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Phase Shifts and Local Charge Neutrality in Semiconductors*
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We imagine solving the Schrodinger equation in a piece of semiconductor with 3l atoms containing a dis-
location, vacancy, or other defect. There will be some probability density ~4 ( inside the vacancy and the
normalization of each state will be aGected by it. The mean charge density of each state far from the vacancy
will be 1/ill' electrons per atom minus a term of order 1/Iis, as occurs in metals and leads to the Friedel
phase-shift theorem. Thus when we sum over the whole band, we might expect the vacancy and immediate
surroundings to carry a nonintegral net charge 7, which is compensated by a charge-density deficit y/S
over the whole crystal. There can be no screening (at O'K) and the effect would lead to strong electric fields
of the type found in fact around dislocations in semiconductors. However, we Gnd in a one-dimensional
calculation that p is identically zero and the eBect does not exist. This comes about because the Bloch states
at the band edges are standing waves, and the phase shift tends to a multiple of v/2. The result may plausi-
bly be extended to three dimensions, so that local charge neutrality appears to be maintained, apart from
the usual donor and acceptor states, of course.

I. LOCAL CHARGE NEUTRALITY

'N a metal, charge neutrality around an impurity
- ~ or defect is maintained by the Qow of some charge
to make a self-consistent screened potential. In detail,
we can integrate radially outwards from the defect or
impurity and treat the band of the metal as a free-
electron gas, applying some boundary condition such
as p=O at a large distance E. The normalization inte-
gral of the state is altered by a fraction of order 1/X
where X is the number of atoms in the system, and so
is the total charge density. In fact the charge density
far away from the defect or impurity is reduced by an
amount, equal to (2/7r)Z(23+1)5t electrons subtracted
uniformly over the system, where the 5~ are the phase
shifts. If an impurity itself contributes an extra Z elec-
trons, we add these to the band. Now in a metal the
defect is completely screened so that the metal is locally
neutral at large distances, where there can be no change
of order 1/X in the charge density. The condition for
self-consistency is therefore that the potential around
the defect or impurity adjusts itself until its phase
shifts satisfy the well-known I'riedel sum rule'

In an insulator or semiconductor at absolute zero of
temperature, there can be no such Qow of charge or
screening. The preceding analysis suggests that we
could be left with a uniform charge density deficit of
p/X electrons per atom over the crystal as a whole,
neutralizing a nonintegral charge y localized in and
around the defect. This situation would lead to electric
6elds over large distances in the semiconductor, re-
sulting in strong bending of the bands. Wherever the
bands bend sufliciently for the valence(conduction)-
band edge to dip above (below) the Fermi level, free
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holes (electrons) would be produced, and of course at
finite temperature and in doped samples there are also
some mobile free carriers. These two mechanisms would
limit the band bending, which could however still
extend over several thousand angstroms. The whole
effect would be a property of the full band of 4Ã
valence states including any localized states split off
the valence band which we assume also to be full. It
has nothing to do with the usual filling (emptying) of
acceptor (donor) states.

Such bending of the bands is indeed found experi-
mentally around dislocations in semiconductors, ' and
the author considered for some time whether the effect
we are discussing could be the explanation of it, instead
of the rather unsatisfactory conventional story about
dangling bonds. The present effect does not appear to
have been discussed in the literature before, and if it
existed it would have important consequences for the
state of surfaces and any defects in semiconductors. It
therefore seems desirable either to con6rm its existence
or dispose of it.

In fact we shall dispose of it. Exact local electrical
neutrality is maintained in a semiconductor far from a
defect center, and this in itself is an interesting property
of full bands since the mechanism must be quite dif-
ferent from that in metals discussed above. The lack of
rotational symmetry about the defect makes any dis-
cussion in a three-dimensional solid dificult, but this
does not arise in one dimension. Ke shall therefore
discuss the effect in detail in one dimension and give
plausible arguments in Sec. III that it carries over into
three dimensions. In Sec. II we shall discuss exactly
the normalization of the wave functions in terms of
phase shifts for Bloch functions, 4 as a preliminary to
calculating the charge density in Sec. III. This has to
be done exactly to the order of the small terms in 1/X

2 See Ref. 3 for a convenient brief summary and references.
~ V. Heine, Phys. Rev. (to be published).
4 This result is unlikely to be novel but I have not been able to

Gnd a reference.
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which we are looking for. If we proceed not too care-
fully, we can prove a phase-shift theorem as in (1) for
the net charge localized around the defect. We find the
phase shifts (for small perturbations) tend to zero or
&~/2 at the band edges, because the Bloch states there
become standing waves. Thus application of the sum
rule (1) can give a nonzero y = 1 in the notation above,
.and in fact does so in the particular case of interest
where we have bonding states below the band gap and
antibonding ones above. In Sec. III we therefore discuss
some further terms in the charge density which in the
case considered cancels the previous contribution and
gives a total y of zero. These terms arise as follows. In
the usual free-electron analysis, there are in addition to
the terms (1) some oscillations in the charge density
like sin(2kx —25), the Friedel wiggles. ' They are usually
discarded on the grounds that they average to zero
over a reasonable distance. However, with Bloch states
they take the form

sin (2kx —25)v (x), (2)

where r (x) is periodic in the lattice displacement a and
is related to the periodic part Nl, of the Bloch function

i/i, =exp(ikx)Ni(x) .
When k approaches the Brillouin-zone boundary m/a,
the first factor in (2) can combine with the 2~/a
Fourier component of v to give a term whose wave-
length tends to in6nity, which can contribute to the
mean charge density away from the defect.

For the sake of definiteness we discuss the particular
system shown in Fig. 1. It is a one-dimensional ring of
E cells (X even) of a periodic potential (period a) with
a piece of width 2b and potential Vp inserted between
a pair of cells. All the wave functions P„are real, and
either even or odd about the origin O(x=0) in the
center of the insertion. We integrate the wave equation
from 0 and demand that the wave functions join up at

the anti-origin 0'(x= b+Ea/2) halfway round the ring,
where the states will automatically be even or odd
again, respectively. We treat the potential as weak in
the nearly free-electron approximation, using the idea
of pseudopotentials as justification. ' Let us focus
attention on the first band from the bottom E=Ep up
to the first band gap at k =7r/a (Fig. 2). We choose the
2~/a Fourier component Vi of the potential to be posi-
tive, corresponding to bonding type Bloch state

P&=cos (~y/a)

with energy E& at the bottom of the gap, where we have
referred fi, to an origin y =0 at the edge of a cell (Fig. 1).
Similarly we have antibonding states like sin(zy/a) at
E, above the gap (Fig. 2). The situation at the first
band gap in our model is closely analogous to the band
gap of a group-IV semiconductor. In the latter we have
a center of inversion at a point halfway between two
atoms, the valence states being even (bonding) about
this point, the conduction band antibonding. It is the
form of the wave functions halfway between the atoms
that counts, because it is there that we cut the solid to
form surfaces, etc. Thus we identify the first and second
bands of our model with the valence and conduction
bands of the semiconductor. We shall retain a com-
pletely general analysis where required to demonstrate
an exact cancellation, but use the nearly free-electron
approximation and the speci6c model when it is neces-
sary to count states or point to particular terms. For
instance we will choose Vp to be somewhere between the
bottom of the band and the band gap, not necessarily
a constant. In that case the "valence" band contains
the same number of states E (for each spin) in the per-
turbed case with the insertion, ' as in the unperturbed
case b=0. There are no localized states split off the
band, though there is an extra state in the gap pulled
down out of the "conduction" band' which we are not
interested in.

II. THE NORMALIZATION THEOREM

We consider the Schrodinger equation

[ d'/dx'P V (x)]y—(x,a) =ay(x, S) (5)

which we wish to integrate with energy E from the
origin x=0 to some point x =X. From (5) we have

[—d'/dx'+ V(x)]ay/aE=y+Zay/aE. (6)

We multiply (6) by p (which is real), also (5) by 8&/BF
and subtract. Then integrating from 0 to X and using
the usual Green's identity, we obtain

g2y —X

BE BS BEBOP p

~ See, for example, V. Heine, Proceedings of the ninth Inter-
national Iom Temperature Conference, Columbus, Ohio, l964,
edited by J. G. Daunt, D. V. Edwards, F. J. Milford, and
M. Yagub (Plenum Press, Inc. , New York, 1965).
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as our basic "normalization theorem. "
One possible ambiguity should be dealt with at this

point concerning the meaning of Bp/BE In .the case of
odd states for example, if we start integrating with some
definite initial condition &=0, B&/Bx=1 at all E, then
this defines tt uniquely as a continuous function of E.
We are not applying any quantizing boundary condition
at the other boundary at this stage. Moreover if we had
chosen some other convention which 6xes the amplitude
of P differently by a factor A(E), then substituting
the new p into (8) simply multiplies each side by
LA (E)g' as it should: All terins involving BA/BE cancel
out.

Considering the situation in Fig. 1, we integrate first
from x=O to the edge of the insertion x=b, obtaining
some value of the logarithmic derivative p 'Bg/Bx
there. In the solid x) b our @ has to be some linear com-
bination of the Bloch states Pi,, P q. We will choose the
periodic part of the potential to have a center of sym-
metry so that gi, P I, are complex conjugates of one
another. Thus their real and imaginary parts may be
taken as the linearly independent solutions, and an
arbitrary real solution can be written

(9)

in terms of a phase shift 8. Matching onto the logar-
ithmic derivative already found at x=b determines 8
as a function of k or E.

By way of a brief aside, it is instructive to prove
from (8) the phase-shift sum with Bloch waves. We
note that

&(f)6l(g) =-:6l(fg+fg*) . (10)

Using (9) and the representation (3) but with variable
y instead of x, we find (8) becomes

g' dx= (dk/dE) f Li i+ (x+db/dk)v2]

+jwa+(x+db/dk)v4j cos(2kx+2b)

+Le,+(x+db/dk)~, j sin(2kx+2b) ), (11)

where the e; are periodic functions related to N~ and do
not involve b. We 6rst throw away the oscillating
Priedel wiggles as of no interest, which is valid if we
sum only up to some point in the middle of the first band
as discussed in Sec. I. We then apply (11) at some
/mite distance X from the defect, assuming the states
to be quantized by some boundary condition at some
point Na where E can be made arbitrarily large. The

Assuming a center of symmetry at x=0, we have there
either &=0 for all E and hence B&/BE =0 for odd states,
or B&/Bx=B'P/BEBx=O for even states. In any case the
bracket in (7) vanishes at x=O, leaving us with

(B$B$ BP )
(BE Bx BEBx) =x

k vectors and normalization constants of the allowed
states then differ by order 1/1V from those of the un-
perturbed system with b =0, this difference being
negligible in the present circumstances because we are
calculating the charge in a 6nite region. We take the
difference of (11) between perturbed and unperturbed
states. The left side gives the extra charge attracted
inside X by the perturbation. The right side is

(dk/dE) (db/dk)v2. (12)

Turning back to (8) and seeing where v2 comes from, we
find it is just

6t(—g i,*iBiP/Bx) . (13)

when (9) is normalized over E cells. Now the quantized
k values are equally spaced (to order 1/Ã) with a
density Xa/2m even and odd states per unit of k space.
After substituting (14) into (12), we can therefore sum
(12) up to some energy E and over both spin directions,
to obtain the total charge

(2/n. ) (b. .+b.gg)

attracted by the perturbation. Even and odd correspond
in one dimension to different angular momenta in 2
and 3 dimensions. This formula assumes we have chosen
the states such that both 6's are zero for the unper-
turbed case and tend to zero at the bottom of the band
with the perturbation (which may be difficult to
arrange).

Ke return to the question of the exact determination
and normalization of the allowed states. It is con-
venient to work with the new variable

y=x —b, (16)

with origin at the edge of the first cell (Fig. 1). We can
write a Bloch function as

P&=P, C, expi(k+g)y,

where the g's are reciprocal lattice vectors. We note
that the C, can be chosen all real because the cell edge
is a center of symmetry for the periodic potential and
the secular equation in terms of plane waves is then
completely reaL Thus (9) becomes

4 =2 C. cosr(k+g)y+bj (18)

The allowed energy and k values are determined by
applying the boundary condition B&/By=0 for even
states at y=Ea/2. We have

By/By= —g Cg(k+g) sing(k+g)y+bj, (19)

and the boundary condition is satis6ed if

k„Na/2+ b„=Nx (even states) . (20)

We want the mean value of this, say over one atomic
cell, which is

82 ——(2/1Va) dE/dk,
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We also have

rj 'y/any = —(y+db/dk) (dk/dE)

xP c,(k+g) cosL(k+g)y+6]
—P dcs/dE(k+g) sinL(k+ g)y+S]. (21)

We wish to apply (8) at the point y=lVa/2, and note
from (20) that all sine terms in (19), (21) are zero and
all cosine terms (—1)".Equation (8) therefore becomes

Na/2 dk /1Va d5)
+—

I

dE'E 2 dk)

xLE Z ~ c.c'(k+g)] (22)

In order to simplify (22) we shall prove that the
terms with g'~g sum to zero, so that the term in square
brackets is related to the expectation value of the rno-
mentum operator for fs, which is proportional to
dE/dk and cancels with the first factor of (22). Consider
the Bloch state P&. Its current density is, apart from
the normalization factor,

~(y) = (s/—2)I 4*(~4/~y) (4—*/~y)4]

=Z Cv'(k+g)+ZZ' CgCg (k+g) (23)

Xcos(g—g')y.

L' ' ']=P C '(k+g) . (24)

We also note that dE/dk is twice the expectation value
of the momentum for state fs.

Now ps is a stationary state and J(y) has to be diver-
genceless, i.e., in one dimension a constant. Thus the
second term of (23) vanishes which means all the terms
in (22) with g'Wg also sum to zero, and the square
bracket of (22) reduces to

We obtain the same formula for the odd states starting
with the other boundary condition &=0.

P= cosh(Vs —Es)'~sr at E=Es,
=cos(Es—Ve)"'x at E=Es, (27)

so that the logarithmic derivative g'/@ at y=0 (@=fi)
is positive at the bottom of the band, passes through
zero, and becomes negative at the top LFig. 3(a)].
From (18) it has to be equal to

-Z C, (k+g)-—= —tan5—
ZC.

—i/i, '(y=0)-
=—tanb—

- ~.(y=0)—

We have bonding type of functions both at the top and
bottom of the valence band. For both of these the nu-
merator of (28) vanishes whereas the denominator
remains finite. Thus the factor in (28) in square
brackets tends to zero at the band edges, and it is easy
to verify with the nearly free electron (NFE) approxi-
mation that it does so from the positive side in our case.
We have tanb —&&~, and the phase shift varies as
shown in Fig. 3(b). For the odd states g'/p is positive
throughout the band and the phase shift has the form
also shown in Fig. 3(b).

III. THE CHARGE DENSITY

At this point we focus attention on the particular
model of Sec. I with Vo in the range mentioned. The
exact number of states 1V+0 or &1 in the band, the
possibility of localized states split o8, and the value
&7r/2 of the phase shifts at the band edges, these all
depend on the particular situation, and it is not con-
venient to develop a general formalism.

For the even states, g in the insertion behaves like

P(1/s) W~y)4 dy 2 Cg'(k+g)
(25)

where the factor of one-half comes in because we have
omitted it from the kinetic-energy operator in (5).
Now we want the left side of (22) to be just s because
we are integrating halfway around the ring, and from
(22), (24), (25) this determines the amplitude of the
Cg by

2 2 d6
QC2 1+

Qg ga dk

2 2'== 1— —+O(1V ') . (26)
gg Ea dk

E E

I'ro. 3. (a) Logarithmic de-
rivative p'/p, arid (b) phase
shift 5, for even and& jodd
states.
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We wish to calculate the total charge density in the
solid a large distance from the perturbation. We simply
use (18) with the normalization (26) which takes into
account exactly the amount of charge contained in and
around the insertion. With the aid (9), (10), (17) we
can write down

latter again gives zero contribution to the net charge in
one unit cell and we ignore it. Without affecting the
component we are interested in, we can replace f(k„)
and 8„in (34) by their values at the point of zero phase,
i.e., k= 0. There Cg= C „so that with (26) and (20) we
make the replacements

f(k„)= (Nu) ', 28„=—ir,

2k„= 2m+1)2~y/(Nu) .
&'=-,'{QC,'+QQ' C,C, cos(g —g')y

(

+PP C,C, cosL(2k+g+g')y+28]) . (29)

(35)

Here we drop the second term completely because it
gives identically zero contribution to the charge in one
unit cell. The third term represents the Friedel wiggles.
As mentioned in Sec. I, each term in it averages to zero
over a resonable distance, but we must for the present
retain those terms for which 2k+g+g' can become
zero. In fact it will be obvious from our evaluation of
these special terms that the others are negligible. The
relevant terms are g'= —g which can become dangerous
at the bottom of the band, and g'= —

g
—G at the top

of the band, where we have written 6 as an abbreviation
for 2m/u. We also substitute from (26) for the first term
in (29) which therefore becomes

2 db—+ (2g COC g) cosL2ky+25j
Xa dk

+(-,'PC,C, g) cosL(2k —G)y+28j. (30)

NI2—(1Vu)
—'6t P expi(2m+1) 2~y/(Nu)

nM

sing(N+2) 2my/Nul=—(Nu)
—' 0+ (36)

2 sin(2sy/Nu)

We see that the constant term which we are interested
in happens to be zero: In another case studied by the
author where Vo was set equal to the bottom of the
band Eo, this term contributed (21Vu) '. We turn to the
last term in (30) for which the point of zero phase is

k=7r/u and we evaluate the slowly varying functions

there. C, and C, g are the coefficients of the plane
waves

expi(m/u+g)y,

and

expi (7r/u g G—)y =—exp i (~/u+g—)y, (37)

in (20), i.e. 1V/2+1 values in all, so the first term of
(30) sums to

(1Vu) '(N/2+1) . (32)

We now sum (30) for all the even states in the band.
From (20) and Fig. 3(b), we note the allowed values

k„ in the band are given by

v= 0, 1, 2, ~ N/2

P Q'(y) = —',u ' (even states) . (38)

so that C, and C, g are equal at k=m. /u and the co-

efIicient in (30) becomes P C, which is evaluated in

(26) as before. It is convenient to define m= N/2 —N so
that (2k —G)y becomes —(2m+1) (2~y/1Vu). We there-

fore get the same series as in (36), and zero contribution

to the mean charge density. Collecting everything, we

have the charge density (not counting spin degeneracy)

For the odd states, (20) and (31) are replaced by
With the usual density (20), (31) of points in k space,
the second term of (30) becomes an integral over dk, k„Nu/2+8, = (m+1/2)ir,
and g&ves m=1, 2, .1/2(N —1), (39)

(33) with -,'N —1 states in all. The phase-shift term in (30)
sums to zero since 8(E|,) =B(EO). The first cosine sum

with the phase shifts of Fig. 3jbj. The sum of the u.ext
term in (30) we write as

(Rg„f(k ) expir2k„y+28 J,
N/2 —1

(34) —(Nu)
—' P cos (4m'/Nu)-

where the coeKcient —', p C,C, is a slowly varying
function of k. It is a typical "stationary phase" summa-
tion, where we get an important contribution from near
the limit e=o where the argument in square brackets
is near zero, and a rapidly oscillating component like
cos(2~y/u) from near the upper limit e=N/2. The

1 sing(N —1)2'/Nuj-=—(Nu) ' ——+ (40)
2 2 sin(2my/1Vu)

where this time we get a nonzero contribution. The
second cosine sum gives the same quantity again and
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we have the total charge density

Q ps=-'a ' (odd states) . (41)

envelope function X, where

f=xm(r), (43)

exp(iK r)N(r), (42)

where E is measured from the band extremum, and near
the band edge do a separation into angular momenta in
the usual effective-mass approximation. In this way one
gets back to a one-dimensional radial equation for the

Combining (41) with (38), we see that the total
charge density in distant cells is exactly 1 electron per
unit cell, not counting spin degeneracy. The same result
is obtained if we consider Vo&EO. then there is a bound
state with only a localized charge density pulled out of
the botton of the band, and one less even state
in the band, but the change in the phase shift
from —1/2ir to +1/2ir restores the same charge
density. The result also remains true when we take
Vo= Eo, but the term m=0 has to be handled specially.
The lowest even state now has k—=0 and becomes like
A.1 instead of A sin(iry/Xa), with consequent changes
of a factor of 2 in the normalization and elsewhere for
this particular term. The same applies to the state at
k = ir/a if we consider the limit of the perfect solid with
zero insertion.

Finally it is necessary to inquire whether these results
are likely to carry over to three dimensions. No com-
plete proof seems possible at present because of the lack
of symmetry, but several thoughts make it very
plausible. The present result is essentially due to the
"pulling" of the wave function at the band edges. One
can only talk about phase shifts when one has two in-
dependent solutions of the Schrodinger equation which
one can combine with some arbitrary phase. But at a
band edge the two solutions coincide: The wave func-
tion can only be a certain standing wave. It is this which
pulls the phase shifts to Air/2 in one dimension.
Suppose we have in three dimensions a band edge with
isotropic effective mass. We can write the wave func-
tions as

and one expects to find the local-neutrality phenomenon.
Alternatively we note that the even and odd states

each give exactly a charge of —,'per unit cell, even

though there are different number of even and odd
states. We have here an example of the "back-body
radiation" theorem, also known as the Von Laue
theorem. ' In the case of black-body radiation, it is well
known that the spectral density of radiation per unit
volume in a closed volume is independent of the shape
or boundary condition provided one is not within a few
wavelengths of the edge. The quantum analog is

~A'r)= 2 14-(r) I',

the total charge density in states with energy less than
K Ke can apply this to a perturbation by integrating
outwards from the center until we are in a region of
perfect solid, which gives us a definite radial derivative
p'/g there as a function of E.We then have to solve the
Schrodinger equation in the perfect solid with this com-
plicated but well-defined boundary condition. In the
present one-dimensional example the theorem applies
separately to even and odd states since parity is con-
served by the perturbation. What is not obvious from
the usual proofs' is that the theorem is universally valid
even to terms of order 1/1V, yet this appears so from the
behavior of the even and odd states where one might
expect different charge densities because of the different
number of states. In that case one would certainly
expect the result to extend to three dimensions, where
the density of levels is higher (the effect of the dis-
creteness of the energy levels lower) and the disturbance
of a boundary decays more rapidly as one moves away
from it,

' C. Kittel, Quaiitgm Theory of Solids (John Wiley 8r Sons, Inc. ,
New York, 1963), p. 339.


