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In previous publications (especially by Hohenberg, Kohn, and Sham), a theory of the ground state of an, in-
homogeneous interacting electron gas was developed, in which the electronic density rt (r) played a dominant
role. The present paper extends this approach to the one-particle Green s function and physical properties
related to it, such as single-particle-like excitations and, in the case of metals, the Fermi surface. The Dyson
mass operator Z is studied as a function of its spatial arguments and as a functional of N(r), and, in both
senses, it is found to have important short-range properties. An approximation for Z, which is exact for sys-
tems of slowly varying density, is proposed. This leads to simple, explicit, Schrodinger-like equations for
the single-particle-like excitations, whose solution determines their energies and lifetimes. In particular, we
show how to apply this procedure to metals.

I. INTRODUCTION

' 'N this paper we shall be concerned with the one-
& ~ particle Green's function' G(r, r', E) associated.
with the ground state of a system of interacting electrons

moving in an external potential tt(r). As is well known,
the Green's function determines a number of important
physical properties of the system, in particular its
single-particle-like excitations and, in the case of a
metal, the Fermi surface. Ke shall give special attention
to these properties.

The Green's function is a solution of the Dyson
equation

(—E——,'Vs)G(r, r'i E)+ dr" Z(r, r";E)

XG(r",r'; E)=—b(r —r"), (1.1)

where Z is the so-called mass operator. The same mass
operator appears also in a Schrodinger-type equation,
whose solution determines the spectrum of the one-

particle elementary excitations (see Sec. II). Recently,
Hohenberg and Kohn' have shown that any property of
a system of electrons is a unique functional of the
density tt(r) of the ground state. In particular then,
Z is such a functional. This fact by itself, however, is not
yet useful for a practical determination of G and of
the elementary excitations.

In Sec. III and the Appendix of this paper we show

explicitly, in some simple cases, the following two more
specific properties:

(a) Z(r, r', E) is a short rartge kernel, with-a range of
the order

~

r—r'
~

) F (=2sr/j'tr), where j'er is the Fermi
momentum corresponding to the local density.

(b) Let us write Z in the form

Z(r, r', E)= q (r)5(r —r')+M(r, r', E p(rs)), (1.2)—
*Supported in part by the U. S. Ofhce of Naval Research.
'A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
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where y(ro) is the electrostatic potential at ro = ss (r+ r').
Then the functional form of M depends only on the
density rt(s) itt the vicirtity of r and r', in the sense of

rs
~

~ax(XF XTr). (Here Xr is the Fermi wave-
length and XTF is the Thomas-Fermi screening length. )
This property is a consequence of the Ward identities. '
Such short-range properties would be expected on
intuitive grounds. Although we shall formally establish
them only in special cases, we believe that they have
general validity. Inasmuch as the Green's function
describes single-particle propagation, Eq. (1.1) corn-
bined with properties (a) and (b) then leads to a picture
of particles propagating in the medium with an effective
energy E tt(r), where —p is the local electrostatic
potential, and under the inQuence of nonlocal forces
which depend however only on the density distribution
rt(s) in the vicinity of r.

In Sec. IV. we make the simplest approximation
consistent with (b), namely that M is the mass operator
of a uniform electron gas with the local density tt(rp).
This leads to a simple calculational scheme for 6 and
thus for the single-particle-like excitations of the system.

In Sec. V we apply this method to electrons in metals
and discuss quasiparticles, the Fermi surface, and the
specific heat.

In a future publication we plan to present the results
of using this theory for specific atomic and solid-state
systems. In the meantime, we would like to draw
attention to the rather encouraging numerical results
obtained for ground-state energies and densities of
atoms and ions, using similar approximations.

II. THE GREEN'S FUNCTION AND
ELEMENTARY EXCITATIONS

In this section we review briefly the formal connection
between properties of the one-particle Green's function
and elementary excitations in a form useful for inhomo-
geneous systems.

' P. Nozihres and J. M. Luttinger, Phys. Rev. 127, 1423 (1962);
P. Nozihres, Theory of Irtteraetimg Fermi Systems (W. A. Benjamin,
Inc. , New York, 1964).

4 B.Y. Tong and L. J. Sham, Phys. Rev. 144, 1 (1966).
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A solution of the Dyson equation (1.1) can be con-
structed as follows. ' We de6ne the right and left eigen-
functions X„(r,E) and X„t(r,E) of the (energy-depend-
ent) operator —-,sV'+Z belonging to the eigenvalue
B„(E)as follows:

(—8„(E)—-'|r')X„(r,E)+ dr'

&&X(r,r', E)X„(r',E)=0, (2.1)

(—h„(E)——,'V')X„t(r,E)+ dr'

dr X„t(r,E)X„(r,E) =8„„. (2 3)

In terms of these functions G is given by

X„(r,E)X„t(r',E)
G(r,r' E)=P

E B„(E)—(2.4)

If the equation

E- h„(E)=0 (2 5)

has a solution for some rs and E, which we denote by
E, then G(r, r'; E) has a pole at E„. It then follows
from the spectral representation of G, that the X+1
or N —1 particle system has an eigenstate with this
energy. Very often 6 does not have rigorous poles but
there exist values of E for which, with a given value of m,

fE—8„(E)f
=local minimum. (2.6)

Such values of E signify approximate eigenstates of the
%+1 or E—1 particle systems. In general, the values
of E satisfying (2.6) are complex, in which case the real
part should be associated with a physical energy and
the imaginary part with a decay rate.

In the following sections we shall study the structure
of the mass operator 2 and derive some simple approx-
imations for it which allow us to solve the Schrodinger-

type equation (2.1) and hence to obtain the (in general
complex) energies of the single-particle excitations.

&(X„t(r',E)Z(r', r; E)=0. (2.2)

Note that in general Xt is not the complex conjugate of
X. For every E, the X„, X„satisfy the orthonormality
relations

For a homogeneous gas, the 6rst-order exchange
contribution to the mass operator is given by

Mr(r, r'; E)=-
fr—r'f

sin (kp f
r r—'

f ) k—p f
r r—'

f
cos (kp f

r—r'
f )

X
2sc'

I
r r—'

(3.1)

This is an oscillatory function whose amplitude falls
oG as fr —r'f s and whose scale is 1/kp. For large
values of E, a term of just this kind, with the factor in
brackets replaced by the exact one-particle density
matrix, is the dominant part of the complete 3f.
Graphical considerations lead us to believe that for all
values of E the range of the actual mass operator is
1/kp.

We now turn to property (b) of the operator M
defined in Eq. (1.2); i.e., that its functional form
depends only on the density st(s) in the vicinity of the
points r and r'.

We first note that by extracting from Z the electro-
static potential term p (r)8 (r—r') and by writing
the energy argument of the remaining part M as
E—p(ro), the functional form of M is independent of
any uniform shift of the electrostatic potential. This is
a prerequisite for showing that M depends only on the
electronic charge density near r and r'.

We now demonstrate the asserted property for an
electronic system of almost constant density,

st (r) = tso+sti(r), (3.2)

M(r, r'; E q(ro)) =Ms(r —r'; E——y(ro))

+ ds Mo&(r, r'; ro—s; E—y(ro))rt&(s), (3.3)

where M&') is a short-range function of rp —s.
Imagine that the spatially varying density Ni(r) is

caused by a small external potential s(r) acting on the
homogeneous electron gas. By perturbation theory,

where ej is small and has zero spatial average.
We shall compare the mass operator of the system

under consideration with that of a homogeneous
electron gas with density eo. Where necessary, quanti-
ties of the latter system will be distinguished by the
subscript h. We shall show that

III. SHORT-RANGE PROPERTIES OF THE
MASS OPERATOR

In this section we illustrate the short-range properties
(a) and (b) of the mass operator Z which were described
in the Introduction.

Z(r, r' E) =Zs(r, r'; E)+
(2or) s

Xexpf sk- (r—r')+sq rojA(k, q; E)o(q), (3.4)

where A is the vertex function and ( rl)qis the Fourier
transform

' P. M. Morse and H. Feshbacb, 3Eethods of Theoretical Physeos
(McGraw-Hill Book Company, Inc. , New York, 1953), Pol. I,
p. 884; A. J. Layzer, Phys. Rev. 129, 897 (1963).

p(q) = dr e—'s'p(r). (3 3)
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W&a/ +

density np and &=0. This leads to a cancellation of the
1/q' singularity in (3.12) and guarantees the short
range of M&" as function of (rs —s).'

A second Ward identity' states that

FIG. 1. The total vertex function and the proper vertex part.
Coulomb interaction; — .-—Fermion propagator;

&—X external potential.

lim M&'&(k, q,E)=1-
Hence

BMs(k,E) BMy, (k,E)
(3.14)

The external potential is related to the density change
by the linear polarizability' n.

s(q) = —(4~/q') (1/n(q))~~(q) (3 6)

This polarizability also enters into the relation between
the vertex function h. and the proper vertex part h.

A(k, q; E)=X(k,q; E)(1—n(q)). (3.7)

(see Fig. 1.)
The electrostatic potential is, to 6rst order, given by

~ (q) =(1—1/n(q))(4~/q')~~(q) (3 8)

Substituting (3.7) into Eq. (3.4) and subtracting (3.8)
from it gives

1
M(r, r'; E p(rs)) =Ms(r——r'; E)+ dk dq

(2')'

)&expLik (r—r')+iq rpj{X(k,q,E)—1)

1 4x
&& 1- —e)(q). (3.9)

n(q) q'

To determine the function M& in Eq. (3.3) we must
change the argument of Mq in Eq. (3.9) to E q(rs):—
Ms(r' —r', E)=M~(r —r'; E y(rs))—

+ &p(rs)BMs(r' —r'; E)/BE. (3.10)

Substitution of (3.10) in Eq. (3.9) and comparison with

Eq. (3.3) gives

1
M&'&(r r'rp —s E)=—— dkdq

(27r)'

&(exp$ik (r—r')+iq (rs s)1M&'—&(k,q; E), (3.11)

where

BMs(k, E)
M&" (k,q E)= +X(k,q; E)—1

(ATE

XI 1—
~

— (3 12)
n(q)f q'

For small q we have the Ward identity

n(q)-1 —(q'/4~)dye/dip, (3.13)

where p, ~ is the chemical potential of a uniform gas of

lim M&" (k, q, E)= BMg(k, E) dye BMp, (k,E)
(3.15)

t9Pg dsp BSp

This result, combined with the previously demonstrated
short-range property of M&'& as function of (rp —s),
implies that the mass operator depends only on the
local density distribution even if the mean density (or
total number of electrons) is altered.

The same conclusions are also obtained if, instead of
considering small modi6cations of a uniform electron
gas, one takes the case of a nearly perfectly periodic
lattice. This case is worked out in the Appendix.

' Consideration of representative graphs leads to the conclusion
that the effective range is the larger of the two lengths XF and XTp
defined in the Introduction. Because of the logarithmic singularity
of the first derivative of M(') at @=2k', which may be seen, for
example, in the quantity n(g), M«& considered as function of
(ro—s) exhibits Friedel-type oscillations and thus falls oG rather
slowly, as )ro —s) '.

~ W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
This approximation scheme is analogous to the method of

Ref. 7, for calculating total energy and density in the ground
state. In both cases only exchange and correlation sects are
approximated by the leading term of a gradient expansion.

IV. APPROXIMATE FORMS OF THE
MASS OPERATOR M

Let us assume that the density m(r) of the ground
state has been determined, for example by the methods
of Refs. 2 and 7. In view of the fact that M(r, r',
E—y(rs)) depends only on the density near the point
rp, the simplest approximation is

M(r, r', E p(rs)) =MI, (r——r'; E—
q (rs); n (rs)), (4.1)

where MI, is the mass operator of a uniform electron
gas of density N(rp). Clearly this will be the leading term
of a gradient expansion in the case of a system of
slowly varying density. We hope that it will also be a
reasonably good approximation for actual electronic
systems in which, in fact, n sometimes varies rather
rapidly. Let us here recall that 3f represents only the
nonlocal (exchange and correlation) part of Z; the
local part p(r)8(r —r') which is usually dominant, is
treated exactly. '

Another approximate form for 3E can be derived from
(4.1) in which the electrostatic potential y(r) does not
explicitly appear. For this purpose we use the relation, '
valid for a gas of slowly varying density,

= ()+ ( ()), (4 2)

where p, is the chemical potential and p„(~) js the
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chemical potential of a uniform gas of density e with

y =0. With this further approximation w'e obtain from
(4.1), the alternative form

M(r, r'; E—
q (ro))
MiL1 r E p+/Ag(n(ro)); n(ro)g .(4.3)

Finally, 3E can be approximately replaced by a local
operator. Ke begin by writing the Schrodinger-type
equation (3.1) in the form

where

kg= (37r'n)'i',

uy, (n) = ,'k-p' —kp/w,

and p is determined by

kF kp' —p' kF+ p—,'p' ——1+ ——ln
2pkF kF p

(4.11)

(4 12)

(—8(E)—-'V'+ p(r))X(r, E)+ dr'

&(M(r, r'; E)X(r',E) =0, (4.4)

For an elementary excitation at the Fermi level

B(E)=E=p and (4.5) simplifies to

—;p'+M.(p "(.); )=u. ( ). (48)

This equation is satisfied by P =kp and hence u becomes
simply

u(r; u) = (ug(n) —-,'kp'(n))
=—

S -(n), (4.9)

where u„(n) is the exchange and correlation portion of
the chemical potential which has played a dominant
role in our theory of the ground state. ~ (See Ref. 4 for
a numerical estimate of this quantity and for further
references. )

As an illustration let us construct the u(r, E) which

includes the sects of exchange but not correlation. For
this case

u=Ma(p, E u+u„(n), n)-

where the subscript e has been suppressed. The last
term in this equation we now estimate on the assurnp-
tion that the density of the system is slowly varying. '
This allows us, first of all, to use for M the approxirna-
tion (4.3). Further, in such a situation X(r,E) is a
superposition of locally plane waves, e"&')', with

-'p'+Mi, (p, E u+pi—„(n); n) =E u+pi, (n),—(4.5)

where n is the local density. (This is quite analogous to
the situation encountered in applications of the WEB
method. } When operating on such a plane wave the
mass operator (4.3) is equivalent to the local operator
u(r; E)8(r—r'), where

u(r; E)=M
t pi(r), E IJ+u ( i—(nr)); n(r)$ (4.6)

and p(r) is determined from (4.5). With this definition

Eq. (4.4) now acquires the simple form

(-~(E)—:~+.()+-(',E))X(,E)=0. (4.»

kp=E—p+-', kr' ——. (4.13)

In the eventuality that 0 is required for such a large
negative value of (E—p) that (4.13) does not have a
real solution for p, the correct imaginary p is found by
solving (4.13) with the replacement

kF+p (kp+ p)
ln -+ in'

ki.—p kyar p)— (4.14)

and making the same replacement in the expression for
u. The resulting value of u will be real.

Equations (4.5)—(4.14) are convenient for extensive
systems, such as metals (see Sec. V). However, for
finite systems, such as atoms, the concept of a chemical
potential, first introduced in Eq. (4.2), is somewhat
arti6cial and arbitrary. It may therefore be preferable
to use the approximate form (4.1) for M, which has
the effect of replacing, in Eqs. (4.5)—(4.13), p by
ua(n)+ ~.

f —b~(E) —2&'+v(r)+u(r, E)}X&(r,E)=0, (5.1)

where u is, through Eq. (4.6), entirely determined by
the density n(r).

I.et us first consider this equation for E.=p, which by
(4.9), becomes

( —h~(p) —k~'+ p(r)+p-(n)) X.(ru) =o (5 2)

The solutions of this equation with eigenvalue

(5.3)

V. A&PL&CATIO& TO METALS

As an illustration of the use of the simple approxima-
tion (4.6) for M, we now consider the case of metals.
Here the solutions of Eq. (2.1), which includes all
electron-electron effects, have the same translation
symmetry properties as single-particle Hloch waves and
so we shall denote them by X~ with the crystal momen-
tum k being unrestricted (extended zone scheme). We
assume that the density n(r) of the ground state has
been obtained. We must then solve the following
equation

kr — kp' —p' kr+ p=——1+ —ln
vr 2pkp 4 —p—

are the single-particle excitations at the Fermi surface

(4 10) and therefore Eq. (5.3) determines the location of the
Fermi surface in k space. The correct value of p must be
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where m*(n) is the density-of-states mass of the
uniform gas of density n." Substituting into (4.6)
gives after a little rearrangement

N(r, E)=p..( )n+(E —p)(1—ni*(n))+ . (5.5)

We notice that the first-order correction is real; the
imaginary part of n(r, E) is of the form ic(n)—(E—p)',
with c)0."By virtue of (5.5), the eigenvalues of (5.1)
will differ from the eigenvalues h~(p) of (5.2) by terms
of order (E p). First-order pe—rturbation theory gives

&.(E)=& ( )+(E—) L1— *( ())j

X I x~(r,p) I' dr. (5.6)

We can now solve Eq. (2.5) for the quasiparticle
energies Ek '.

no*(n(r))
I
x~(r,p) I'dr

(5 7)

From these energies we can obtain the density of
states g(y), which determines the specific heat;

g(P) =—Zk B(&.(I ) 4~*(n(r))
I
x~(r—,P) I'«. (5 8)

' J. M. Luttinger, Phys. Rev. 119, 1153 (1960).' For a calculation of m*(n), see T. M. Rice, Ann. Phys.
(N. Y.) 31, 100 (1965)."J.M. I uttinger, Phys. Rev. 121, 942 (1961).

self-consistently determined by the requirement that
the volume enclosed by the Fermi surface corresponds
correctly to the total number of electrons. '

We would like to remark that Eq. (5.2) is identical to
Eq. (2.8) in Ref. 7, which was used to determine the
density and total energy of the ground state. The
present considerations show therefore that p and the
Fermi surface are already correctly determined by the
ground-state calculation of Ref. 7. However, solutions
of Eq. (2.8) in Ref. 7, with eigenvalues e~&p, must not
be interpreted as corresponding to elementary excita-
tions, to which we now turn.

For the general elementary excitation, we must go
back to Eq. (5.1) with its energy-dependent and
complex effective potential u(r, E). The most important
excitations have energies near p. To obtain these we
need to develop I (r,E) near the value E=p. From Eq.
(4.5) we find

1 BMi, (p,E;—n)/BE
p—kr ——(E IJ,)—

p+BMg(p, E; n)//Bk s=„,„=g,

This may be shown to agree, to the accuracy of our
approximation, with Eq. (3.17) of Ref. 7,

g(~) =g.(~)+— n(r)(g~(~~(n)) —gA o(n))&«(5 ~)

where the subscripts s, h, 0 denote, respectively, the
inhomogeneous single-particle system with potential
q (r)+u(r, p); the homogeneous interacting electron gas;
and. the homogeneous noninteracting gas.

A. (r,r'; ro —s;iE„+p)
=0—' P expLik r—ik' r'+iq (ro—s)$

kk'q

XA(k, k'; q; iE +p), (A3)

where E„=(2n+1)mksT at a finite temperature T, p
is the chemical potential of the perfect crystal, and 0
the volume. By crystal symmetry,

k'= k+ K (A4)

for some reciprocal lattice vector K.

". Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).

APPENDIX

We now consider the functional dependence on
density of the mass operator in a nearly perfect metallic
crystal. In this case the procedure follows in outlines
similar to Sec. III. We write the density n, (r) as

n. (r) =n(r)+ni(r), (A1)

where n(r) has the perfect crystal symmetry and ni(r)
is the small deviation averaged to zero. We compare
the mass operators of these two systems with densities
n, (r) and n(r). From Sec. III, we see that we need to
express the difference of the two mass operators in terms
of a vertex part and to establish the long-range behavior
(or the low-momentum-transfer behavior) by two
Ward identities. To avoid the objection of Kohn and
Luttinger" to the Goldstone perturbation theory in
the case of a metallic crystal, we use the 6nite-temper-
ature formalism' for the Green's function to establish
the Ward identities and then take the zero-temperature
limit. These identities enab1e us to prove our conjecture
for this special case. Therefore, it seems, quite generally,
that the short-range density dependence of the mass
operator is just a physical manifestation of the Ward
identities.

Consider the periodic lattice, in which the potential
can, by virtue of the lattice translational symmetry, be
Fourier-analyzed as

(A2)

Q denoting the reciprocal lattice vector. Similarly, the
vertex part due to a static perturbation can be written
as
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(a)

(b3

PIG. 2 (a) A proper cut diagram.
(b) An improper cut diagram.—

&&
—lattice potential e(0);—

II
—cut.

Adding (A5) and (A6), we get

BZ (k,k', iE„+p)/r)p,

=4,~ —Qo X(k——,'Q, k'+-', Q; Q; iE.+p)»—'(Q,O).
(A9)

In the zero-temperature limit, Eq. (A9) becomes

/8 8)+—iZ(k, k'; E)=by, g
kaE ay)

—Zo A(k —ko, k'+-'. Q, Q; E)» '(Q 0). (A10)

The second Ward identity is derived from (A9) by
closing the external ferrnion line, giving

Bn(Q)/Bp, =go S(Q,Q')» '(Q', 0) =S(Q,O), (A11)

S(Q,Q') being the sum of all proper and improper static
polarization diagrams. It is also easy to see that for
QI~O

For the first Ward identity, we evaluate &&(k,k';
iE„+li)/cia. Differentiation with respect to p is equiv-
alent to cutting in turn each fermion line in the
diagrams of the mass operator. ' There result two classes
of diagrams: (a) so-called proper cut diagrams, typified
by Fig. 2(a), in which the cut is not separated from
the external fermion line of Z by a single-interaction
line, and (b) improper cut diagrams, typified by Fig.
2(b), in which S represents the sum of all proper static
polarization graphs. The contribution to BZ/Bp from
proper cut diagrams is

BZ (k,k'; E)/»I'(Q')
=ZoA(k-!Q, k'+!Q Q E).-(OQ), (A12)

and

an(o)/a. (Q') = -S(o,o ). (A13)

lim S(q+Q, q+Q') =S(Q,Q') (A14)

Equations (A10)-(A13) form the extension of the Ward
identities (3.13) and (3.14) to the case of a perfect
crystal, since

(A5)
and

8|,z —A(k, k'; q=O; iE„+p),
where A ls the proper vertex part; and from improper
cut diagrams

P X(k—-', Q, l'+-,'Q; Q; iE„
Q, Q'

lim A(k, k—q+Q'; q+Q; iE„+p)

=A(k, k+Q'; Q; iE„+q) (A15)
+~)» (Q,Q)

From the same type of reasoning as above, we also
X..(Q)S(Q', 0), (A6)

o.(o)=0
o, (Q) =47r/Q', QWO,

and e is the static dielectric function,

»(Q,o') =~o.e+o, (Q)S(Q,Q').

(A7)

(AS)

where the Q's are reciprocal lattice vectors, u, (Q)
represents Coulomb interaction matrix elements

ap(o)/ay= —» '(Q,o) (A16)

~~(Q)/»(Q') = » '(Q,Q'), Q'eO, (A17)

which we shall use later.
Now we are ready to consider the mass operator of

the system whose lattice symmetry is slightly disturbed
by a small potential v&(r) which creates the deviation
in density n&(r) from the periodic n(r).

and

Z, (r, r'; E)=Z(r, r'; E)+0 ' p expLik r—i(k+K) r'+iq r,gA(k, k+I q E)„,(q)
R, K, q

oi(q) =0 ' dr e—'&'e (r)

(A18)

(A19)

The change in the electrostatic potential is

&pi(r) = p (r) —p(r) =P» e'»'{or(q)+e, (q)n, (q)}, (A20)



I NHOMOGENEOUS I NTERACTI NG ELECTRON GAS

in terms of which, (A18) becomes

Z, (r, r', E)—Z(r, r'; E)=0 ' p expLik r—i(k+ K) r'+iq rpjX(k, k+ K; q; E)pi(q) .
k, K, q

Using Eq. (1.2) in Eq. (A21), we obtain

M, (r, r', E y, (ro—))—M(r, r'; E pp, (—rp))

(A21)

BZ (k, k+ K; E)-
=0 ' g expLik r—i(k+K) r'+iq rp] X(k, k+K; q; E)—bx, p+

k, K, g BE
pp, (q) . (A22)

Ke have to express p& in terms of the change in density m&. The latter is related to the perturbing potential v j by

~i(q) = —Z s(q, q+Q) p-'(q+Q, q+Q')»(q+Q').
Q, Q'

(A23)

Provided q&0, the inversion to express ~& in terms of e& must be possible by the general theory of Hohenberg and
KohnP Thus, Eq. (A22) becomes

with

and

M, (r, r', E pp, (rp)) —M—(r, r'; E pp, (rp)) = —ds M&'&(r, r', rp —s; E rp(rp))Ni(s)—,

M&'&(r, r'; rp —s; E pp(ro))=Q —P expLik r—i(k+K) r'+iq (rp —s)/M~'&(k, k+K; q; E)
k, K, q

(A24)

(A25)

M&'&(k, k+K; q; E)=go 5x, o—
pic (k—-', Q, k+ K+-,'Q; E)—X(k—-', Q, k+K+-,'Q, q+Q; E) S,—'(Q 0), (A26)

where S~ ' is given by,
Po. S;i(Q,Q )S(q+Q', q+ Q-) =S.,.-. (A27)

So far, all the results are valid for a perfect crystal, be it an insulator or a conductor. In the zero-temperature
limit, the behavior of S~ ' as q —+ 0 differs depending on whether it is a conductor or an insulator. For an insulator

s(Q,o)=—o (A28)

and hence S(q+Q, q+Q') does not have an inverse as defined by (A22) when q=0. By contrast, for a conductor,
S(Q,Q') has an inverse So '(Q,Q'). Applying Eqs. (A10), (A12), and (A16)—(A26), we deduce that

and

limM &'& (k k+ K q E)=M &'& (k, k+ K; 0; E), (A29)

limn —' P expLik r—i(k+K) r'gM ' (k k+ K; q; E)
k, K

BM(r, r'; E pp(rp))—BM(r, r'; E pp(rp)) BM—(r, r'; E pp(ro))—
S i(0,0)—P Sp i(Q,O)=, (A30)

ap e~ Bp(Q) an(Q=O)

the last step being true by virtue of Eqs. (A11) and (A13). This leads us to the same conclusion as in Sec. III.


