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Figs. 2—4 is shown in detail in Fig. 11 where we plot
(hu/co) (uncorrected) and (hn/cs) (corrected by p) as a
function of yo+. The step-junction absorption curve is
the same as the theoretical absorption curve of Fig. 4,
except for the ordinate scale factor. The —0.45 curve
is calculated from Eq. (1) using @ obtained from
Kq. (A2) for h having the dependence

h(x) = h [1—(x/xe)"'].
We note that there is very little difference between the
step junction and the —0.45 junction curves. They may
be brought into coincidence below the bandgap, where
the effective mass is determined, by a shift of 0.018
in ye+, (equivalent to decreasing the bandgap by 0.13
meV) and a change of scale of ye+ by a factor of 0.04
(equivalent to multiplying the reduced mass by a
factor of 0.885). This correction results in a negligible
shift of the band edge since the spectral resolution was
approximately four times greater, and changes the
experimentally determined reduced mass to 0.16mo.
Above the edge, the effect of @ is negligible. The cor-
rection does not affect the qualitative behavior of the
data, and affects the quantitative behavior by only a
few percent. The effect on the C~ V '"' germanium
junction used for the indirect-transition measurements
shown in Figs. 5 and 6 is comparable and is neglected.

We have also evaluated Eq. (A2) for the —0.45
germanium junction used for the direct-transition
measurements of Figs. 7—10. The theoretical curves of
Figs. 9 and 10, calculated from Eq. (5) for a step junc-

.08"

Fro. 11. Do./ce=Lcr(c', s) —a(cs,0)]co ' for a step junction and a
junction with Cct U~ "for phonon-assisted transitions. The step-
junction curve is the integral of Eq. (3) for an Airy-function
normalization of ~ '/' (the normalizations of Refs. 13 and 14).

tion, can shift as much as 20%%uo at about 30 meV below
threshold, but remain essentially unchanged above.
However, there is almost no effect on the value of the
experimentally determined reduced mass, as the 20%%uo

shift is reached about —30 meV below threshold in
Fig. 10 and remains constant for lower energies. We,
therefore, neglect the d correction for these measure-
ments and the ordinates of all figures are given as ap-
proximately equal to Ao, .

Since exciton effects have not been included, we are
unable to make a correction for this effect, and this may
introduce larger errors in the g correction.
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Solvable Model of a Hydrogenic System in a Strong Electric Field:
Application to Optical Absorption in Semiconductors
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A model potential is proposed which, in parabolic coordinates, consists of the Coulomb potential near the
origin and linear terms in the electric-Geld potential far from the origin. The eigenfunctions of the model
potential are obtained exactly aIld analytically. An expression for the optical-absorption coeGicient for
excitons in an electric Geld is derived. Selection rules for allowed and forbidden vertical transitions are ob-
tained. Numerical calculations of the line shapes of the lowest three exciton peaks are shown to be in agree-
ment with existing experimental data. The model predicts no asymptotic alteration of the low-frequency
Franz-Keldysh edge by the Coulomb interaction and a shift to lower energies of the continuum absorption
near the zero-Geld band gap. Comparison of the predictions of the model with those of perturbation theory in
the region of the low-Geld exciton peaks indicates that the model does not correctly yield the positions of the
peaks but does qualitatively describe their broadening and eventual disappearance in an increasing electric
Geld. Experiments measuring the quenching Geld for exciton peaks in the alkali halides and rare-gas solids
are proposed as a method of ascertaining the spatial extent of the associated excitons.

I. INTRODUCTION

~DISCUSSION of the spectra of a hydrogen atom in
an external electric field dates from the pre-

quantum-theory applications of the Bohr model to
+ Present address: Department of Applied Mathematics, Massa-

chusetts Institute of Technology, Cambridge, Massachusetts.

successfully interpret the Stark effect in atomic hydro-
gen. ' The applications of quantum theory to the de-

' The original papers on the Stark eGect are summarized in, e.g.,
(a) E. U. Condon and G. H. Shortley, The Theory ofAtomic Spectre
(Cambridge University Press, Cambridge, England, 1963), Chap.
17; (b) H. E.White, INtrodttctiort to Atomic Spectre (McGraw-Hili
Book Company, Inc. , New York, 1934), Chap. 20.
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scription of these spectra fall into two categories. The
perturbation-theory calculation of the (Stark) shift

the hydrogenic energy levels was pioneered by
Schrodinger and Epstein. " The calculation of the
broadening of those levels by the electron tunneling to
the free-field region outside the nuclear potential was
Grst discussed by Oppenheimer, ' who developed a
variant of Grst order perturbation theory to study this
effect. These calculations were considerably extended by
Lanczos' who also presented a "derivation" of the
WKBj tunneling probability utilized in the theory of
alpha decay' and more recently in the description of
electron tunneling between thin Glms. '

The existence of relatively sharp energy levels in a
combined Coulomb potential and external electric field
is well known to be a consequence of the fact that,
despite the continuous nature of the energy spectrum,
the character of the wave function can change dras-
tically within small energy intervals. The work described
above is confined to a description of the narrow energy
region near the Coulombic levels in the absence of the
Geld. It is based on the assumption that the electron has
little probability of tunneling out of its Coulombic
potential well. However, optical-absorption experiments
in solids deal with suKciently strong electric Gelds that
the hydrogenic electron-hole system has an appreciable
probability of being ionized by the Geld. (In the direct
edge of Ge, auto-ionization of the lowest hydrogenic
state occurs at Gelds F 1000 V/cm. ) Furthermore, re-
cent experiments using phase sensitive detection of the
electric-field-modulated absorption ' and reflectivity' of
semiconductors require for their analysis a calculation
of the absorption coefficient at energies far below the
lowest hydrogenic energy eigenvalue. Although many
authors' have calculated the absorption in the absence
of the Coulomb attraction between the electron and
hole, the analysis given herein is the first to include the
inhuence of this attraction. "

In order to provide an adequate interpretation of the

E. Schrodinger, Ann. Physik 80, 457 (1926); P. S. Epstein,
Phys. Rev. 28, 695 (1926).

I J. R. Oppenheimer, Phys. Rev. 31, 66 (1928).
4 C. Lanczos, Z. Physik 62, 28 (1930); 65, 518 (1930); 68, 204

(1931).' See, e.g., R. W. Gurney and E. U. Condon, Phys. Rev. 33, 127
(1929) and G. Gamow, Z. Physik 51, 204 (1928).

s J. Bardeen, Phys. Rev. Letters 6, 57 (1961);W. A. Harrison,
Phys. Rev. 123, 85 (1961).

'7 See, e.g., M. Chester and P. H. Wendland, Phys. Rev. Letters
13, 193 (1964); A. Frova and P. Handler, Phys. Rev. 137, A1857
(1965). More extensive references can be found in these articles.' P. H. Wendland and Marvin Chester, Phys. Rev. 140, A1384
(1965).

93. 0. Seraphin and R. B. Bess, Phys. Rev. Letters 14, 138
(1965);3. O. Seraphin and N. llottka, i' 15, 104 (1965). .

'0 Although W. Franz PZ. Naturforsch. 13a, 484 (1958)g and
L. V. Keldysh, Zh. Eksperim. i Teor. Fiz. 34, 1138 (1958) LEnglish
transl. : Soviet Phys. —JETP 7, 788 (1958)g gave the original
calculations of the absorption coef5cient, our treatment is most
similar to that of K. Tharmalingam, Phys. Rev. 130, 2204 (1963).» F. Seitz LPhys. Rev. 76, 1376 (1949)g has given estimates of
the exciton auto-ionization Gelds but did not attempt to calculate
the optical absorption coefBcient. An abbreviated version of the
analysis described has been presented by C. B.Duke, Phys. Rev.
Letters 15, 625 (1965&.

optical absorption experiments, we must extend the
original Stark-effect calculations to include both a
description of strong electric Gelds and an evaluation of
the absorption not only in the vicinity of the energies of
the Stark levels, but also between and below these
energies. %e achieve these extensions of the theory by
shifting our attention to the calculation of wave func-
tions rather than approximate eigenvalues with their
tunneling-induced widths. This change in emphasis is
accomplished by following the theory of absorption due
to Elliot" who demonstrated that the absorption coeffi-
cient is simply related to the effective-mass envelope
function (wave function) and its derivatives evaluated
at the origin. In order to calculate the wave functions in
terms of known functions, we propose a model of a
hydrogenic system in a strong electric Geld which con-
sists of the Coulomb potential alone near the origin and
the linear electric Geld far from the origin. The wave
functions associated with the model potential are
evaluated analytically (treating the energy as a con-
tinuously varying parameter). Therefore, we achieve an
exactly solvable model giving resonant line shapes in the
absorption coeflicient but not limited to energy regions
close to the resonance lines or to moment expansions.
Our model calculation constitutes, to the best of the
authors' knowledge, the first exact solution to the
Schrodinger equation for a potential, other than the
rectangular barrier, "exhibiting quasi-stationary states
in the continuum. The triangular barrier problem has
been treated exactly' but with emphasis on the calcu-
lation of the transmission coeKcient and not on the
existence of the quasi-stationary states which result if
the eigenvalue spectrum is made nondegenerate by the
imposition of an infinite potential on one side of the
barrier.

In Sec. II we specify the model potential. In Sec. III
the eigenfunctions associated with it are obtained. The
derivation of the optical-absorption boundary value
problem is given in Sec. IV together with a presentation
of numerical calculations of the absorption coeKcient
and a discussion of relevant experiments. In the Gnal
section, we present a critique of the model, a proposal of
some experiments, and a synopsis of our conclusions
concerning optical absorption.

Ph —Bz+r '+E)yz(r) =0, -
fefpaeV' (m '

h= =1.94X10 "~ —es'F(V/cm),
kp,

(2.1a)

(2.1b)

'2 R. J. Elliot, Phys. Rev. 108, 1384 (1957)."See, e.g., Enrico Fermi, NNclecr I'hysjcs {University of
Chicago Press, Chicago, Illinois, 1950), p. 61.' R. H. Fooler and L. Nordheim, Proc. Roy. Soc. (London)
A119, 173 (1928)."L. D. Landau and E. M. Lifschitz, QNuntgm Mechunics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1958), p. 251.

II. DEFINITION OF THE MODEL

The Schrodinger equation for a stationary hydrogenic
system in an external electric Geld, Ii, is given by"
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terms of the known Kummer" and Airy" functions. The
model is designed to correctly represent those quali-
tative changes in the wave functions and eigenvalue
spectrum wrought by the unbound nature of Xo(») at
large g. Such a model is essential for even a semi-
quantitative description of optical absorption in an
electric 6eld because a discussion of the low-energy tail
on the absorption lies outside the domain of the
perturbation theory that describes the Stark. shift."
Furthermore, such a model is required for a description
of (exciton) absorption lines associated with hydrogenic
levels which are almost auto-ionized by the electric 6eld.
The assumptions needed to reduce Eqs. (2.4c) to our
solvable model appear less restrictive than those needed
to reduce the description of optical absorption in
semiconductors to the solution to Eq. (2.1).These latter
assumptions include: (a) the validity of the effective-
mass approximation, " (b) the validity of the Wannier-
exciton approximation, "and (c) the neglect of electron-
phonon coupling. An analog of our model, relevant to
the band structure of a particular material, together
with its lowest order correction in (n'8) probably
suffices to give as accurate description of optical-
absorption experiments as the underlying assumptions
warrant.

III. CALCULATION OF THE WAVE
FUNCTIONS

For p, (p,"), the X; for our model potential which are
6nite at the origin are given by""

(p ) ~,iil/2p (i+(m(&/2

Xexp( —p,/2)3II( —e, , 1+~nz~, p;);
(3 1)

in which M(a, b,x) is Kummer's function. 'i In the ab-
sence of an electric 6eld (h=0), the normalizability of
the bound-state wave function requires that the e; be
non-negative integers. For pi) pi&'&, the xi(pi) must be a
decaying wave function because X& is square-integrable
for all energy eigenvalues. The X& model wave function
is therefore given by""

~i(pi) =bi»(si); pi) pi"', (3.2a)

si= (e'h/4)'/'$(e'8) '+pi j (3.2b)

in which Ai(z) is the solution to Airy's equation which
decays for s&0.' For p»p2(), X2 is oscillatory for

sufficiently large p2 and is in general a linear combination
of two linearly independent solutions to Airy's equation.

'7 L. J. Slater, in Handbook of Mathematical FNnctions, edited by
M. Abramowitz and I.A. Stegun (U. S. Department of Commerce,
National Bureau of Standards, Washington, D. C., 1964), Appl.
Math. Ser. 55, p. 503.

"H. A. Antosiewicz, in Handbook of Mathematical Functions,
edited by M. Abramowitz and I. A. Stegun (U. S. Department of
Commerce, National Bureau of Standards, Washington, D. C.,
1964), Appl. Math. Ser. 55, p. 435.

"W. Kohn, Solid State Phys. 5, 258 (1957).
~ See, e.g., R. S. Knox, Solid State Phys. Suppl. 5, 1 (1963).
'~ L. D. Landau and E. M. Lifschitz, Ref. 15, p. 130.

Both the wave functions and their 6rst derivatives
must be continuous at p, =p;(). In the case of X~, this
boundary condition leads to the quantization of the e&

quantum number. Continuity of the logarithmic deriva-
tive of X~ at p~= p~"' requires that e~ be a solution to the
equation

A i'(si &o&)

g.i. (pi'") = (&~'/4)"'
Ai (zi&' )

si&o& = (BN'/4)"'L(8iia) —i+p, (o&)

1 1+[m/
g. ,-(p) = '+--

p 2

(3.4a)

(3.4b)

M(1—m, , 1+~m~, p)-
+nf, . (3 5)

3I( I,, 1+im—i, p)

In the limit that (/i'h) —+ 0, Eq. (3.4a) becomes

»mg. , m(p) = —o.
p~co

(3.6)

The use of asymptotic forms of Kummer's function in
(3.6) indicates that it is satis6ed if ei is a non-negative
integer. Thus, we recover the results for the Coulomb
potential alone in either the zero-field limit (b ~ 0) or
the large-negative energy (&i —+0) limit. In order to
achieve these results, it is necessary that p~"' —+~ as e
or 8 goes to zero. If we use a cut-oR value of xo ——8—'l'~

instead of (2.5b), then the right-hand side of (3.4a) can
be expanded as a power series in &i= (&i'h)'/'. However,
this expansion does not appear useful in obtaining an
analytical expression for e& in the low-'A limit because
the Kummer function has an irregular singular point at
p&&') = ~. This property of Kummer functions is closely
associated with the computational difhculty that asymp-
totic forms of M(u, b,x) cannot be used to solve (3.4a).
The function g„,, (p) is a meromorphic function of &ii

for a 6xed value of p. For small values of (&i'h) its poles
and zeros both lie close to the non-negative integers. As
m'h increases, the poles and zeros become more widely
separated, both moving to larger values of e~. For
values of e~ near its zeros, the Kurnmer functions in

g„,, (p) cannot be calculated reliably from the large p
asymptotic form even for n~ 1 and p 500.

The invariant-quantity characteristic of the solutions
to (3.4a) is their order. We assign a -non-negative
integral quantum number i&0 to each of the roots of
(3.4a) so that ni&'&) xi&i& is denoted by i)j . In subse-
quent sections, we present numerical calculations of
these roots. The power-series expansion'r of M(/i, bp)
about @=0 is used to evaluate the Kummer functions in
(3.5) to five significant figure accuracy. The Airy

Taking these to be Ai(s) and Bi(s)"we get

X2 (p2) = b2A&(s2)+bo+i (s2), p2+ p2 (3 3a)

so= (//'8/4)"'t (e'8) ' p—2j ~ (3 3b)
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functions Ai(z) and Bi(s) are evaluated by a computer
program for the GE 235 which employs the methods
used by Miller" and is accurate to 6ve significant
6gures.

The continuity of X~ at p~
——p~&'~ is needed to express

b~ in terms of c~ so that c~ can be evaluated by the
normalization condition (2.7b). The result for ci is

c =I-'"Pi+f'- -( i'")Is?'"

f . (p) =@0+1~1)/s

(3.7a)

Xexp(—p/2)~( —I' 1+ le/I, p), (3 Zb)

pg(o)

c—~g~~liM~( —Ni) 1+(tv[, g)dg, (3.7c)

1(0)
2 i'(g) dg/g. (3.7d)

The value of c~ used in subsequent sections is calculated
numerically using the trapezoidal rule for I& and I2. I& is
calculated using 50 intervals of equal length and I2 is
calculated to an accuracy of three decimal places. Iy is

1 and is usually larger than the second factor in
(3.7a) by at least 10'.

The continuity of X2 and its 6rst derivative at
@2=p2&0~ does not impose any quantization conditions on
m2 and simply gives two relationships which are satisfied
by c~, br, and bs. The value of mrs to be used in (3.1) is
determined for a fixed energy (i.e., value of e) and values
of Ni and r/r from Eq. (2.4e). A third relation between
the (real) values of bs and bs is obtained from the
normalization condition (2.7c), so that all three real
constants are determined. We give only the result
for cg

A Ai(s t")(1—r)
C2=

(I// f„s ~(pries)pr +Xi'(s2'")/Bi'(ss e')j"
(3.8a)

& io) (+a@/4)1/8$(risg) —i
p (0)j

g = (2p)»s/s»~([c[ F)i/sh /

(3.8b)

(3.8c)

J. C. P. Miller, The Airy IrItegrul (Cambridge University
Press, Cambridge, England, 1946). Copies of the xoRxRAN pro-
gram are available as General Electric Research and Development
~Center Report No. 65-C-045 (unpublished).

(3.8d)

If r =0, then bs ——0 so that inside the Us(ps) potential
barrier the wave function has a purely decaying charac-
ter. Thus, we identify the value of e at which r=0 for a
given value of i as determining the energy E=—1/2ms
,at which a quasi-stationary state occurs. A particular
value of i contributes a quasi-stationary level near each

IV. APPLICATION TO OPTICAL ABSORPTION.
ÃUMEMCAL RESULTS

Elliot" has shown that the calculation of the ab-
sorption coefficient reduces to evaluating the matrix
element:

M= P %t,gyjj ' Ijj (k ks (il)
&e,&h

I;;.(k„k„g,q)

(41a)

in which il is the wave vector and ( the polarization
vector of the optical field; k. and ks are the wave
vectors of the electron and hole from bands j and j'
respectively; the fa,; are their one-electron wave func-
tions, and the N are the Fourier transforms of exciton
wave functions with center-of-mass momentum K and
relative quantum number m. The exciton is composed of
the electron and hole whose motion for K=0 is described
by equation (2.1) in which we make the identifications
(for hem (&,),

/r =m;r/rp/(rr/, +rg;.),
E= (Aa& —Eg)/Ep= —1/2N s

(4.2a)

(4.2b)

'3 Although this remark is by no means proof~~ of the absence
of such states, it should be contrasted with the semiclassical results
for ei) 1 as presented, for example, in Fig. 3 of Ref. 1(a). See also
H. A. Bethe and E. E. Salpeter, QNuntum 3Eechceics of Owe- end
Two-E/ecIron Atoms (Academic Press Inc. , New York, 1957),
p. 238.

integral value eo of n, eo&i, for values of eo Up to the
point at which autoionization destroys the concept of a
quasi-stationary state. Therefore, each root of (3.4a)
gives rise to a series of quasi-stationary states in a weak
field. More precisely, if s2&'&& j., then a value of r=O
causes a sharp peak in c~. As 8 or n increase, the value
of s~&'& decreases until for 3'2&'&&1, the value of c2 is no
longer sensitive to the value of r, and the peaks broaden
and disappear. For @2& ~ &0, the quantity r exhibits, as a
function of e, a dispersion-like behavior characteristic
of functions like tan(sos). Its positive and negative
asymptotes cause no discernible structure in c2, although
its zeros contribute the quasi-stationary states. For
F2~0&(0 and m=O, we have never observed a zero in r
although single maxima and minima have been seen in
numerical computations. This observation indicates, in
a well-dedned sense, the absence of m=O quasi-sta-
tionary states at energies above the top of the Us(ps)
potential barrier. "

We finally remark that for small values of (es8) an
expansion of the expression for r in powers of (I'8)'/' can
be attempted as discussed in conjunction with Eq.
(3.4a). In the (I'h) —+ 0 limit, we find that to obtain
r=O we must require n2 to be a non-negative integer.
Therefore, we recover the results for the Coulomb po-
tential alone.
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with m, denoting the effective mass in the jth band, Ace

being the energy of the absorbed photon, and E,
signifying the zero-leld band gap. The electric 6eld
makes two modilcations in M from the field-free case.
First, the expansion coeKcients, 0', are changed because
their Fourier transform satisfies (2.1) in lieu of the
Schrodinger equation with the Coulomb potential alone.
Second, the matrix elements I;;.are also altered because
the one-electron wave functions it i,„;are modified by the
intra-cell components of the electric Geld. We treat both
the external electric field and the Wannier-exciton
correlations in the effective-mass approximation in
which the second modification is neglected. We could
improve the effective-mass approximation by using the
intra-cell components of the Geld to de6ne a modified
band structure, '4 but the corrections so introduced are
thought to be negligible for nondegenerate bands. "
Furthermore, the integrals I;; in (4.1b) are usually
treated as phenomenological parameters used to Qt
experimental data." Therefore, we directly utilize
Klliot's results and terminology. "A study of the modi-
Qcation of the selection rules imposed by the symmetry
of particular crystals" '~ is not undertaken.

For vertical transitions (called "allowed" transitions
by Hopfield"), it is well known that the absorption
coefEcient n is given by' "

47r'e'
(4.3a)

I f—$@r'(0)C&ttit s (allowed transitions), (4.3b)

P;t ——(Vtp~t)(0) Cia~ ' (forbidden transitions) . (4.3c)

The subscript i denotes the initial state of the crystal
which we take to be the filled valence and empty con-
duction bands and to have E;=0. The dipole matrix
element of the transition is given by I';r in which f
denotes the internal quantum numbers of the final
exciton state. The quantities m' and c are the high-
frequency index of refraction and the speed of light re-
spectively. The un ' in (4.3a) and (4.3b) results from
our use of atomic units in (2.1).The Ce and Ci are con-
stants which are simply related to the I,,' (k„ki„tl =0, ()
in (4.1b) in the cases that it does and does not vanish at
k, =ki, ——0."The quantum numbers f are the index i of
g~&'~ and the dimensionless energy variable E. It is
convenient to define

I G(rt)rti ' ) I'=
I ci(rt, tti ' ) I

'I c&(rt, rti ' ) I
'/

sr''A i'(ss&ei) (4.4)

in terms of (3.7) and (3.8) such that G is dimensionless

s4 See, E. I. Blount, Solid State Phys. 13, 306 (1962).» H. Haken, Eroceegemgs of the Imterrtatlortal Comferelce ott the
Physics of Senicondlctors, Exeter, 1962 (Institute of Physics and
the Physical Society, London, 1962), p. 462; J. B. Grun and S.
Nikitine, J. Phys. Radium 23, 159 (1962)."B.O. Seraphin and N. Bottka, Phys. Rev. 139, A560 (1965).

ss J. J. Hoptield, J. Phys. Chem. Solids 15, 97 (1960).

o.(~) = (P/(v) Q n;(S,(o),
2',=0

(4.5b)

s(o,) I'=Hi'( ss& ei)
I G(e,ei'@) I' (4.5c)

P= 2""sre'Css/rt'cmsEeattt, (4.5d)

in which s&&e& is defined by Eq. (3.8b) and rt by Eq.
(4.2b). We refer to

I p;, „,s(0) I

' as the strength function
for an allowed transition. All of the properties of the
specific material are incorporated in the scale factor I'
and the quantities a& and Eo. The 0., are the contribu-
tions to the optical absorption associated with the ith
root of (3.4a). They have been written in a manner to
suggest the decomposition into the free-particle-like
factor 8 't' Ai'(ss&'i) and a "Sommerfeld" factor

I
GI'.

We noted in Sec. II that each value of i gives rise to a
series of absorption peaks near integral values, eo, of g,„
for eo&i below the auto-ionization limit. The utility of
the series in (4.5a) results from the fact that for rt„near
its lower integral values, only a few terms of the series
need to be considered. Therefore, our model provides a
practical method of computing the absorption coeKcient
in the region of the lower exciton peaks below the free-
electron band edge.

The requirement that the appropriate dipole matrix
element in (4.3) be nonvanishing provides selection
rules for the values of m associated with allowed and
forbidden transitions. It is easily verified from the
indicial equation associated with Eqs. (2.4) that m= 0 if
Ps(0) is to be nonvanishing. " Therefore, each of the
zero-field exciton lines at m=no splits up into eo com-
ponents under the inhuence of an electric field. In the
case of forbidden transitions, the selection of m=0 leads
to absorption lines for optical polarizations parallel to
the external field. ' Furthermore, for ste ——2k+1, we fmd
a line for which m~=e2=k that does not occur for 8=0
but does occur when h&0. There are not enough of
these lines to account for the "weak" lines in Cu2Q, ""
so that the originally proposed" breakdown of the l
degeneracy in the simple hydrogenic model must be
considered as the cause of some of these weak lines. The
absorption via forbidden transitions of light polarized
perpendicular to F is associated with sit=&1.ss The
selection rules for forbidden transitions correspond to
those for atomic transitions in the strong-fmld Stark
effect. '

Numerical calculations based on the strong-field.
model of Sec. II predict that a strong electric Q.eld
causes three qualitative alterations of the Stark spectra:
the Stark lines broaden appreciably, rapidly lose their

~8 This result is independent of the use of a model potential.
~'E. F. Gross, Nuovo Cimento Suppl. 3, 672 (1965) and refer-

ences contained therein.

and depends only on ratios of Airy functions. The
absorption coeKcient for allowed transitions can be
written in the form
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intensity, and 6nally meld into a downward moving
"continuum edge" at energies above which an exciton is
ionized by the electric field. All three effects are evident
in Fig. 2. The Iso ——2 peaks at (E,—h~)/Es —0.125 have
already vanished at 8=0.05 and hence are not visible in
the 6gure. The motion of the continuum edge is particu-
larly evident in the raising of the value of the strength
function in the region between the F0=1 and mo

——2
zero-6eld peaks. A more detailed study of the n0= 1 line
is given in Fig. 3. The qualitative aspects of the ab-
sorption constant shown in Figs. 2 and 3 have been
considered by several authors3 ~ 5 3 ampng whom
Gross" gave the first comprehensive discussion of the
application to exciton absorption. However, Figs. 2 and
3 represent the 6rst quantitative calculations giving
values for the absorption coeS.cient which show the
details of the line shape and the movement of the
continuum edge. The agreement between the features
predicted by the above calculations for allowed transi-
tions and the features observed by Gross for forbidden
transitions" is strong supporting evidence for his in-
terpretation of the Cu20 data. ln Fig. 4 we show the
two F0=2 lines at 8=0.01, just before they disappear
into the continuum edge. The fact that the higher
energy line is narrower than its low-energy counterpart
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FrG. 2. Strength functions associated with allowed transitions
at energies E=—(Eg—Ao&)/Ea near the 6rst (E= —0.5) and
second (E=—0.125) exciton peaks. The calculations were per-
formed using only the s=0 term in Eqs. (4.5), (4.4), (3.8), and
(3.7) of the text.

30 J. J. Hop6eld and D. G. Thomas, Phys. Rev. 122, 35 (1961).
3' See especially Fig. 13 in Ref. 29.

FrG. 3. The reduced absorption coefficient for allowed transitions
in the vicinity of the 6rst exciton peak. The calculations were
performed using only the s Oterm=in Eqs. (4.5), (4.4), (3.8), and~
(3.7) in the text.

is reminiscent of the behavior of the m=3, e"—3, an@
n"' —3 lines in Cu20."The origin of this behavior is
identical with that of the red Hy Balmer line fading
prior to the violet Hy line in an increasing external
field. 4 The higher energy i=1 state has a larger proba-
bility of being on the side of the Coulomb potential
through which no leakage takes place (the "("side)
whereas the i =0 state has a larger probability of being
on the side with the leaky barrier (the "I)"side).

Figures 2 and 3 need not represent numerically accu-
rate model predictions because they are calculated using
only the first term of the sum in (4.5a). The values of the
strength function associated with the second term are
shown in Fig. 5. It is only for (ha& —E,)/Es) —0.08 that
thai =1 term comes within an order of magnitude of the
i=0 term. The i =2 term is reduced further by a factor

100. Therefore, Figs. 2 and 3 represent quantitative
predictions of the absorption coeScient based on the
model potential. The corrections to Fig. 4 due to the
i=2 term are small. The model potential tends to
overestimate the stability of the exciton peaks relative
to the exact Coulomb potential. Therefor'e within the
framework of the Klliot model of optical absorption,
from Figs. 2, 3, and 4 we conclude that 8=0.15 is am

upper bound on the field at which. any exciton peaks.



C. B. DUKE A'ND M. E. ALFERr. ErF

lo

Io

g =.I, i=f
——8=05 i=l

I
/

/

Io
I

g=.ol, i= I

---E=,OI, i=0
io '=

lo

io-I

IL

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I

/
/

/
/

/
/

/
/

/
/

/io-' ~

IO-4—

IO

io-'
—.6 —3

I't(u -Eg j/ E

io '- I

—.I 35 —.I 30 —.I 25 —.I 20 —.I I 5 —.I I 0
('II ur -Ea j/Eo

PIQ. 4. Strength functions associated with allowed transitions
at energies E=—(E, Aa&)/Eo near th—e second (E= —0.125)
exciton peak. The calculations were performed using the i=0 and
s=1 terms in Eqs. (4.5), (4.4), (3.8), and (3.7) in the text.

occur and h=0.05 is an upper bound on the field at
which mo ——2 peaks occur.

An application of these results occurs in the identifi-
cation of structure in electric-field-modulated absorp-
tion or reQectivity data due to excitons. There are no
published absorption measurements in direct-band-gap
semiconductors to which the lineshapes of Figs. 2, 3, and
4 directly apply. "'We have already discussed the Cu&0
experiments. ""The experiments of Moss" on GaAs
frere performed at too high temperatures to see exciton
structure. Lambert3' has extended the measurements
down to temperatures of 85'K for fields above 5.38&(10'
V/cm. The 8=0.15 upper bound yields a Geld of 1.7
X10' V/cm above which exciton peaks associated with
the direct band gap at the center of the Brillouin zone
should not be observed in GaAs. Lambert's data is
consistent with this prediction. Furthermore, at the
lower values of the electric field which he considered
(F=1.076X104 and 5.38X10 V/cm), his data exhibits
a much sharper edge than the Franz-Keldysh Theory
predicts. We identify this edge (which lies below the

3'~ See Note added 'As proof."T.S. Moss, J. Appl. Phys. Suppl. 32, 2136 (1961}.
~ L. M. Lambert, J. Phys. Chem. Solids 26, 1409 (1965).

FrG. 5. Strength functions associated with allowed transitions
at energies E= —(Eg Ace)/Eo near th—e first (E= —0.5) and
second (E=—0.125) exciton peaks. The calculations were per-
formed using only the j=1 term in Eqs. (4.5), (4.4), (3.8), and
(3.7) in the text.

zero-Geld edge) with the continuum edge which has been
lowered by the electron-hole Coulomb interaction. At
the larger values of the field, the sharp edge is smeared
out into the more gradual Franz-x. eldysh result because
the tunneling probability becomes quite large at all
energies near the band gap. The experiments of Hopheld
and Thomas on CdS" were performed at too low fields
(8&5X10 s) and in CdS the hydrogenic model of the
exciton states must be modided because of crystal-
symmetry effects and spin-orbit mixing of the valence
bands.

The application of Pigs. 2—4 to determine the line-
shapes of electric-6eld-modulated reflectance data is
rather tentative because one must know the reQectivity
data at all frequencies to obtain the absorption coeffi-
cient. In regions where extensive structure occurs in the
reRectivity, the direct inference of the structure in n(co)
from the reQectivity data is unwarranted. However, we
can apply our upper limits on the fields strengths to
determine when excitonic structure in the reQectivity is
possible. Thus, for example, using Seraphin and
Bottka's" parameters for the indirect edge in Ge, we
expect no eo ——1 exciton structure for fields above
P=900 V/cm, In Si, using the estimates of the para-
bolic exciton binding energy of 7 MeV(E~&14 MeV
given by Phillips and Seraphin" we predict that the

~ J. C. Phillips and B. 0. Seraphin, Phys. Rev. Letters 15, 107
(1965).
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structure due to the direct exciton cannot be seen above
2.5X 10'(F(104V/cm. "The larger mass of the exciton
along the F—X line in Si renders it observable to
F=7X104 V/cm, thus tenatively confirming the in-
terpretation of the indirect absorption data given by
Wendland. "

A final prediction of the model is that asymptotically
for photon energies such that e'8((1, the Franz-
Keldysh" dependence of the absorption coefBcient on
exp( —2/3Nsh) is unchanged by the Coulomb potential.
The sum over i in Eqs. (4.5) cannot be performed
analytically even in this limit, but by using integral
values of m~('~, we can estimate the sum and show that
corrections to the exponent in 0. are small. As e —+ 0 for
a fixed value of 8 one 6nds c~ —+ e—'I'. There are no
Stark levels in the asymptotic tail so that r defined by
(3.8d) is nonzero. (The precise value of r depends on
the value of Ni for a fixed value of N.) Hence, by use of
the asymptotic forms for Airy functions, ' we 6nd that
for allowed transitions (m=0)

(4.6)

For ~Nt~ (Qsis&gs, Eq. (13.5.1) in Ref. 17 shows that
( G
I' exp(ps&'&). For

I liI )Epee'& js, the sum in (4.5a) is
replaced by an integral and Eq. (13.5.13) in Ref. 17 is
used for the Kummer function to show that the sum is

expL —(ps&el)'). Both of these contributions from the
~

G ~' yield additive contributions to the exponent in the
absorption coefficient whose leading term is the Franz-
Keldysh factor exp( —2/3n'b) contributed by the
AP(as&") in Eq. (4.5c). Hence, in the limit that e'8«1,
the Sommerfeld-like factor

~

G~' contributes an amount
to the exponent negligible relative to the Franz-Keldysh
leading term, for all xs such that Qsisl)'«(is'h) '.
Equations (2.5) prescribe such a value of xs.

V. DISCUSSlON

To discuss the accuracy with which the model po-
tential approximates the actual potential, we consider
separately two energy regions. The extension of the
Coulomb wave function of energy 1/2' is —m (in
atomic units) so that the maximum potential energy
gained by a particle-hole pair in this state is dE
For perturbation theory to be a valid treatment of the
electric field, 1/2m'«he or m'h« —',. Therefore, we de-
compose the negative-energy spectrum on the basis of
the parameter e'8.

"Although Seraphin and Bottka (Ref. 9) do not give the peak
value of the electric Geld used in their measurements on Si, the
value used by Seraphin and Hess is 10' V/cm. Therefore, the
parabolic exciton is probably ionized by the Geld and causes no
structure in the reQectance data independent of the resolution
difBculties discussed in Ref. 34.

6%'endland's estimate of the auto-ionization energy for the
no ——1 exciton peak. should have been made using the quadratic
rather than the linear Stark shift.

Region l:n'8&1

In this region, perturbation theory is approximately
valid. The well-known expression' for the Stark-shift
energy is an asymptotic expansion in (ash) which
diverges after the first term for es8)0.036. (The
equality sign applies for I=1.) The cutoff specified by
Eqs. (2.5) gives xs)e so that the model eliminates the
electric 6eld in the region where the Coulombic wave
function is large. Therefore, the model constitutes an
almost equivalent starting point to the Coulomb po-
tential alone for the calculation of Stark shifts. (For
example, the energy shifts in Fig. 3 are always at least
a factor of 6ve smaller in magnitude than the quadratic
Stark shift. ) Although it misplaces the level positions,
the model should more accurately predict their widths
and the intra-level absorption because it correctly
describes the free-electron-like states for large values of
g which cause the latter phenomena. However, in this
region the model appears to be considerably less accu-
rate than the quasiclassical approximation to the solu-
tion of the exact Schrodinger equation developed by
Lanczos4 for m&1.

Region II:n'8& 1

Perturbation theory is invalid in this region. If ns& 1,
quasiclassical motions can be investigated by use of the
WKBJ approximation. ' ' "For the values of m=0, 1 of
interest in the optical absorption problem, the model
constitutes the only currently available technique for
discussing the eigenfunctions in this region of energies.
However, away from the origin the WKBJ phase-
integral methods can be applied to determine approxi-
rnate solutions to Eq. (2.4c).

The major diS.culty with the model potential lies in
the fact that we have not established the sensibility of a
state-independent cutoff distance. For values of m~
which are small, Eq. (2.5b) gives a sensible approximate
potential. However, when ei is large, the U2 model
potential can be noticably altered in shape from the
exact potential. This difhculty is not severe for the
calculations presented in the 6gures for which my&1.
Therefore, we anticipate that our numerical lineshapes
would not be greatly changed by a more accurate
calculation.

A second difIiculty, not directly related to our use of
a model potential, occurs because near E=O all of the
terms in the sum of Eq. (4.5a) become large so that
approximations become inaccurate. This factor appears
to be the limiting one of either a model such as we
propose, or any more accurate calculation in which the
sum is not performed analytically.

Despite the above difhculties, the model does provide
an upper bound for the value of the electric field at
which an absorption peak. due to a low-energy parabolic
Qlannier exciton is quenched. This quantitative infor-
mation is useful in discussing the spatial extent of an
exciton state which gives rise to a peak in the absorption
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coefBcient. The low values of the quenching fields ob-
tained in the last section (e.g., for the direct exciton in
GaAs reQect both the small conduction-band masses and
the large static dielectric function. In the alkali halides,
the effective masses are 1, but the factor of eo' in
(2.1b) can reduce the quenching fmld by a factor

10'—10'. However, such a reduction only occurs for
large excitons. As the extent of the exciton diminishes,
the various many-body processes which give rise to the
occurence of ess in (2.1b) are no longer effective. sr

Hence, "small" excitons are associated with peaks
which quench at 6elds larger than that predicted using

0.15 in (2.1b). Thus, the fields at which the two
lowest exciton peaks in the alkali halides quench can
distinguish whether they are adequately described by
the Wannier model" "or perhaps are more molecular in
nature. Similar considerations also apply to the hy-
pothesis of "saddle-point" excitons in the alkali halides
and rare-gas solids. 3 In particular, the measurement of
the sensitivity of exciton peak. s to an electric field
affords a more convenient and equally reliable method
of determining the spatial extent of excitons than
melting the crystal. ~

Summarizing, we propose a model of a hydrogenic
system in a strong electric field which explicitly in-

corporates the unbound character of the wave functions,
but for which the Schrodinger equation can be solved
analytically in terms of known functions. Following
Elliot's" formalism, we derive formulas for the absorp-
tion coefficient in an external field in terms of the wave
functions of a hydrogenic system in that Geld. The
relevant selection rules are obtained and for allowed
transitions the model wave functions are utilized to
calculate the absorption coefficient for photon energies
just below the direct band-gap energy. For photon

37 See, H. Haken, I'oLurorIs ms' ExcitorIs, edited by C. G. Kuper
and G. D. Whitfield (Plenum Press, Inc., New York, 1963),p. 295."J.C. Phillips, Phys. Rev. 136, A1705 (1964).

39 J. J. Hopiield and J. M. Worlock, Phys. Rev. 137, A1455
(1965).

~ D. Beaglehole, Phys. Rev. Letters 15, 551 (1965).

energies far below the band-gap, we show that the model
predicts that the Franz-Keldysh "free-electron" ex-
ponential absorption is essentially unchanged by the
Coulomb electron-hole interaction. The numerical
model predictions for the optical absorption are shown
to be consistent with experiments in GaAs, CusO, Si,
and Ge. However, the model should be most applicable
to a discussion of the optical absorption in a direct semi-
conductor with cubic symmetry like GaAs or cubic ZnS.
In such a material, the disappearance of the lowest two
exciton peaks and lowering of the continuum absorption
edge should be semiquantitatively predicted by the
model, and is observable in samples in which the in-
trinsic exciton line-width is small enough to observe the
zero-Geld window between these exciton absorption
peaks.

Note added iN proof. Since the submission of this
manuscript, Dr. Q. H. F. Vrehen4r has measured the
dependence of the direct exciton peak. in Ge on the
electric Geld strength. He Gnds that the peak disappears
near F=933 V/cm and that its width is linear in F.
Our model predicts that the light-hole peak (p =0.021m)
disappears at 85 V/cm and the heavy hole peak
(p= 0.036m) disappears at 250 V/cm. The failure of our
model to describe the line shape is due to our neglect
of mechanisms which cause the large intrinsic width of
the exciton peak in Ge. The only qualitative success of
the model in predicting the peak's disappearance could
be caused by either the above shortcoming of the model
or by the inadequacies of the parabolic-band effective
mass approximation.
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