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Magnetic Fields
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A criterion of applicability of the efFective-mass approximation to the dynamics of a Sloch electron in
crossed electric and magnetic Gelds is derived based on a treatment of Luttinger and Kohn. The require-
ments necessary for the diagonalizability of the Hamiltonian for an electron in a periodic crystal Geld in the
presence of a perturbing magnetic Geld and an electric potential are examined. These requirements lead to a
restriction on the ratio of the electric and magnetic Gelds. The validity of the effective-mass approximation
is also considered for higher Landau states in a magnetic Geld as well as for lowest states of an impurity ion.

I. INTRODUCTION

'HE effective-mass approximation (EMA) is a
very useful tool for treating the dynamics of

electrons in solids. After being developed by Luttinger
and K.ohn' it has been used to explain a great number of
phenomena associated with the motion of electrons in
perturbed periodic potentials, e.g., when in addition to
the periodic potential of the crystal there is a perturba-
tion caused either by external fields or by imperfections
of the crystal. There are two main cases where the
effective-mass approximation has been applied suc-
cessfully for describing the dynamics of electrons in
solids: (1) motion in the field of an impurity atom; and

(2) motion in a constant magnetic field. Both cases were
treated in detail by Luttinger and Kohn' who also
showed when the effective-mass approximation is ap-
plicable to the lowest energy levels. For the lowest
impurity level the orbit must be large enough so that
the potential of the impurity does not change consider-

ably in the vicinity of the orbit in a lattice unit cell.
The same argument was applied to higher impurity
levels' and it turned out that although the KMA cannot
be applied to describe the ground state, it is neverthe-
less applicable to higher states. This is in agreement with
the experimental results. The criterion of the smallness
of the fractional change of the potential in a unit cell
seems therefore to work very well for the impurity
states. In the second case, the applicability of the
effective mass approximation was proven for the ground
state in any practically achievable magnetic field. ' For
high Landau levels this is no longer the case. As in-
dicated by McLean, ' the variation of the wave func-
tion for high Landau states becomes very rapid and the
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effective-mass approximation cannot be applied. Both
the "gentleness" of the potential and the smoothness of
the wave function are general conditions for the
effective-mass approximation to be valid.

Apart from the two cases mentioned above, there is
another configuration where the EMA has been used
recently. This is the dynamics of an electron in crossed
electric and magnetic fields. ' ' Aronov' applied the
EMA to the calculation of optical interband absorption
and found that the energy gap of a semiconductor in
crossed electric and magnetic fields decreases propor-
tionally to (E/H) ', where E is the electric field and H the
magnetic field. No limitations are given as to when this
variation of the energy gap with fields holds. It is
evident that such an (E/II)' dependence cannot be
valid when E/H becomes very large. This means that
the results obtained from the EMA are incorrect in the
limit of large E/H ratios and it is of interest to find out
the limits on E/H in order for the EMA to be applicable.
One could expect that if the EMA is valid for small 8
and for small H, it must be valid also for crossed fields

providing both are small. We will show that this is not
in general the case and that for the EMA to be valid,
it is not enough for E and II to be sufficiently small but
there must be a limitation on the ratio E/H as well.

The general reason for this is the following: The
crossed-field case is a particular example of the applica-
tion of the KMA to a problem where more than one
kind of perturbation is involved —in the above-
mentioned case, that of electric and magnetic fields.
Since the EMA follows in fact from a diagonaliza-
tion procedure of the Hamiltonian, we must require
the nondiagonal terms of a given perturbation to be
small not only in comparison with the diagonal terms
of the same perturbation but also to be small in com-

parison with the diagonal terms of the other kind of
perturbation. This requirement leads to a limitation
on the ratio of the perturbation. In general, if the
diagonal parts of the perturbation are of a different
order of magnitude, we must expect the EMA to be

4 A. G. Aronov, Fiz. Tverd. Tela 5, 552 (1963) LEnglish transl. :
Soviet Phys. —Solid State 5, 402 (1963)$.' Q. H. F. Vrehen and 3.Lax, Phys. Rev. Letters 12, 471 (1964).' Q. H. F. Vrehen, Phys. Rev. Letters 14, 558 (1965).
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inapplicable because it will then be impossible to
eliminate all the nondiagonal elements.

II. APPLICABILITY OF THE EFFECTIVE-
MASS APPROXIMATION

In many approximate theories the most dificult
question to answer is when do these theories work. . A
similar situation exists for the EMA which has been
used very often in solid-state theory, but only in very
few cases has a justification of such a use been given.
As mentioned in the Introduction, a criterion for the
applicability of the EMA to the motion in the field
of an impurity atom and to the motion in a constant
magnetic field was derived before. ' ' The limitations
on the EMA for a more general perturbation potential,
including the case where the perturbation is caused by
different fields, will be obtained in this section. Our
derivation will be based on the theory of Luttinger and
Kohn, ' which we review briefly now.

Let us start with Schrodinger's equation for an
electron in a periodic potential U(r), a constant mag-
netic 6eld U in a Landau gauge, A = —3Cy, 3„=A, =o
(where A is the vector potential), and another perturba-
tion U(r) that can be caused, for example, by a constant
electric Geld or an impurity atom:

((y+(%)A)'/2m+ U(r)+ U(r))P(r) = e~k(r) . (1)

two with p „and possibly the matrix element of the
perturbation potential U(r). To carry out the diago-
nalization procedure one has first to require the frac-
tional change of the perturbation potential U(r) to be
small over the dimension of a unit cell. This require-
ment makes U diagonal' and its matrix element will be

where
(~I

~

U~~'k')= U(k —I ')S„„,,

U(k) = (1/2~') U(r) exp( —ikr)dr

(~1 ~H (»~~'k')=—
k'sk, 1 88(k—k')

m i Bky'

Q&g2 ()2$(k—k')-

2m Bky"

is the Fourier transform of U(r). Having assumed that
U is diagonal, we introduce the following notation for
the different terms in the Hamiltonian [Eq. (3)$:

H=Hs( '+HM(»+Hn' '+Ha'"D)+HM(

H(D)+H(ND) (P)

(yak
~

Hs(D'
~

n'k') = (e„(0)+k'k'/2m) 8..8(k—k'), (8)

Here, p is the momentum of the electron, e is the absolute
value of the electron charge, c is the velocity of light,
and m is the free-electron mass. In this special gauge,
the Hamiltonian of Eq. (1) can be written as follows:

(eke Ha(D)
i
e'k') = U(k —k') 8

(ek
~
Hn (N )

~

e'k') =—kk p„„8(k—k'),
m

(10)

(2) 1 88(k—k')
(nk

~

HM("D)
~

e'k') =——esp„„
H =Ho (ks/m) yp,+ (k's2/—2m) y'+ U(r),

(12)
Bky'where Ho is the Bloch Hamiltonian and s=eX/ch. In

the Kohn-Luttinger (KL) representation we have
The subscripts 8, M, and E mean Bloch, magnetic and
electric terms, respectively; the superscripts D and ND
mean diagonal and nondiagonal terms; e„(0) is the
energy at the extremal point of the zone. Now, to ob-
tain the e6ective-mass Hamiltonian, one has to perform
a canonical transformation in order to remove the
nondiagonal elements to the lowest order. Since this
was done in detail before, ' we instead carry out this
procedure symbolically and derive a general criterion
of the applicability of the EMA. Let us apply an
operator e~ of a canonical transformation to the
Hamiltonian H in Eq. (7). Assuming that S is small we
have

k2k2~ k2k s1 a~(k—I ')
(ek~H~m'k')= e„+ ~8(k—k')—

2m) m i Bk„'

k~s' g2g(k —k')—
~...y—kk.p..-~(k-k')

/2

1 88(k—k')—hsp„„.*—

Bky
+.(~k

I Ul ~'k ).

In the last expression,

(2m)' k
Neo —+a ~nn o~r,

i
p

0

where 0 is the volume of a unit cell and the integrati
is over a unit cell. The aim of the EMA is to elimina
elements nondiagonal in the band index e by applying a
diagonalization procedure to the Hamiltonian [Eq.(3)).
There are in general three nondiagonal terms in Eq. (3):

To remove the interband terms H&N & to the lowest
order, one requires that H( D)+[Ha( ),Sf=0. From

(4) H=e He =H ( )+HM( )+HF( )yH(N
+[Ha( ))Sj+[HM(D) Sj+[Hn( ),Sj

+LH'"D' S3+l[[H ' ' Sj S3
te +higher order terms in S. (13)
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this condition one can determine S, namely, Let us again write it in symbolic form:

(~k
~
S

~

e'k') =——hk p ~ lI(k —k')

1 BlI(k—k')-
—hsp„„*-

i Bk„'

=0) m= e',

ItCO~~& ) NQ'S )

(14)

(H ' )*+HM( )*+H ( ))B„=eB„, (20)

where 8„is the wave function in the new representation
and e is the band index which shows that Eq. (20) is
written for the eth band. For finding the wave function
in the coordinate representation, Luttinger and Kohn'
define a function F„(r):

where h~„„.=e„(0)—e„(0). Inserting the expression
for S into Eq. (13), one finds:

H =Ha(n)+HM(i))+H@(n) & [[a (i)) S]S]
+[HM' ' S]+[IIF( ),S]+ . (15)

The eRective-mass Hamiltonian may be obtained from
relation (15) provided that the two last terms can be
neglected with respect to all the others. If there is
only one kind of perturbation, say the magnetic field,
then the term [H)ir(n), S] can always be neglected with
respect to HM' ) because, as assumed, the matrix S
is small. But when there are two perturbations, as in
Eq. (15), one has to require both [HM' ),S] and
[HE(n),S] to be smaller than the ones we keep in the
effective Hamiltonian.

In order to compare terms, let us write down the
eRective-mass Hamiltonian:

where

a*=Hi)(n)*/HM( )*+HE( )

1 8'e (k))
-(0)+-

2 c)k Bkp) o

(16)

XS...S(k—k'), (17)

8'e„(k)) 1 a()(k—k')
(ek)HM(n)" ~n'k')= h's k

Bk Bk )Oi Bky'

1 8'e„(k))
+—

i
8(k—k')

2i Bk Bk„l 0

h's' O'I)(k —k)
(1s)

2m 8ky"

(19)(mk
~
HE '

~

e'k') = U(k —k') l)„„.
It is interesting to point out that the term HE( & was
not changed by the diagonalization procedure. We can
now state that for the EMA to be valid, it is necessary
that both terms [HM( ),S] and [HE( ',S] be much
smaller than the terms in the effective Hamiltonian
[Eq. (16)]. As will be seen in the next section, this
requirement leads to an applicability criterion of the
KMA to the problem of crossed electric and magnetic
fields.

From the effectiveHamiltonian we can write down the
equation for the functions in the new representation.

F„(r)= exp(ikr)B„(k)dk,

and
(p„„"/mes )k„((1,(p„„"/mu )k,«1,

(p„. /rn(o„„)(k,—s(1/i) 8/c)k„)(&1,

(23)

(24)

where the values k„, k„and (k, s8/iBk„) ar—e to be
evaluated for the states which are given by the solu-

tions of the effective mass Hamiltonian (16).Thus, for
determining whether Eq. (22) is valid, we have to find

whether its solution F„(r) can be written in the form

(21) where the integration is only over those k that
satisfy inequalities (23) and (24).

Let us now summarize the conditions for the applica-
bility of the EMA.

1. The potential U(r) has to be given by a diagonal
matrix in the Kohn-I. uttinger representation [Eq. (5)].

2. The terms [HM' ' S] and [HF( ',S] in Eq. (15)
have to be small with respect to the terms in Eq. (16).

3. The solutions of the effective mass Eq. (22)
describe the physical situation only if they can be given

by a Fourier integral [Eq. (21)] with those k that
satisfy Eqs. (23) and (24).

It is interesting that a condition on the solutions of

Eq. (22) can also be formulated in a much simpler way

where the integration is over the the first Brillouin zone.
However, since Eq. (20) is valid only for small vectors k
[the smallness of k is derived by the requirement that
S in Eq. (14) is much less than 1], it is meaningful to
deal with functions F„(r) that are given by Eq. (21)
with an integration over small k only. Such functions
do not vary appreciably over a unit cell and one gets the
following equation for them':

[e„((1/i)Vj(e/hc)A)+U(r)]F„(r) = eF (r), (22)

where e„((1/i)V+(e/hc)A) is an expression that is ob-
tained by expanding e (k), the Bloch energy, up to
quadratic terms, replacing k by (1/i)V+(e/hc)A and

properly symrnetrizing products of noncommuting
operators. Equation (22) is called the effective-mass
equation and it holds only for such solutions F„(r),
the Fourier transform of which vanishes for all k that
are outside the range of validity of Eq. (20). As we

have already seen, in order to derive Eq. (20) we had to
require the matrix S given by relation (14) to be much
less than 1.This requirement leads to
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in terms of energies. To do this, let us note that the
order of magnitude of Hninl* in Eq. (20) is e„(0)
+&ts k'/2ns* and that for the EMA to be valid, the
terms JIM( '* and HE( ' must be of the same order as
Is'k'/2ns' or smaller. r Thus the order of magnitude of
e—e„(0), where e is the eigenvalue of Eq. (20) is the
same as k'k'/2&I* .We have, therefore, the following
necessary condition: only these solutions of Eq. (22)
are physical for which the eigenvalues satisfy the
relation

e—e (0) k'k'/2ns*, (25)

where means the same order of magnitude and k
is limited by the relations (23) and (24).

III. APPLICATIONS

In this section the applicability of the EMA to the
dynamics of a Bloch electron in different perturbing
potentials is checked. Although our main concern is
the problem of crossed electric and magnetic 6elds, we
give also, for completeness, a short description of the
cases of an impurity center and a constant magnetic
field.

A. Imyurity Centers

It was shown by KL' that the effective-mass for-
malism gives bad results for ground states of donor
impurities in silicon. There are two reasons for this:
(1) in the immediate vicinity of the donor atom the
perturbing potential V(r) changes from —e'/«r to

dZe'/«r («= diel—ectric constant) where AZ is the
excess charge of the donor nucleus over that of Si;
(2) in this region the fractional change of V(r) in a
typical lattice distance, a, is large. It is to be expected
that the rapid variation of the potential results in a
rapid variation of the wave function F(r). In terms of
Fourier transformation criterion [Eq. (21)] this should
mean that we have to use too wide a range of k values
to construct a solution within the limits of EMA. We
shall now examine the problem in detail.

For an electron in a periodic potential perturbed by
an impurity atom the Hamiltonian is

H =y'/2ns+ V(r) e'/«r, — (26)

where for large distances from the nucleus the Coulomb
potential is used. Let us check the three requirements
necessary for the validity of EMA.

1. The Coulomb potential [U= —e'/«r in Eq. (26)]
can be given by a diagonal matrix in the KL representa-
tion if we are interested in regions sufficiently far from
the nucleus.

2. The term [U,S]may be neglected with respect to
U provided the 5 matrix is small.

' This statement again follows from a comparison of terms we
keep in Eq. (16) with those we neglect. It is clear that in order
to be able to neglect LHM& &&',Sg and (Ha& &,S] with respect to
H~( )+, the terms HM( )+ and HK( ) cannot be much larger than
HB(D)o

expl (k")
an) 5 an/

Xz„i(kai&) V&„(0,q )d'(kai&) . (28)

The probability of finding the absolute value of the k
vector between k and k+dk is given by

lF.&(kan) l'(kan)'d(kai&),
where

(29)

(kai&)'
F„&(kan) =A„i

[n'(ka») '+1]'+'
-n'(kap)' —1-

XC i i'+'; (30)
n'(kan)'+1

A„~ is a normalization constant, and C~" is the Gegen-
bauer function. The probability [Eq. (29)] is steeply
decreasing for hag) 1. We can also use the well-known
mean-value relation'

[((kan)')-)"'= 1/n (31)

which is independent of /. This condition indicates that
indeed values hag&1 are not of much importance,
especially for I close to n. ' In terms of Eq. (28) this
means that we can construct all hydrogen-like functions
F(r) using 0&kai&&1. Now we can estimate whether
these values are within the EMA limitations. We use
the criterion ka=0. 1&(1."Hence kan ——a»/10a. Table
I gives values of parameters and approximate estimates
for conduction bands of Si, Ge, and InSb. " It can be
seen that for Si the EMA allows a maximal value of
ha~=0. 5, which is not enough to construct the is
hydrogen-like state. The situation is better for excited
states because in order to construct, say, 2p states, it is
enough to take 0&kai&&-,' [Eq. (31)]. In Ge, the
criterion allows for wider range of kaB values to be
used, however, one has to bear in mind that we have
not taken into account the anisotropy of the conduction
band near the minimum. This anisotropy makes the

&& H. L. Bethe and E. E. Salpeter, in Encyclopedia of Physics,
edited by S. Flugge (Springer-Verlag, Berlin, 1957), Vol. XXXV,
Chap. 1, p. 125.

For the ground state, the relation (31) gives just the estimate
used by LK (Ref. 1).' P„ /m~„„~a, where u is a typical lattice spacing.

H. Ehrenreich, J. Appl. Phys. 32, 2155 (1961).

3. The eRective-mass equation for a simple non-
degenerate and spherical energy band takes the form

(—(ks/2ns*) V' —e'/«r)F(r) = eF(r). (27)

Luttinger and Kohn' estimated the k value for the
ground state using the fact that for the lowest level
k =Ak and r=2 r; the uncertainty relation gives
k 1/ai& a&i denoting the effective Bohr radius. This
method, however, cannot be used for higher states and
we have to apply the relation (21). The hydrogen-like
functions F(r/an) are given by'
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TanLE I.Values of parameters and approximate estimates for conduction bands of Si, Ge, and InSb. For Si and Ge, 1/m*=2/pa&+1/mi
where pap and m~ are transverse and longitudinal masses, respectively. In estimating k,„for InSb, P /mr „„instead of a was used,
since it gives a much stronger restriction. P„„values were calculated using 2p„„ /pa =20 eV for InSb and 28 eV for Ge (Ref. 11).

Material

Si
Ge
InSb

Dielectric
constant

12
16
17

ERective
Dhass

(m*/mp)

0.26
0.12
0.013

ERective
Bohr

raCkus
as(L)

25
70

700

Lattice
constant

a(L)

5.4
5.6
6.5

p
g i0P (cm)

13.5
36

Wave
vector

k, (CDh ')

1.8y, 106
1 8&10'

3 X105

~max~B

0.5
1.3
2.1

F(r) functions strongly anisotropic and eventually wider
range of ka~ values is necessary to construct these
functions. For InSb, in spite of the stronger restric-
tions for k, the small effective mass results in a very
large effective Bohr radius and even the lowest states
can be obtained from Eq. (21) by use of 0(kas& 2.

We shall notice that k values involved in F„i (r)
hydrogenic states can be estimated by using Eq. (25).
For an impurity center we have

k'k'/2m*= (m*e'/2k'x') (1/e') (32)

which gives an estimate identical with Eq. (31).

B. External Magnetic Field.

In the case when an electron is subjected to an
homogeneous magnetic field the Hamiltonian takes the
form LEq. (2)] with the last term (the electrical
potential) oinitted. The diagonalization procedure for
this Hamiltonian has been described before and the
only nondiagonal elements are proportional to p„„.
The first condition is therefore ful6lled and for checking
the second requirement, let us write down the Hamil-
tonian after the diagonalization:

@=IIn' '*+IIM' '+(IIM' ',5')+ . (33)

We have to estimate the order of magnitude of the
last term in comparison with the first two. Assuming
that S is small, we can neglect the third term with
respect to the first two terms because as is known, the
latter are of the same order of magnitude.

For checking the third condition, let us write the
effective-mass Hamiltonian for an electron in a simple
nondegenerate spherical energy band:

(1/2m*)((k/i) V+(%)A)'F(r) = eF(r) . (34)

The solutions of Eq. (34) in the Landau gauge can be
expressed by the well-known harmonic-oscillator func-
tions. We shall determine those values of the k vector
which are necessary to construct these solutions. Since
the Fourier transforms of the harmonic-oscillator func-
tions are again the oscillator functions, we have

F„(r)= C„expLi(k,x+k„y)] expL —(Lk„)'/2]

where F„(r) are the wave functions describing the nth
Landau level, C„ is a normalization constant, II (x) the
Hermite polynomials, L=(kc/e3C)'i' is the first cyclo-
tron radius and yo ——L'k, .

One can see that k, is a good quantum number which
can take any value. This means that we can construct
functions F (r) which are solutions of the effective-
mass equation (35) as long as k, fulfills the EMA re-
quirement k,p„„'/mat„„«1. We know, moreover, that
the function exp) —(Lk„)s/2]H (Lk„) goes steeply to
zero for

~
k„L

~

)(2m+1) '". In terms of Eq. (35) it
means that we can construct the eth Landau state
using k„values such that

—(2ps+1)' '&k„L&+(2ps+1)"'.

Since the EMA procedure requires k„p „"/mpe„«1,

p(2ps+1)'I'/L](p /mpp )«1
(36)

(2~+1)'I'(u/L) «1.

(p- */m~- )(1/L') b p
—y) &&1, (3/)

where yo is the center of the cyclotron orbit and yo —y
is to be evaluated for a given Landau state. It is well
known, however, that the radius of the magnetic orbit
is y—y L(2ps+1)'i', and from (37) we obtain again
the limitation (36). This is what one could expect, since
the physical problem with the magnetic field along s
direction is symmetrical in x and y.

For large magnetic fields (50—100 k( ) the validity of
EMA for electrons in the conduction band of Ge or Si
is restricted to the first few Landau levels, whereas for
the conduction band of InSb, using the p„ /mpp„

value given in Table I, the EMA can be used to describe
the first few Landau levels for fields not exceeding 10
kG. In order to treat higher states it is necessary to

The magnetic Beld strength gives the I. value and the
condition (36) determines which Landau states can be
described for this field by the solutions of the effective-
mass equation (34)."To check the requirement (24)
we notice that in the coordinate representation it can
be rewritten in the form

» For the lowest state we get a/L(&i which is just the LE; esti-
+II„(Lk„)exppsk„(y —yp)]dk„, (35) mate obtained bl use of the uncertainty relation.



EFFECTIVE —MASS APPROX I MATION FOR ELECTRONS

take into account terms of higher order in k in the
eRective Hamiltonian. "'4

The energy criterion [Eq. (25)] takes the form

using again p„„"/ma&„„. a, we get

(2ny 1)*u/L&&1, (43)

k'k'/2m'= k&e.(e+-', ) (3g) eEa/ho), (&1, (44)

which again gives k (2n+1)»'L '.

C. Crossed Magnetic and Electric Fields

We consider now the case when an electron in a band
is subjected to crossed external magnetic and electric
6elds. The magnetic field is directed as before along the
s axis and the electric field along the y axis. Using the
Landau gauge, we can write the Hamiltonian in the
form

H= p'/2m+ V(r) (s/m)y—p,+ (s'/2 m)y'+el'"y . (39)

The electric-field term does not give any nondiagonal
elements in the K.ohn-Luttinger representation. Thus
the diagonalization procedure can be carried out as
usual and for the case of a nondegenerate spherical
energy band [see Eqs. (7)—(12)] we get

—k'k" k'k ' 1 &lg(k —k') k's' &l'g(k —k')
s(k-k')—

2m* 8$ 't &9k y 28$ Bky

1 &lb(k —k')-
+eF= 5„„.+(HM &o),S)

z Bky

+ (Ha&n), 5)+ . (40)

Let us now estimate when it is possible to neglect the
last two terms in Eq. (40). First, in order to neglect
the terms (HM&n), 5) and (HE&n), 5) in comparison with
the terms HM( ) and Hp( ', respectively, we have to
require 5&(1. This leads to inequalities (23) and (24).
The values of k„, k„and (k. s8/jBk„)—are now to be
evaluated for the solutions of the eRective-mass equa-
tion (16) which in our case is

[(1/2m*)(y+ (e/c)A)'+eEr]F(r) = eF(r), (41)

a free electron in crossed magnetic and electric GeMs
with an effective mass replacing the free-electron mass.

The solutions of the problem in the gauge we used
before are given by the harmonic-oscillator functions
of the argument (y k&'+m*c'E/eK')/—L. k, and k
are again the constants of motion. Using these solutions
the requirement (24) can be estimated to give

where ~,= eK/m*c is the effective cyclotron frequency.
In order to compare (HE&n', 5) with the diagonal
magnetic terms, we rearrange the terms in the diagonal
part to give

k'k " mes '(1 8 —y, i ~(1 —k')S„„.
2m* 2 (i cIk„'

k'k, " ieEk, ' m*c'E, 'y

2m' k kX 2X' )
)&5(k—k')5 +(HM& & 5)+(Ha& & 5)+. (45)

where yo
——L2k, '—m*c2E/eX'. Because k and k, are

the constants of motion, the second and third terms in
Eq. (45) are also constants of motion and they do not
determine the wave functions; they only shift the
energy levels. It is sufficient therefore to require
(HE&o', 5) to be much smaller than the first diagonal
term in Eq. (45). For the eigenvalues of the effective
Hamiltonian [Eq. (45)] the 6rst term gives k&e,(n+ ,')-
We have therefore to require (HE&n), 5) to be smaller
than any Landau level, [Hz&n&, 5](&k&e. By use of
Eqs. (23), (24), and (40) this again leads to require-
ments (43) and (44).

To check the third condition we notice that since k,
is a good quantum number the KMA may be used for
quantum states such that k,a((1. To determine which
k„values are involved in constructing the solutions P(r)
for the crossed-field case we can use a procedure
identical with that used for the magnetic-6eld case.
The result is also identical and we obtain the restriction
(36).

Thus we conclude that Eqs. (43) and (44) restrict the
validity of the eRective mass approximation in crossed
magnetic and electric fields. If the electric 6eld is very
low, we can neglect all the terms containing the electric
field and the solutions in crossed fields go smoothly into
usual Landau solutions in a magnetic field.

The energy criterion [Eq. (25)] takes the form

k'k'/2m* ho&, (m+ ~)+eEL'k~ —m*c2E2/2X2

+k'kg/2m*.

p-" 1—(L'k —y)
SSGDnn& I

Solving for the order of Inagnitude of k we find

k m*eE/AK&(2m+1)'~'L ' (47)
ns eE

(2++1)"'I. '+ (&1 (42)
AK

Snn'

mgnn—

"T.Kjeldaas and W. Kohn, Phys. Rev. 105, 806 (1957).
'4 Laura M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114,

90 (1958).

From the requirement ka&(1 and from Eq. (4/) we get
(2&+1)»&(u/L)(&1 [which is again Eq. (36)] and
eEa/A&d, ((1 which gives the same restriction [Eq.
(44)] on the applicability of the EMA to the situation
in crossed magnetic and electric fields. It therefore
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follows that the theory developed by Aronov' is correct
only as far as the relations (43) and (44) are fulfilled.

In conclusion we would like to mention that in the
measurements of the optical absorption in Ge in
crossed fields by Vrehen and Lax56 the light-hole—
electron transitions can be described by the effective-
mass approximation. Indeed, for E 5X 104 V/cm,
K 10' G, a 5 &(10 ' cm, m*-0.04mo, we have
eEa/hco,

* 0.1. Heavy holes having the effective mass
approximately 10 times larger than that of the light

holes, cannot be described by KMA under the above
experimental conditions.
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Diffusion of Copper and Gallium in Single Crystals of Zinc*
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The sectioning technique was used to study the diffusion of radioactive tracers in high-purity zinc single
crystals. Diffusion both parallel and perpendicular to the hexagonal axis was measured. The diffusion of Cu"
was measured over the temperature range from about 338'C to 415'C with the results

D( )
——(2.22+0.5'7) expL —(29.53+0.29) X10'/RT) cm'/sec,

Ds= (2.00&0.54) expL —(29.92&0.30)&&10'/RTj cm'/sec.

The diffusion of Ga~ was measured over the range from about 240'C to 403'C with the results

D, &

= (0.016+0.001) exp/ —(18.40+0.06) X10'/RT7 cm'/sec,

Ds = (0.018&0.001) expL —(18.15+0.08) X 10'/RT j cm'/sec.

Copper diffused at a rate faster than gold but slower than silver. As in silver and gold, D«&D~', but the
anisotropy was much smaller in Cu than in Ag or Au. The measured values of gallium fall somewhat below
those for indium and show D&)D«. The relative diffusion rates are qualitatively in accord with the predic-
tions of LeClaire's theory of homovalent di6'usion. The sign of anisotropy is explained in terms of the
electrostatic interaction between the diftusing ion and the vacancy, and the reduced anisotropy of copper
diffusion is interpreted as evidence of a size effect.

INTRODUCTION
' 'N the last few decades much effort has been expended
~ - in the study of impurity diffusion in order to develop
a better understanding of the diffusion mechanisms.
Considerable work has been reported in literature on
impurity diffusion in cubic metals, particularly the
noble metals, and the over-all pattern seems to be well

understood on the basis of the screened interaction
model proposed by Lazarus' and later modified by
LeClaire. ' There has been less information available on
diffusion in anisotropic crystals which possess more than
one rate of diffusion in the same lattice structure.

Experimental data on self-diffusion' and on the
diffusion of indium, silver, 4 cadmium, and gold' im-

*This work was supported by the U. S. Atomic Energy Com-
mission under Contract No. AT(30—1)-1044.

' D. Lazarus, Phys. Rev. 93, 973 (1954).
2 A. D. LeClaire, Phil. Mag. 7, 141 (1962).' G. A. Shim, E. S. Wajda, and H. B. Huntington, Acta Met.

1, 513 (1953).
4 J, H. Rosolowski, Phys. Rev. 124, 1828 (1961).' P. B. Ghate, Phys. Rev. 131, 174 (1963).

purities in noncubic divalent zinc single crystals are
available. The general trend of the activation energies
with the valence of the diffusing atom was found to be
in qualitative accord with Lazarus' theory.

Following the approach of Lazarus, Ghate' developed
the screened interaction model for impurity diffusion in
zinc and calculated the difference AQ in the activation
energies for impurity diffusion and self-diffusion. He
considered the diffusion of both trivalent and mono-
valent impurities, parallel and perpendicular to the
hexagonal axis. The results of this calculation check
fairly well in the case of indium and gold but a con-
siderable discrepancy exists for silver. The lack of
quantitative agreement is probably due to the fact that
the theory does not take into account the differences in
the electronic constitution of the inner core of the
diffusing and the host ions and their relative sizes. These
factors do contribute to the diffusion parameters as is
evident from the results of diffusion of homovalent

e P. B. Ghate, Phys. Rev. 133, A116t (1964).


