, E) and the optical absorption is
discussed in Sec. V.

IL DERIVATIONS OP G(P, t)

The physical property of interest is the spectral
density A (p,E) of an electron in a parabolic conduction
band. This is obtained from the electron Green's
function4

G(p, t) = —iP'C, (t)C„t(0)). (2.1)

After Fourier-transforming this function to find G(p, E)
the spectral density is defined by

t)(t)=1 t&0
=0 t(0,

(2.4)

Eo is the resonant energy, Zo is the polaron shift, and

Is(t) =P,{Num (q) (1—e '"")
+Num+(q) (1—e'"")) . (2.5)

The two functions Num+(q) are the numbers of pho-
nons" of frequency ~coo surrounding the impurity levels

(q) =Q(q)'9'+1)/ o',

Num+ (q) =Q (q)'lV/a&(P,
(2.6)

where E is the thermal occupation number of the
phonons. The time-dependent parts of (2.5) are those
for a phonon c1.oud, assuming no excitation at 5=0.

An approximate Green's function for an electron of
momentum p in a conduction band can be deduced by
the same arguments. Now the number of phonons is

Num —
(q) =Q(q)'(1V+1)/(0-)'

Num+(q) =Q(q)'S/(()+)',
0&= 6y 6P q~MO 7

and the time development is

(1 ein+t)

This leads to the Green's function

(2.7)

A necessary condition for deriving Urbach's rule is
that G(p, t) must accurately describe the electron's
coupling to many phonons, at least in the limit u&(1.
In this section, a simple Greens function is derived
which does predict an exponential edge in A(p, E) for
E/~ s&&1, where E is measured relative to the conduc-
tion-band minimum. Since all of the approximations of
the result are contained in the starting formula for
G(p, t), several different derivations of the same G(p, t)
are presented, each of which adds some insight into the
validity of the approximate form.

The most intuitive derivation is by analogy with the
Green's function for a localized, nondegenerate, im-
purity state. The exact Green's function for this model
impurity state is""

G(t) = i8(t—) exp{—i (Ee+Zs) t—Io(t) ),
where

A (p,E) = —2 ImG(p, E) . G(p, t) = ie(t) exp{—i—(e„+Z„)—I(p, t))

t (E)= A (p,E) .
(2s)'

(2.3)

"C. B. Duke and G. D. Mahan, Phys. Rev. 139, A1965 (1965)."D.T. F. Marple (to be published)."S.Tomonoga, Progr. Theoret. Phys. (Kyoto) 2, 6 (1947).
'7 M. Gurari, Phil. Mag. 44, 329 (1953).
's T. D. Lee, F.E.Low, and D. Pines, Phys. Rev. 90, 297 (1953).
n W. Van Haeringen, Phys. Rev. 137, A1902 (1965).

The spectral density describes the properties of the
electron, including its density of states

X+1 1V

I(p, t) =2 Q(q)' (1—e'" ')+ (1—e*""),
(~-)' (1),'+)'

Z =Z,Q(q)'{ (X+1)/0—+E/0+) .

This will be used in deriving Urbach's rule.

(2.8)

"K.Hnang and A. Rhys, Proc. Roy. Soc. (London) A204, 406
(1950); M. Lax, J. Chem. Phys. 20, 1752 (1952).

"For a discussion of the number of phonons in a polaron cloud
see C. Kittel, Quantum Theory of Solids (John Qliley 8z Sons,
Inc. , New York, 1963), p. 134 G.
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The Green's function (2.8) can also be derived by an
unusual truncation of the equations of motion for
G(p, t). This equation is"

(i8/Bt —p'/2') G (p, t—t') = 8 (t—t')

—i & Q(C)' d» I:&"'(V, &s
—&)+&"'(V, &

—
&s)3

&&(2'C,-, (~) Z C, —,+(& )C, (& )C.+(&')). (2.9)

The S(') are the phonon Green's functions. Since we
are ~ust considering one electron in the conduction
band, the time ordering on the four-fermion product
may be dropped, with the requirement that t&/2) t'.

The usual way of evaluating this equation is to
Fourier-transform it. The resulting equation for G(p, E)
is solved by expressing the last term as a product of the
self-energy Z(p, E) and G(p,E).The procedure to obtain
G(P, f) in (2.8) is quite different. The last term will be
factored into a G(p, t) and a coeKcient. This factoring
is achieved by inserting

1—=Q C "+(t)C„"(t)

into the four-fermion expression between C„(ts) and
C„t(k'). This last term can be then approximated by

iG(p, t—t') exp/(t —4) (»„—e, s)j. (2.10)

The total last term in (2.9) becomes

g
G(p g ]~) g y g(~)2 srQ (t t')—

Q

E
sio+{t—vi (2 1 1)

0+

Van Haeringen' recently described an exactly solv-
able, zero-temperature, polaron model which included
some recoil effects. This model, which was related to
the intermediate-coupling schemes, neglected correla-
tions between the momenta of the phonons in the
polaron cloud. When T~ 0 (X—+0) the approximate
Green's function (2.8) appears equivalent to Van
Haeringen's model. Both models are based on the same
principle of neglecting correlation in the phonon mo-
menta, and they have the same self-energies. Thus
(2.8) also seems to be the finite-temperature Green's
function for Van Haeringen's model.

Correlations between phonon momenta in the po-
laron cloud should not be important for e„«&coo.
This is the basis of most intermediate-coupling polaron
schemes. """The Green's function (2.8) should ac-
curately describe the electrons properties for &~&&@so, it
is shown in Sec. IV that it does give an Urbachian edge
to A(p, E). But correlations in the phonon momenta
are important for t.„&Acro, and intermediate-coupling
schemes are not valid in this region. The present
method cannot be applied to finding 2 (p,E) for e~) Acus.

Attempts at evaluating 3 (p,E) in this region encounter
difhculties which are discussed in Sec. IV. This also
means that the density-of-states integral (2.3) cannot
be done at the present time.

IIL EVALUATION OF G(P,E)

Some of the properties of the Green's function (2.8)
are discussed in this section. The self-energy and re-
normalization function are given, which is a necessary
preliminary to deriving the low-energy tail in the next
section. Only the leading terms are presented, and the
actual asymptotic forms are given in Appendix A.

The first step is to find the I"ourier transform

This gives a linear differential equation in (2.9) for

G(P, t—f) which is easily solved. The solution is just
(2.8).

The truncation of the time equations is an unusual
approach which deserves comment. As will become
clear, the G(p, E) obtained from (2.8) describes the
electron propagation for E 0 in a similar way as does
the Green's function obtained through truncation of the
energy equations. However, the present G(p, E) de-
scribes processes involving many phonons, and there-
fore gives a reasonable A(p, E) over a large range of
energy. Thus the truncation of the time equations seems
more useful than the usual truncation of the energy
equation. The difficulty is that the analytical deriva-
tion of G(p,E) from G(p, t) is diflicult, although it is
possible when EA/ro(e(OIt is also possible to truncate
the equations for G(p, f) at a higher order, although this
has not been investigated.

R. Pu8 and G. D. %hitheld, in I'olaroes and Excitons, edited
by C. G. Kuper and G. D. Whitaeld (Plenuro Press, ' Inc., 5'ew
pork, 1963), p. 177.

G{p,E)= d$ e'~'G(p t) . {3.1a)

It is convenient to use dimensionless units, where-

energy is measured relative to Acro, and 5=k)0. Then
(3.1) becomes

G(p, E) = i dS exp( iS(E e—~)——J(p,S—)), (3.1b)
0

where
Q I

J(pS) =iSZ,+ dZ —dy,
27(

1V+1
1 t,'s~ )+ (1—e;s~+) {32

GD+

Coy=Op/coo= —Z &1+s~p .
"The intermediate-coupling results are based on variational

calculations. The Green's function (2.8) can be made to appear
closer to these methods by using Q~= —e,&%cue —qP/m(1 —p),
~here g is the Lee, Low, and Pipes (g.ef. 18) variational parametet. ,
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The central peak of the spectral density is governed by
the behavior of J(p,s) as S~~. Except at e„=O and
&~=1, these limits are

IO

J(p,s) ~ i SZ„+6~+0(e' s/S), (3.3)
1.0

where the self-energy Z„and renormalization function
A„are

e,&1: Z„=—(n/Qe„) L(1V+1) sin 'Qe„

+ilV sinh —'Qe~],

IO
I—

UJ

iV+1 1V
6„=20, ——Z

(I —e„)r/s (1/e )&/s

.»: Z.=-(/4. )LPV+1)!
(3.4)

+i(A"+1) cosh 'ge~+iX sinh —'ge„],
(1V+1) JV

-(en-1)'" (1+en)'"-

At e„=1, the asymptotic form is

J(e,=1,S) —+ isZ(e~=1) ic/JV/2V2—
$-+co

Cs(x) —iss(x) =
e (2s.f)Us

(3 6)

For p=0

J(O,S)=frr/(i~)tI']((X+1)L —iS'I'e '

+ (2S+i) (-', s-) 'I'(C, (s)—iss (S))]
yXLiS I s' y(2S—i)(-';~) '

x (c,(s)+is, (s))]}. (3.7)

For e„«1, the main peak of the spectral density is an
asymmetric Lorentzian

+2a(1V+1)(is)"'/Qs. +0(s '/') . (3.5)

For e„=O, the integral (3.2) can be done analytically
in terms of the Fresnel integrals"

IO

I

-3
I

-2
I I

-I 0
E/"4gO

FIG. 1. The spectral density A (O,E) for a p =0 conduction
electron interacting with optical phonons: a =1 and kT =0.5' 0.
The solid line is a numerical calculation using (2.2), (3.1b),
and (3.7). The dashed line is the asymptotic result using (4.8)
and (4.10).The low-energy exponential tail is quite evident.

IO

result (3.'7) allows the spectral density A(O,E) to be
investigated in more detail. Figures 1 and 2 show the
results of numerical calculations of A (O,E) using (3.7)
in (3.1b). The central asymmetric Lorentzian peak at
E=ReZe —— n(1V+—1) is quite evident, and there are
also peaks at Zs+1 and Zs+2. The Green's function
(2.8) clearly describes processes involving many pho-
nons. The low-energy (E«0) tail is exponential. The

exp (—h~)
A (p,E)=—2 Im — —;(E=e„+Z~). (3.8)8—g —Z

The asymmetry is caused by the imaginary parts of the
renormalization function. Similar asymmetries are
found in spectral densities of phonon broadened im-
purity states. '4 As e„—+ 1, the main peak ceases to be
Lorentzian, as is evident from the (iS)'I' term in (3.5).
Of course, for e„)1 the Green's function does not
accurately describe the many-phonon processes.

The fact that the p=0 cases possesses an analytical

'4 Handbook of 3fethematicul Fgnctions, edited by M. Abramo-
witz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, Washington, D. C., 1964), AppL Math.
Ser. 55.

Fre. 2. The spec-
tral density A(O, E)
for a p=0 conduc-
tion electron inter-
acting with optical
phonons: a =0.33„'and
kT =0.5Aco0. The solid
line is a numerical cal-
culation using (2.2),
(3.1b), and (3.7).
The dashed line is
the asymptotic re-
sult using (4.8) and
(4.10).
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-iSo—

(al

FIG. 3. The contour of inte-
gration for deriving Urbach's
rule when E/~0&0 Th. e con-
tour descends the imaginary
axis to —iSp (SD is real and
positive) which is the saddle
point. The integrand is con-
stantly decreasing from 0 to—iSp, as shown schematically
in Fig. 1(a). The contour then
changes direction and drops
down the saddle along the line
of steepest descent, —iSp to
X—iSp. The integral from 0 to—iSp contributes just to the
real part of 6(p,E}, while the
contour —iSp to X—iSp gives
the imaginary part of G(p,E)
and the spectral density.

(bj

dotted line is the asymptotic form of A (O,E) whose
derivation is given in the next section.

and
J(p,0) =0,

IV. URBACH'8 RULE

For Urbach's rule we need G(p, E) for negative en-
ergies. The Green's function for E(0 is obtained by a
saddle-point integration. For E(0 the saddle point of
the integrand of (3.1) occurs along the negative
imaginary axis at isp (—Sp is real and positive). As
indicated in Fig. 3(a), this point is a minimum for
integration along the imaginary axis, and a maximum
for integration perpendicular to the imaginary axis.
Thus the integration of steepest descent is that shown
in Fig. 3(b).

To find the saddle point, we analytically extend
J(p,s) in (3.5) to the negative imaginary axis, is —+ y.
This makes J(p, —iy) a real function. Define E(p,y) by'
—(~'/~r') ~(p sr) =+«»»—

=(~/(~y) ]P(N+1)e ~+)Ver dp e'"" (4.1)

The evaluation of U and V is discussed in Appendix
B, where it is shown that the integral for V can be
done analytically. Both U and V are positive functions.

The position of the saddle point is determined by
finding the maximum of

f(p,y) =r( E+-,) rU-+v, (4.4)

which occurs at y=SO

8f/Bs p 0=——E+—e„—U(p, sp)

and at the saddle point

(4.5)

y(p, so) = v(p, s.) (4.6)

The path of steepest descent, Fig. 3(b), has two
segments. Since the integrand of (3.1b) is entirely real
on the imaginary axis, the integration segment from
0~ —iSO contributes just to the real part of the
Green's function. The main contribution is near the
origin,

ReG(p, E)~
Sp

dy &y($—ep)

0 jv—g

(4 7)

where So depends upon E, e„,n, and temperature in
(4.5). The implied equation (4.5) for Se is complicated
by the fact that V(p, se) does not possess a simple
analytical form except at p=0.

The case p=O simplifies since the integral in (4.1)
for E(0,y) is eliminated. The results can be expressed
in terms of error functions and Dawson's integraP' F(x)

which is the correct form of the real part of the Green's
function as 8—+ —~.

The integration segment, from —iSO —+ X—iSO as
X —+~, gives the imaginary part of the Green's function,
or A(p, E). Using standard saddle-point techniques"
gives

2x.
A (p,E)=

i

—
i expL —V(p, se)j, (4.8)(E (p,se) &

J(pr)
, @=0

=0

Then define U(p, y) and V(p,y) by

~(p, —sy) =— dr' (r—r')&(p, r')
(4.2)

E(0,y) =Lu/(ym)'I')L(1V+1)e "+cVe"j, (4.9a)

U(O, y) =( /V' )I:(1V+1)4 erfh/r)
+2iVe&F(+y) j, (4.9b)

V(0,y) =cr-', (iV+1) t erf(gy) —2(y/s)'i'e &g

+ (~1V/v' )e"(v'r —F(v'r) 3 (4.9c)

where
=—yU(p, r)+ v(p, y),

U(p r) = O' E-(p,r'),

V(p,y') = dy'rX(p, r').
(4.3)

For low temperatures (X((1), the saddle point Se be-
comes large enough that (4.5) can be solved by using
the asymptotic expansions for U. For p=O, and neg-

~' P. M. Morse and H. Feshbach, 3Iethods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953).

~ Dawson's Integral is de6ned in Appendix 3, and tabulated
in Ref. 24.
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lecting e eP, (4.5) becomes

E'= —E+ReZ p

nNe'p ( 1 3
(4.1Oa)

(mSp)'" E 2Sp 4Sp'

where E' is the negative energy as measured from the
polaron edge. Similar asymptotic expansions for V and
E can be used to relate them to U, and hence to E'

1 5
V=A' Sp—1—

2Sp 4Sp'
(4.10b)

1 3
I~=E'I1+ + +"

I
~

2Sp 4Sp' )
(4.10c)

In the limit kT/kp~p&&1, then (P=1/kT),

So - P+lnPE'(xP) "/n j,
kT&&kcog

and the spectral function (4.8) becomes

(E &0)
A(O, E)=l —,I I —,I

e ", (4»)
EE'I k (xP)'I'E'] (k2'«k )

which is clearly exponential.
Figures 1 and 2 show calculations of A (O,E) for kT

=0.5L)p, with 0.= 1.0 and 0.33. The dotted line shows

the low-energy exponential tail which was calculated

using (4.8) and (4.10). It was necessary to include the

erst correction terms in the asymptotic expansions in

order to obtain the desired accuracy.
The spectral density for p/0 can also be found by

employing the asymptotic expansions for U(p, Sp)

V(p,Sp), and E(p,Sp) derived in Appendix B.This has

been done and gives an exponential tail in A (p,E) for
all p. However, the results for p„)1 are not meaningful,

since the Green's function (2.8) is not accurate in this

region. One symptom of this difhculty is that numerical

work indicates the integral over e„ for the density of
states in (2.3) apparently does not converge for some

values of E. Nevertheless, the fact that an asymptotic
low-energy exponential edge is obtained for A(O,E)
shows that Urbach's rule can be derived from I'roh-
lich's Hamiltonian.

crystal. For energies below the conduction band, the
spectral density has an exponential form. Since our
approximate Green's function is related to the inter-
mediate-coupling schemes, particularly that of Van
Haeringen, " the results are limited to p„/ppp«1.

Urbach's rule states an effect observed in optical
absorption experiments. The relation between the ab-
sorption constant and the spectral density A(p, E) is
that the absorption constant is related to an integral
over the spectral densities of the conduction and valence
band. This integral also contains corrections for elec-
tron-hole Cou1omb interactions. However, these exciton
effects are not important far below the conduction band
for optical absorption in a strong electric field. '~ Thus
it is probably also true that exciton e6ects are not
important in our polaron induced absorption edge,
except perhaps to lower the upper limit of this edge to
the exciton energy. Our main result, then, is that Ur-
bach's rule can be derived from Froh1ich's Hamiltonian.

One feature of the result, best exemplified in (4.11),
is that the strength of this exponential tail depends
only weakly upon the coupling parameter n. In (4.11),
e enters the exponent as E' lno. . This agrees with experi-
ment, since a large number of different materials,
representing a wide range of values of o,, have similar
strengths in their asymptotic tail. '5

Another observation of great importance is that other
types of electron —optical-phonon interactions" will also
produce an exponential tail. The polar interaction was
used here because the nature of the polar interaction is
understood, and this is certainly the relevant inter-
action for many materials.

APPENDIX A

The asymptotic form of J(p,S), defined by (3.2),
can be expressed in terms of the functions'4

Ep(x) =Cp(x)+iSp(x) =

E;(x)=
"dt e"

eit
(2m t)'"
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V. DISCUSSION

Starting from Frohlich's Hamiltonian, the spectral
density A(p, E) is derived for an electron in a polar

' C. B. Duke, Phys. Rev. Letters IS, 625 (1965); M. Aperient
and C. B. Duke (to be published).

» H. Ehrenreieh and A. W Overhauser, Phys. Rev. 104, 331
(1956).
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For large 5,
ni(/V+ 1)J(p,S)=iS&„— — E2 (Se„)L(/+1)E,*(S)+l(«/8;(S)7+ E2*(S(1—e~))

(2ie„)'/' (»(1—eu))'"

inlV nlVe'so+'~) ~ r (k+-,') / F(l+1)
Z,(S(1+,„))y P P (1+

(»(1+e~))'" 2(1+en) (iS&)'/2 /'=o
I iS(e~+1)7 &~ F(l+2)

n(X+1)e-«so—«„) „F(k+~~) / F(l+1)„Z,(1-en)'
2(1—")('s )'" "='L s( —1)7" '- r(l+-')

For e„&1,, the third term is replaced by

LniP+ 1)/(»(». —1))'/27~2(S("—1)),
and for e~= 1, the last term is replaced by

(iS) '/'

n(N+1)I —
I

Em f &~ ( iS)—'(2l+1)

APPENDIX B

e *' ~ 1X3XSX~ ~ X(2e—1)
erf(x) =2//(n)'/' dt e—"~ 1— 1++

0 xmas. (—2x')"

1 ~ 1X3XSX X(2m —1)
F(x)=e—*' (lt e"~—1++

0 2g m=1 (2x2) «««

The terms are

The saddle point of J(p,S) for S=—iSO (S0 is real and positive) can be found from the asymptotic expansions.
The asymptotic expansions can be derived from the result for J(p,S) in Appendix A, by letting iS~ So. But for
the saddle-joint method it is more convenient to express U and V separately. The results can be expressed in
terms of error functions and Dawson's integral

and for e„&1:

It (p,y) = e«»F((e„y)'/') L(l)l+1)e «I+Qe««7,
y(~e.)"'

~(p,y) =n(&+1) erf(y(i-e. ))'"-
2(1—e )'/'

for e„)1,the first term is changed to

e-««(I-«««)F((y& )I/2)
(~en)"

S 1
e««(l+«&) . F((ye )I/2) F((y(1+0 )(/2)}

V'en -(1+en)'"

n(ll/+1) e"'" "F((y(e —1))"'}
(~(en—1))'"

The asymptotic expansion of U(p, y) is

y(~")'"
nF ((ye.)'")e""

U(p, y)
.- ReZ„—

gay))I

lt lI
l(/e~ g —(E+1)e-~g

t=o yE )=o (—y)'-

nNe""+'&) ~ F(k+$) / F(l+1) n(r/+1)e"(«~ ') F(k+~3) / F(i+1)
(1+ .)'+ Z — Z (1-..)'.

(24~)y"(1+e„) I™I y(e„+1)7 =o r(l+-;)
'

(2V'm)y'"(1 —e,) =o
I y(&„—1)7' ~=o r(l+-;)

For e„=1, the last term is replaced by

(yq
1/2

n(&+1) I

—
I

Es-) t~ (—y) '(2l+1)


