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smaller atoms, namely, silver and copper atoms, which
are able to move with relative ease in the basal planes.

If only nonbasal jumps were to contribute to the
perpendicular diffusion of noble elements, one would
expect the anisotropy to be —5.2 for zinc. 6 From the
observed values of anisotropy, one concludes that both
types of atomic jumps, basal and nonbasal, are re-
sponsible for perpendicular diBusion.

We compare below the experimental values of the
differences in the activation energies (AQ) for self-
diffusion and for diffusion of copper and gallium in zinc
with the theoretical predictions' based on the simple
screened interaction model.

For copper:

(EQ„), nt ——2.73 kcal/mole,

(AQ, ~)th„,~=8.48 kcal/mole,

(Q»),„,, =29.53 kcal/mole,

(Qi),~vt
——29.92 kcal/mole,

(Q„)u„»~ —(Qi) ti,«» ——30.29 kcal/mole.

The theoretical and experimental values for (AQ„),
(Q, &), and (Q ) differ by about 10%%u~, 2.5 jq, and 1.3%,
respectively.

For gallium:

(AQ, ~). ,~
———3.4 kcal/mole,

(EQ«) t~..„=—2.61 kcal/mole,

(AQb„,i), nt
———11.64 kcal/mole,

(AQb„,~)u,„,„=—8.55 kcal/mole.

The theoretical and experimental values for (AQ„)
and (AQb„, i) differ by about 24% and 34'Po, respec-
tively.

The disagreement between theoretical and experi-
mental values rejects the fact that the theory does not
include core and ion size effects.

ACKNOWLEDGMENTS

We wish to thank K. M. Koliwad, C. J. Santoro,
D. R. Campbell, and Dr. Z. P. Chang for their assistance
during the measurements. We are indebted to J. M.
LoGiudice and F. J. Mastrianni of the Research
Division for the use of the counting assembly. One of
us (APB) wishes to express his gratitude to the Govern-
ment of Panjab, India for the grant of leave of absence
and to the United States Educational Foundation in
India for the Fulbright travel grant.

PHYSICAL REVIEW VOLUME 145, NUMBER 2 13 MA Y 1966

Interatomic Forces in Various Solids

HERBERT B. ROSENSTOCK AND GARY BIANKEN

U. S. Eaeal Research Laboratory, TVashington, D. C.
(Received 20 December 1965)

Inferences are made concerning the nature and range of interatomic forces in several'solids, by the use
of the observed dispersion relations of the lattice vibrations together with the simple analytical properties
of the sum of the squares of all the lattice vibrations corresponding to the same point in reciprocal space.
Eleven metals, one alloy, and four semiconductors are treated. The method enables one to separate long-
range electromagnetic (i.e., multipole) forces from "overlap" ones. The results suggest in several cases that
the former are required to describe the interactions in a realistic way.

I. INTRODUCTION

HE thermal motion of atoms in a crystal is
determined by the forces existing between them,

and the observation of the spectrum of these vibrations
should therefore be a tool for inferring the nature of
these forces. The process of obtaining this inference is
necessarily an inductive rather than a deductive one.
Thus, a given force scheme (i.e., an assumed set of
"force constants" or "coupling parameters" which tell
how the displacement in some direction of any atom in
the lattice will a6ect the motion of any other atom in
the lattice) produces one unique set co, (q) of 3e lattice
vibrations for each wave vector q (i = 1, , 3e, n= the

~ Present address: Virginia Polytechnic Institute, Blacksburg,
Virginia.

number of atoms per unit cell) which one can straight-
forwardly compute, provided that one agrees on basic
theoretical assumptions such as the Born—von Karman
theory and the harmonic approximation. The reverse
process, which has to be followed in practice, is not a
unique one, however; at least as long as the number of
experimental observations of cv (q) is finite and is subject
to experimental error, it is always possible to ht the
experimental data with any number of possible force
schemes. To pick the "correct" force scheme from these,
other criteria are necessary —such as goodness of fit,
assumption of nature of forces believed for other reasons
to exist in certain crystals, shortness of range, simplicity,
or general "reasonableness. " Mathematically, the
"dispersion relation" cs, (q) is the 3n solutions of an
equation of order 3n in eu', with the force constants
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appearing in a complicated way in the coeKcients of
that equation; in the solution, therefore, the effects
of the various forces are quite mixed up and well con-
cealed rather than separate and obvious to the eye.

It is for this reason that it has been suggested" that
in many cases the analysis might be simplified by study-
ing, instead of dispersion relations themselves, the "sum
function" p,=r'" o),'(Il) which, although it does not con-
tain all the information that the dispersion relation does,
it does contain some of the information in a particu-
larly direct and simple way. That sum function can in
fact be written in the form
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The sum on the left is the sum of the squares of all the
phonon frequencies at q, and the index k over which the
sum on the right is taken is over the various forces
existing in the crystal. ' The major points which provide
the simplicity which we have referred to are two in
number: first, the contributions from the various forces
are not involved in the complicated solution of a high
order algebraic equation, but appear in a simple additive
form in the sum appearing on the right-hand side of
(1); and, second, many of the forces which are present
in the crystal provide only a constant contribution and
contribute to the sum over k not at all, thereby per-
mitting a particularly straightforward analysis of some
of those forces which are less obviously seen in the
dispersion relation itself than the rest. It is also

important in practice that the Pi") are usually very
simple and easily computed functions, viz. , the con-
tribution to the trace of the dynamical matrix. Since
mathematically the left hand side of (1) is the trace of
the dynamical matrix, the forces which contribute only
a constant term to the right-hand side (1) have been
called trace-constant forces, and those that do con-
tribute to the q-dependent sum on the right hand side
have been called trace-variable forces. The two classes
of forces that are trace-constant are' (1) all forces
between unlike atoms in the crystal and (2) all forces
which are electromagnetic in nature. The trace-variable
forces, whose effect should be seen from the sum func-
tion in a particularly simple additive way are therefore
the nonelectromagnetic forces between like atoms. In
Fig. 1, the f's corresponding to the most common
trace-variable interactions are shown for the simple
cubic, the face-centered cubic, and the close-packed

' ProceeCings of the International Conference on Lattice Dynamics,
Copenhagen, edited by R. F. %allis (Pergamon Press, Inc. , New
York, 1965).' H. B.Rosenstock, in Ref. 1, p. 205. See also H. B.Rosenstock,
Phys. Rev. 129, 1959 (1963).' A sum rule similar to (1) but with validity for more restricted
forces has been obtained by R, Brout, Phys. Rev. 113, 43 (1959),
and in a somewhat different connection also by G. Leibfried, in
Handbuch der Physzk, edited by S.Flugge (Springer-Verlag, Berlin,
1955), Vol. 7, p. 247; M. Blackman, Proc. Roy. Soc. (London)
A181, 58 (1942).
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FIG. 1. Q dependence, in three directions, of contributions of
various interacting atoms to the sum. Interaction between the
atoms shown in black on the left side of each figure produces the
curve shown on the right. (a), (b), and (c): simple cubic lattice.
(d) and (e): face-centered cubic lattice. (f), (g), and (h): close-
packed hexagonal lattice.

hexagonal lattices, along certain crystallographic sym-
metry directions. Even though only the effects of very
near neighbors are shown in these diagrams, it seems
likely that these may be the only trace-variable forces
that will appear in many crystals —as can be illustrated
by the example of alkali halides of the NaCl structure.
Crystallographically, these are face-centered cubic
crystals with two atoms per cell. Figures 1(d) and 1(e)
therefore apply, and the next-strongest trace-variable
force would be between third like neighbors, i.e., across
the body-diagonal of the unit cell shown in the left part
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of the 6gure. Since one like atom is directly in between
these interacting atoms (as well as unlike atoms nearby
but not shown in the figure), overlap forces between
them would be expected to be very small, if not absent.

The purpose of the present paper is to look at experi-
mental results of dispersion relations that have been
obtained by others in the past few years to see what
understanding, in addition to that provided by the
authors of these experimental papers themselves, can
be attained for these substances by an analysis along
the lines suggested by Eq. (1).Although the informs, tion
will necessarily be restricted, one can hope that it may
in some cases be of more direct physical significance than
the straightforward least-squares 6tting of assumed
force models, with many arbitrary parameters, to the
observed dispersion relations.

Some words need to be said about two terms we have
just used —"like" and "electromagnetic. "The meaning
of the term "like" is unambiguous in crystals that have
more than one atom per unit cell; for example, in a
sodium chloride crystal, all sodium atoms are "alike, "
and all sodium atoms are "unlike" all the chlorine
atoms; similarly, in diamond, carbon atoms located in
equivalent crystallographic sites are like, and they are
diferent from those carbon atoms which are located in
the other crystallographic site in the diamond lattice.
Matters are slightly more involved, however, in Bravais
lattices, in which crystallographers recognize only one
single atom in their minimum unit cell. In that case we
must for our purposes construct a larger unit cell which
contains more than one atom in sites which, in terms of
that new unit cell, are crystallographically not equi-
valent. Physically, this is a simple enough process, and
indeed the larger unit cell that we deal with here has
usually a simpler shape than the crystallographically
minimal unit cell; for example, in the case of body-
centered-cubic metals such as sodium, we deal with a
unit cell which is a cube, containing one atom at each
corner (all these atoms, and those located at the corners
of all the other unit cells, are "like") and one atom at
the center of that cube (and of course all atoms loca.ted
at the center of any other such cube are considered
"like"). By contrast, the crystallographic unit cell of
minimal size has only one half the volume of that cube
and a fairly complicated shape (which is well known
and, in its most symmetric form, is exhibited in Fig. 5
of Ref. 1).The fact that we are now dealing with a unit
cell with two atoms in it means that a calculation will

give us six phonons for each point in our reciprocal
space, which we refer to as Q space, whereas the experi-
menter will provide us with only three phonons for each
point in q space; we must therefore determine which
points in q space correspond to the same point in Q
space before applying our analysis to Eq. (1) in the now
suitable form

3N

P arP(Q) =constant++ PI„P'~~ (Q) .

(1V is now the number of atoms in the new larger unit
cell, usually a simple multiple of m. ) This matching
procedure, however, is a formally simple one, described
earlier. ' It is found that, for example, in the body-
centered-cubic lattice the points (a,b,c) and (a, b, 1—c)
in q space correspond the same point in Q space, while
in the face-centered-cubic lattice, the points (a,b,c),
(u, b, 1—c), (a, 1 b,—c), and (a, 1 b, 1——c), in q space
correspond to the same point in Q space.

In discussing "electromagnetic" versus "nonelectro-
magnetic" forces, the distinction is between forces which
in the dynamical matrix can be described simply as
coulomb, dipole, quadrupole, etc. forces and which have
long range, versus those which are usually called
"overlap" or "short range" or "repulsive "forces. It is
true, of course, that these forces are, in a basic sense,
also electromagnetic in nature, as are, indeed, all forces
dealt with in the realm of atomic physics —that is to
say, in the realm in which nuclear and gravitational
forces are negligible. The crucial distinction between
electromagnetic forces in our sense and those which,
here as elsewhere, are considered nonelectromagnetic is
whether they can, or cannot, be described in terms of
an electromagnetic potential classically, rather than
quantum-mechanically, as the so-called "overlap"
forces must be. It should also be said that the sum rule

(2), or (1), remains valid in the face of charge distortion
if this can be validly described in terms of a shell
model. 4 If that model is applied to the present sum rule,
the electromagnetic forces, core-core, core-shell, and
shell-shell, would contribute nothing to the sum,
whereas "springlike" forces between core-core and
shell-shell would contribute; spring-like forces between
core and shell would not because cores and shells would
count for "unlike" particles. If a shell model is therefore
a valid description of the forces in a crystal, then the
number of forces remaining to provide a contribution to
the sum (2) should be particularly small and the form of
the sum particularly simple.

The rest of this paper deals with analysis of dispersion
data on individual substances, with all substances that
have the same structure treated in the same section and
results shown in the 6gure bearing the same number as
the section. The symbol Z is used throughout for what
is essentially the sum on the left-hand side of (2),
appropriately normalized and with the zero fixed at
Q=O; that is,

(3)

Section 2 deals with the body-centered-cubic metals,
Sec. 3 with P-brass which is also a body-centered cubic
structure and Sec. 4 with white tin, which is basically
body-centered tetragonal, but more complicated in
detail. Section 5 concerns face-centered-cubic metals.

4 B. G. Dick and H. W. Overhauser, Phys. Rev. 112, 90 (1958);
W. Cochran, Proc. Roy. Soc. (London) A253, 260 (1959).
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TABLE II. Values of the coeKcients Pq, as defined by Eq. (2).
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FIG. 2. Z for some body-centered cubic metals.

For our purposes, the unit cell is a simple cube in all
these sections (except Sec. 4, where it is a rectangular
parallelopiped with one side shorter than the other two).
Section 6 deals with the diamond, or zincblende, struc-
ture, face-centered-cubic for our purposes (we are not
aware of any new work on any Nacl-type alkali halides,
which would also be face-centered cubic here'). Finally,
in Sec. '7 hexagonal structures are discussed. Section 8
summarizes the results.

2. BODY-CEN'TERED CUBIC METALS

Dispersion relations from neutron scattering are
available for 6ve body-centered-cubic metals: Na', W',
Mo, ~ Ta' and Nb. ' For our purposes, the body-centered-
cubic lattice is treated as a simple cubic lattice with two
atoms per unit cell and the theoretical e6ect of the
interaction between 6rst, second and third like-neigh-
bors (which are second, third and fifth neighbors
irrespective of likeness) is shown by Figs. 1(a), (b), and
(c).These should be compared with Fig. 2, in which the
quantity Z computed from the actual dispersion data
for the 6ve metals are shown. Only in one direction,
LOOQj, do we have fairly complete data for all these
substances; in that direction, unfortunately all three
forces considered in Fig. 1 give a very simple curve, of
the same shape. Only for some metals do we have fairly
complete data in other, more interesting, directions;
but the value of Z for the points (011) and (111) is

available for all. This last fact suggests using the three
points (001), (011), (111) for a unified analysis of all
substances. The values of Z at these points are given
in Table I.

Truncating the right hand side of Eq. (2) after three
terms and writing it out for Q = (100), (110), (111),we
obtain, from Fig. 1,

Z (100) '2 4 4 Pi'
Z(110) = 4 4 0 Ps
.Z(111). ,6 0 2J,Ps.

which can be solved for the P's, to give Table II. These
numbers can be taken seriously as an indication of the
relative strength of forces between 6rst, second and
third like-neighbors only when they fall oG rapidly
(i.e. for Na, W, Mo); in these cases one can infer also
that further neighbors probably interact only slightly.
For the other metals the 6gures merely indicate that
truncation after the third like-interaction was un-
justified and that longer range forces are physically
active. Ke proceed with a description of the data for
each metal.

It is clear from Table II that forces between first
like-neighbors (i.e., second neighbors) are present and
that second and third like-neighbors interact much more
weakly. Indeed, experimental errors ( 0.03) alone
might produce the ratio of 1:2:3for Z(100):Z(110):
Z(111) as would be produced by first like-neighbor
forces alone. However, as pointed out by the authors'
a somewhat better fit can be obtained by including
second and third like-neighbor forces of small magnitude.

7~LE I. Values of Z at certain points
for body-centered cubic metals.

Z(100)
Z(110)
Z(111)

0,10
0.15
0.29

—0.100
0.154
0.199

Mo

0.94
1.38
1.49

Ta

0.063
0.179
0.130

0.46
0.81
1.01

'A. D. B. Woods, B. N. Brockhouse, R. H. March, A. T.
Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).

S. H. Chen and B. ¹ Brockhouse, Solid State Commun. 2, 73
(1964).

7 A. D. B- Woods and S. H. Chen, Solid State Commun. 2, 233
(1964).' A. D. B. Woods, Phys. Rev. 136, A781 (1964).

9 V. Nakagawa and A. D. B.Woods, Phys. Rev. Letters 11, 271
(1963).

Of the forces between like-neighbors that show up in
the analysis of Z, |If "l is by far the strongest one, but a
contrast to the situation in Na, the simple ratio 1:2:3
for the three special points considered in Table I, that
would indicate the effects of 6rst like neighbors alone,
can de6nitely not be obtained within experim, ental error
here. On the other hand, a force between third like-
neighbors is not needed for a 6t; but a comparatively
small but definitely present force between second like-
neighbors is needed. This tends to confirm the results
of the analysis of the experimenters' who, in attempting
to 6t the dispersion relations themselves by taking
successive neighbors into account, 6nd a very strong
second-neighbor force, a force between third neighbors
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about 5 in strength of that, but note that no further
improvement can be obtained by going out to neighbors
as far as six and independent parameters as many as
fifteen. Our results here, viz. , the apparent vanishing of
forces between third like-neighbors, and by implication
of nonelectromagnetic forces between further like-
neighbors, suggests that explanation of the pecularities
of the dispersion relation of tungsten be sought in
electromagnetic forces.

Mo

Both Z and the errors in obtaining it are quite large
here; in both the (00Q) and (QQQ) direction, the shape
of the Z curve is, within experimental error a simple
1—cosQ one. Third-like-neighbor interaction may be
absent, by inspection of Table II, but strong forces
between second as well as first like-neighbors are seen
to be necessary; this does not agree with the authors'
attempted fit, ' which gives force constants for second
like-neighbors only about y p in magnitude for those for
first like-neighbors. However, one must note that the
authors attempted to make a least-squares fit to many
of the points of the original dispersion relation whereas
our analysis is based on only three points of the derived
function Z. Because only the longitudinal branch was
measured in great detail by the experimentists near the
point (111) where a "Kohn anomaly" is believed to
exist, the quantity Z could not be computed there.

Nb

Here, as in Ta (below) the numbers in Table II
merely indicate the presence of nonelectromagnetic
forces well beyond third like-neighbors. The original
authors' have attempted to fit their dispersion data by
interactions out to eighth neighbors without getting a
perfect fit, and therefore doubt the physical significance
of such "force constants. "The points shown in Fig. 2
for Nb are subject to both experimental and transcrip-
tional errors but are significant, on both side of the zero
line; at least some negative values for force constants
are thereby indicated. It seems likely that many more
experimental details, including dispersion relations at
more closely spaced points, will be needed before an
analysis capable of unscrambling the many forces which
are physically present will be possible.

From the near-constancy of Z in the (Q00) direction
alone we may conclude that the nonelectromagnetic
forces between like neighbors in this metal are rather
weak compared to similar forces in other metals. Only
the points (001) (011) and (111)are of significance, the
others being exceeded, or comparable to, experimental
error Pand for that reason some points in the (QQQ)
direction are not shownj. The authors8 have found it
difficult to fit dispersion data to a realistic force rliodel;
they used seventh-neighbor general models, and a
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I rG. 3. Z for beta-brass.

tenth-neighbor "axially symmetric" model. Detailed
conclusions as to forces cannot be read from either the
figure or the table; however, the smallness of Z suggests
that attempts to fit dispersion relations should be based
on electromagnetic forces (which go to infinity in a
specified way) rather than by arbitrarily adding more
and more neighbors.

' G. Gilat and G. Boiling, Phys. Rev. 138, A1053 (1965).

3. g BRASS

Measurements on beta brass are available at room
temperature. "The structure is that of CsCl, which is a
simple cubic lattice with two atoms per unit cell. We
can therefore consider this alloy together with the body-
centered cubic metals of Sec. 2. The computation of Z
is actually slightly simpler here, as complete dispersion
data give six phonons for every point in Q space rather
than three, and the matching of two sets of three points
is not necessary in the present case. Unfortunately,
even though the experimental study of the dispersion
relation has been quite extensive, " it is only at a few
points that all six phonons are actually given, and our
Z, shown in Fig. 3, is quite incomplete. Also, the cumu-
lative error in Z, due to error of experiment and tran-
scription, is considerable. Thus, even though the peak
that shows up in the (QQQ) direction would be indica-
tive of a noticeable force between second like-neighbors,
(which is likely to exist), we cannot be sure that it is
real for that reason. An indication of second like-
neighbor interaction is not surprising, as a least-squares
analysis of the data" themselves has already suggested
strong interactions between neighbors out to fourth and
possibly weak ones out to seventh. For the points (001),
(011), (111)we have (subject to errors of nearly 0.05)
values of Z of 0.19, 0.29, and 0.26. Analysis in the
manner of Table II of Sec. 2 then gives 1.24, 0.'?9, and—0.08 respectively for 28Pi, 28P2, and 28P, . This may
be a confirmation of the authors contention" that forces
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of and beyond third like-neighbors (fifth neighbors) are
small. More detailed analysis must await complete
dispersion data for more points in reciprocal space.

4. WHITE TIN

White tin, or P-Sn, can be most easily described in
terms of a tetragonal unit cell with four atoms in each,
located at the points (000), (—',P2r, —,'), (-'„Ogre), (0,—,',4); for
our purposes however we must use the primitive
"body-centered tetragonal cell" of half that volume,
shaped as the body centered cubic cell (Fig. 5 of Ref.
2) but with the c axis shorter than the other two, and
with two atoms in it"" That is, it consists of two
interpenetrating sets of body centered tetragonal
lattices. "Like" atoms for our purposes are those that,
in the first cited scheme, are in positions (000) and

(—',,—,', s); since the c axis is much shorter than the a axis,
the first like-neighbor of (000) is located at positions
(00&1) and those located at (+-', +-,'&-', ) are second
like-neighbors. (If the c axis were equal in length to the
a axis, the situation would be reversed. ) The contri-
butions to the trace from first and second like-neighbors
are,

Pro. 4. Z for
white tin.
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»t
"'= 1—cos2Qs,

»t
"&= 1—cosQi cosQs cosQs,

(with Q;= p;~ q;,„).In the (00Q) direction (direction
of the c axis), these two functions take on the form

f&'& = 1—cos2Qs,

Pl'& = 1—cosQs,.

these functions are illustrated respectively in Fig. 1 as
fr.&cc"& and lt'so "& in the (Q00) direction, respectively.
The function Z, computed from the neutron-scattering
data" and shown in Fig. 4 clearly shows the effects of
both forces. Since P&'& goes to 0 at (001), the value of Z
at that point, 0.24, is a measure of the coefFient of

and since this implies that fi'& =0.12 at (0,0,0.5),
the value of Z there decreased by 0.12, or 0.60—0.12
=0.48 is a measure of the coefficient of f~'&. )Here we
have written 0.6 for Z (0.5) even though Fig. 4 shows 0.5
there because an anomaly clearly exists at that point. ]
That anomaly, deriving from the LO branch, has been
interpreted as a Kohn anomaly" with some hesitancy
due to the somewhat uncertain boundary of the Fermi
surface. In the case of the function Z, it is not even
certain that it should appear at all; this is because the
experimental error in the transverse optic (TO) branch,
together with the large value of o&(TO) in this material,
produces a possible error in the squared quantity Zco'

"R.W. G. WyckoG, Crystal Structure, (Interscience Publishers,
Inc. , New York, 1963), 2nd ed. , Vol. 1, p. 29.

'~ For a pictorial representation, see F. Seitz, The 3fodern
Theory of Solids (McGraw-Hill Book Company, Inc., New York,
1940), p. 5."J.M. Rowe, B. N. Brockhouse, and E. C. Svensson, Phys.
Rev. Letters 14, 554 (1965).

that may be larger than the dip itself. Although inter-
actions between both 6rst and second like-neighbors
may be considered to have been demonstrated even by
the failry crude data shown in Fig. 4, more detailed and
less uncertain data will be required before more distant
forces will be capable of being investigated.

S. FACE-CENTERED CUBIC METALS

For our purposes, we are again dealing with a simple
cubic lattice. As pointed out earlier, this now contains
four atoms per unit cell, and therefore in order to
compute Z for any point (abc) one requires all the
phonons at this as well as three other points. It is only
for few substances that such complete data are available
at a number of points sufficient to draw detailed con-
clusions (Fig. 5). The work on lead" has already been
analyzed' and shown to imply strong forces through at
least third 1'ike-neighbors. The results for nickel, " also
shown in Fig. 1, provide a considerable contrast; Z is
very small throughout and may indeed be 0 everywhere
(within the experimental error). Thus, nonelectro-
magnetic forces may be absent even between 6rst like
neighbors (which is to say, second neighbors —see
Fig. 5). In analyzing their results by the method of
least squares, the authors" have fitted their data well
by a scheme involving fourth neighbors, or fifth neigh-
bors in an axially symmetric model, with more than
nine independent force constants. While our Fig. 1 does
not exclude the possibility that many independent force

'4B. N. Brockhouse, T. Arase, G. Caglioti, K. R. Rao, and
A. D. B. Woods, Phys. Rev. 128, 1099 (1962)."R.J. Birgeneau, J. Cordes, G. Boiling, and A. D. B. Woods,
Phys. Rev. 136, A1359 (1964).
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FIG. 5. Z for some face-centered cubic metals.

6. DDb MOjND STRUCTURE

constants may have physical signi6cance, it does sug-

gest that a much smaller number of independent forces,
but electromagnetic ip. nature, may provide a better
physical understanding.

Data for aluminum" are available in detail, but only
in two directions; we were therefore able to compute Z
for only one point in addition to the origin.

that diamond is therefore not homologous to the other
two elements seems now generally accepted. "The new
results Yarnell et al. obtained by neutron scattering in
essence conhrm the dispersion curves that Hardy and
Smith obtained earlier from less direct examination of
optical data; only the polarization has been shown to
have been incorrectly assigned near the zone boundary
in the [100jdirection; this results in a reduction of the
value of Z (since in that direction the transverse, not
the longitudinal, frequency is degenerate). The results
remain consistent, within experimental error, with a
second-neighbor force, as is shown by comparison with
I'ig. 1.The new data on Si"on the other hand, confirms
and, on account of their greater accuracy and coverage
of all three main symmetry directions, reinforces the
belief that no such nonelectromagnetic second-neighbor
force exist here. Inclusion of such a force for the purpose
of improving earlier models for Si, as has been sug-
gested, "would therefore not be physically realistic, and
present results suggest that improvement of the already
quite involved models" must be sought in further long-
range electromagnetic forces. The theory of the vibra-
tions of semiconductors of this structure has been
studied in great detail, with forces through 6th neigh-
bors, by Herman'4 for the point-ion model, and by
Cochran for the shell model. "Herman concluded that
no good fit can be obtained without going beyond
fourth neighbors. The absence of any indication of such
forces in the form of Z suggests the need for considera-
tion of long-range electromagnetic force for a realistic
description.

For GaAs, on the other hand, overlap, (i.e., non-

electrornagnetic) second-neighbor forces are seen to be
essential, as was indeed realized" in the model developed

by the experimenters, who ha, ve added overlap forces

In the past three years, neutron scattering data on
GaAs has been presented and analyzed' and the exist-
ing data on Ge," Si ' " and Diamond"" have been
refined. Our results for Z are shown in Fig. 6.

It has been previously noted' that Z is 0 throughout
for Si and Ge, but significantly different from 0 for
diamond. It was concluded that in diamond, but not in
silicon and germanium, strong nonelectromagnetic
second neighbor forces were present, and the conclusion
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16 J.L. Yarnell, J.L. Warren, and S. H. Koenig, in Ref. 1, p. 57.
'7 G. Dolling and J. L. T. Waugh, Ref. 1, p. 19. See also J. L. T.

Waugh and G, Boiling, Phys. Rev. 132, 2410 (1963).
~ B.N. Brockhouse and P. K. Y. Iyengar, Phys. Rev. 111,747

(1958).
"B.N. Brockhouse, Phys. Rev. Letters 3, 256 (1959).
20 G. Dolling, in I'roceedings of the Chalk River Symposium on

Inelastic Scattering of Neutrons in Solids and Liquids (Inter-
national Atomic Energy Agency, Vienna, 1963), p. 40.

~~ J. R. Hardy and S. D. Smith, Phil. Mag. 6, 1163 (1961).
"J.L. Warren, R. G. Wenze1& and T. L. Yarnell, Proeeedhngs of

the Symposium on Inelastic Scattering of Neutrons, Bombay, 1964
(International Atomic Energy Agency, Vienna, 1965), Vol. 1, p.
361; see also J. L. Yarne)l, J. L. Warren, and R. G. Wenzel,
Phys. Rev. Letters 13, 13 (1964).
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Fzo. 6. Z for some semiconductors of the diamond structure.
For diamond, the connected points are derived from the optical
data of Hardy and Smith (Ref. 21), since the recent neutron data
of Wenzel, Warren, and Yarnell (Ref. 22) give the frequency of
all the branches which are needed for computing Z, at only four
points. Two of these are shown at (0,0,0.8) and (001), two others
in the (QQQ) direction fall very close to the curve shown.
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between second as well as 6rst neighbors to their
"dipole approximation" (modified shell-model) calcu-
lation. The 6t of the GaAs results in Fig. 6 to the effect
that second-neighbor forces are shown to produce in
Fig. 1 are not perfect, to be sure, but deviations may be
due to experimental uncertainties. The model used'~ is
quite elaborate and contains many parameters, yet does
not fully satisfy the proposers in representing the data.
It would therefore be very valuable if experimental
error in obtaining dispersion relations could be reduced
to the point where one could decide unambiguously
whether our Z does, or does not, Gt the curve of Fig. 1
for second-neighbor forces; this would enable one to
decide whether in further refining the "dipole-approxi-
mation" model, one should introduce third-nearest-
neighbor overlap interaction, or long-range electro-
magnetic (for example, "quadrupole" ) forces.

30--

2.5

2.0—

I.O—

0.5—
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7. CLOSE-PACKED HEXAGONAL METALS

The close-packed hexagonal lattice may be visualized
as follows: Place a number of spheres of equal radius as
closely together as possible on a table top. The well-
know arrangement of linked equilateral triangles (or
face-centered hexagons) results. Call this plane A. On
top of this, as closely as possible, place an identical
plane of spheres. There will be two optimal positions
for this new plane, each slightly displaced from that of
the plane below it. Call this second plane B. A third
identical plane can again be put on top in 2 ways-either
in position A or in a third position which we can call C.
A lattice consisting of planes ABAB is called close
packed hexagonal, one consisting of planes ABCABC
is called close-packed cubic or face-centered cubic (that
the close-packed cubic lattice is indeed the face-
centered cubic lattice, which many people are accus-
tomed to viewing from a different angle, is a fact,
though perhaps not an obvious one). Thus even though
the face-centered cubic lattice has only one atom per
unit cell, the close-packed hexagonal one has two (viz. ,
atoms A and atoms 8); each A atom has twelve nearest
neighbors, six of which are A and six B—a situation
different from earlier considered cases in which nearest
neighbors of any given atom were always different from
it. We have here, therefore, one case where the sum rule
can give information about nearest neighbor inter-
actions also. However, on account of the lattice anisot-
ropy it is not at all obvious that the interaction be-
tween nearest neighbor AA pairs is the same as that
between nearest neighbor AB pairs. In addition we
should note that in real crystals, the ratio cja between
distances between second like-neighbors and nearest
neighbors may differ from the value (2+6)/3 —1.633 (if
one wants to retain the "close-packed" language, one
can think of close-packed spheroids rather than
spheres); for zinc and beryllium, for example, these
ratios are 1.856 and 1.567 "

"Reference 11, p. 11.
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F&G. 7. Z for some close-packed hexagonal metals.

It is customary in describing hexagonal crystals to
note directions by four rather than three indices
((qf,p). The last one denotes the special, or "c"direc-
tion, the others the three equivalent axes parallel to a
line of nearest neighbors in the A plane described above.
Our results for contributions to the trace are as follows:
for interaction between nearest like neighbors

fHExo& = 1—cos2Q+2$1 —cosQt cosQs]

for interaction between second like-neighbors

iP@axt ~ = 1—cosQs

and for third like-neighbors

&"=1—cos2Q +2I 1—cos3Q cosQ j.
Here the Q's are Cartesian coordinates chosen so that
Qs coincides with the special or c axis, LQt ——Qs ——0 thus
denotes the (000,1) directionj, Qt coincides with a line
of nearest neighbors perpendicular to the c axes
LQs ——Qs

——0 thus coincides with the (100,0) direction],
and ks is perpendicular to both

I Qt ——Qs ——0 is thus a
(110,0) direction). Fig. 1L(f),(g), (h)] shows these inter-
acting atoms and the forms that the functions QHEx
take in these special directions.

As for the available data (Fig. 2), interactions be-
tween second neighbors may be inferred for Be,'~ with
possible further interactions affecting the k3 direction
hidden in the uncertainty of the data, and no data
available for the "in-plane" directions. Somewhat more

» R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A.
Strong, Phys. Rev. 128, 562 (1962).
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information can be read from the zinc data": the con-
stancy along the direction (000,1) suggests strongly that
interactions between other than 6rst neighbors are
absent in directions out of the basal planes; by con-
trast, the in-plane interactions, as manifested by the
magnitude of the curve in the (110,0) direction, must
be quite strong. This agrees with the comment of
Sorgonovi et al. on the strong anisotropy and easy
cleavage perpendicular to the basal planes. In the Z
curve, the nearest-neighbor interaction P&" is clearly
dominant, although the effects of third like-neighbors
f&'& is noticeable in the increase of Z above the simple
1-cosQ curve at the higher Q values. This effect appears
to be larger than the experimental error and indicates
that interactions through "fourth neighbors, " as tried

by Borgonovi, " following Collins, " would not su%ce
for a complete description (the third like-neighbors that
give rise to our function P&'& would be "fifth neighbors"
in the scheme of Collins). Measurements in the (100,0)
direction should be particularly interesting, in that the
rather unusual-looking curve of Fig. 1(f) should provide
the dominating feature, providing an opportunity for
more detailed analysis of the relative strengths of the
in-plane forces.

8. SUMMARY

A scheme which enables one to see the effects of some
interatomic forces from experimental dispersion rela-
tions in a simple additive way has been used to study
data available for sixteen solids, mostly metallic
elements. Considerable differences are found among
elements even of the same crystallographic structure.
Analysis is restricted by the need to have the energies
of all the phonons at more than one point in reciprocal
space, as well as by experimental error. In a number of
cases apparent absence of "overlap" forces between
close neighbors support the presence of long-range
electromagnetic ones.

"G. Borgonovi, G. Caglioti, and J. J. Antal, Phys. Rev. 132,
683 (1963).' M. F. Collins, Proc. Phys. Soc. (London) 80, 362 (1962).

TABLE III. Errors in Z for various materials.

Na
Nb
Ta
W
Mo
P-brass
P-Sn
Pb
Ni
Al
C
Si
Ge
GaAs
Be
Zn

0.03
0.04
0.05
0.06
0.13
0.05
0.2
0.06
0.05
0.06
0.06
0.06
0.1
0.02
0.1
0.1

0.3
1.1
0.13
1.0
1.5
0.3
0.6
0.8
0.04
0.005
0.16
0.015
0.04
0.1
0.23
2.5

for each point, these estimated errors were the ones we
used for Dco; when such a table was not available, we
had to rely on verbal statements in the paper (e.g.". . . estimated errors of 1 or 2%. . .") and had to also
include possible errors of our own in reading points off
a published 6gure.
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APPENDIX

Table III indicates the errors probably inherent in
each case in the quantity Z shown in Pigs. 2—7. The
number shown under AZ for any substance is the largest
value of 2P; ~;A~; for any point; the largest value
Z, of Z itself for that substance is also shown. When
5Z is of the sam, e magnitude as Z, , no substantial
afhrmative statements can, of course, be made in our
analysis, but the inference that Z is zero throughout
within experimental error can nonetheless be a signi6-
cant conclusion, particularly if AZ is small. 6+ contains
contributions from various sources: where the experi-
menters give co in a table that includes estimated errors


