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two phonons having wave vectors in the neighborhood
of points like (0.4,0.4,0.4) and frequencies near 2.6.
The conditions w=wi+ws and Q=0Q;+Q: can be
fulfilled simultaneously in this neighborhood (w, Q
refer to the primary phonon, wi, Qi, ws, Q2 to the
secondary phonons) if we take Q; near (0.4,0.4,0.4) and
Q; near (0.4, —0.4, —0.4) for case 1 and Q; near
(0.4,0.4, 0.4), Q; near (—0.4, 0.4, 0.4) for case 3. The
secondary phonons here are near the flat maximum of
the [1,1,1]7 curve, and we may expect a high density
of states on the final side of the transition. Unfortu-
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nately, proper confirmation of this suggested singularity
calls for a major effort of computation which is beyond
our scope; the argument put forward here is merely
one of plausibility.
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A consistent method has been developed to calculate induced electromagnetic fields and optical tran-
sitions of electrons in a solid, in response to an incident laser beam of (circular) frequency w. The analysis
is based upon the independent-particle Schrédinger equation for electrons and Maxwell’s equations for the
electromagnetic fields. General expressions for linear and bilinear currents as well as second-order optical
transition probabilities have been derived. It is shown that the second-order transition probability, which
is proportional to the fourth power in the incident field, contains two different types of terms, describing
double-photon transitions of the incident frequency w and single-photon transitions of the harmonic fre-
quency 2w. An estimate has been made to show that in the case of centrosymmetric solids like metals, the
relative contribution due to the single second-harmonic photon transition is of the order (e2/%c)?<<1 in the
optical region, compared with the double-fundamental-photon transition. However, in the case of solids
lacking inversion symmetry, the contributions due to these two processes are estimated to be of the same

order in magnitude.

1. INTRODUCTION

AFTER the discovery® of lasers it has now become
possible to observe? second-order optical transi-
tions of electrons in solids. Usually one assumes® the
physical process involved in such cases to be either
emission or absorption of two photons of incident
(circular) frequency w. However, the powerful laser
beams required for these observations also produce
harmonic fields in the solid. An electron in the solid does
not move in the incident field of frequency w but in a
self-consistent local field which contains the funda-
mental field proportional to the incident field, and other
harmonic fields of higher order in the incident field. In
particular, the second harmonic field is proportional to
the square of the incident field. Contributions to the

1A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940
1958).
¢ 2 W) Kaiser and C. G. B. Garrett, Phys. Rev. Letters 7, 229
(1961) ; I. D. Abella, 7bid. 9, 453 (1962); J. F. Porter, sbid. 7, 414
(1961); D. H. McMahon and K. M. Kestigian, Phys. Rev. (to be
published) ; A. Gold and J. P. Hernandez, #bid. 139, A2002 (1965).
See also other references in the last paper. .
3D. A. Kleinman, Phys. Rev. 125, 87 (1962); R. Braunstein,
ibid. 125, 475 (1962); M. Goeppert-Meyer, Ann. Physik 9, 273
(1931); A. M. Bonch-Bruevich and Y. A. Khodovoi, Usp. Fiz.
Nauk 85, 3 (1965) [English transl. : Soviet Phys.—Usp. 8, 1 (1965).

second-order optical transition probability proportional
to the fourth power of the incident field may therefore
come not only from double-photon transitions of the
fundamental field but also from single-photon transi-
tions of the induced second harmonic field. The purpose
of this paper is to study the relative importance of these
two processes.

Several theoretical calculations*=® of nonlinear polar-
izability, from which induced fields may be deduced
by solving'® Maxwell’s equations, have been published.
These methods are distinguished by the nature of
simplifying assumptions and by the stage at which they
are introduced. However, in most of these investigations
only electric-dipole transitions have been considered
and they have therefore only restricted applications.

4 J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan,
Phys. Rev. 127, 1918 (1962).

°P. L. Kelley, J. Phys. Chem. Solids 24, 607 (1963).

6 R. Loudon, Proc. Phys. Soc. (London) 80, 952 (1962).

7P. A. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963);
see also J. F. Ward, zbzd. 37, 1 (1965).

8 E. Adler, Phys. Rev. 134, A728 (1964).

9A. S. Pine, Phys. Rev. 139, A901 (1965). See also other
references in this paper.
(13)6151). Bloembergen and P. S. Pershan, Phys. Rev. 128, 193
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For example, this type of calculation is not useful for
centrosymmetric metals where lowest order contribu-
tions to nonlinear polarizability do not come from
electric-dipole transitions and where the surface effect™
also is very important. Cheng and Miller'? developed a
theory specially suited for a metal but their assumption
of an infinite solid restricts its application in analyzing
most of the experimental results. A more complete
theory for metals!® was considered by us in I where we
used the classical Boltzmann equation for the electrons.
The approach to be followed in this paper is to formulate
a general self-consistent quantum-mechanical theory
which will not only take into account the second- and
higher order optical processes and harmonic generations
in a unified way but where final algebraic expressions
will be written in simple, concise, and more familiar
terms.

Our calculation is based upon a self-consistent set of
Maxwell’s equations and the Schridinger equation,
respectively, for the electromagnetic fields and the
electrons in the solid. We will neglect the motion as
well as the polarization of ions and we will consider the
electrons to be moving independently in a self-consistent
potential V(x) before the light wave is switched on.
The mathematical formulation of the problem and a
formal solution of the Schrodinger equation are de-
scribed in the next section of this paper.

In Sec. 3 we explicitly write down the expressions for
linear as well as bilinear currents generated in the solid
and calculate them in some simple cases. In Sec. 4 we
derive the expression for the second-order transition
probabilities and compare the orders of magnitude of
different terms in it. We find that in metals where
conduction electrons may be considered to be free, the
single second-harmonic photon transition probability is
indeed negligible. However, for crystals which lack
center of inversion the nonlinear polarizability is large
compared to metals and we find that the single second-
harmonic photon transition probability in this case is
of the same order as the double fundamental photon
transition probability. One should therefore take this
into account in any realistic calculation and it is hoped
that the formalism developed in this paper will be
useful for this purpose.

2, MATHEMATICAL FORMULATION

In the independent-particle model, unperturbed
states of the electrons may be described by the solution
of the Schrodinger equation

ouy )

ot

Forr @ (x,8) = 1h——(x,1) , @1

1S, S. Jha, Phys. Rev. 140, A2020 (1965). Hereafter referred
toas I.

12 H. Cheng and P. B. Miller, Phys. Rev. 134, A683 (1964).

13 See also: N. Bloembergen and Y. R. Shen, Phys. Rev. 141,
298 (1966).
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where
o= (—72/2m)V>+V (x), (2.2)

and where V (x) is the self-consistent potential in which
the electrons of mass 7 are moving. Stationary solutions
of Egs. (2.1) and (2.2) are given by

i uk(0)=\Ijk(0) (X)e(—i/fl)Ekt’ (2'3)
W1

oW, O = Erl,© (2.4)

In the special case where V() is a periodic potential
it is well known that the solutions ¥;© may be repre-
sented by Bloch waves. When V(x) is taken to be an
infinite step potential at =0, ¥;® is a standing sine-
wave in « direction and traveling plane waves in y and
z directions. We will not consider any explicit forms of
V (x) and ¥;© in this section but we will just note that
all the states up to k=kr (where #kp is the Fermi
momentum) are occupied by the conduction electrons
in the case of metals.

At time /=— a light wave of frequency w is
switched on. This incident light wave is represented by
a plane wave with the vector potential

Aine=Dyei0-*¢~it+ Complex Conjugate, (2.5)
and the scalar potential
Pine=0 ) (26)
where
D;-¢o=0. 2.7

After a sufficiently long time self-consistent electro-
magnetic fields E and H will be set up inside and outside
the solid. These fields may be represented by a vector
potential A and a time-independent scalar potential
®;. We have thus chosen a gauge where the time-
dependent part of the scalar potential is zero. The
single-particle Schrédinger equation now becomes

(8Co+3C1+3Co)ur = —1i#% (ur/0t) , (2.8)
where
3Cy= (—1he/mc) (A- V+3V-A)—ed,, (2.9
and
&
JCe= A-A. (2.10)
2mc?

To be self-consistent A and &, must satisfy Maxwell’s
equations

VXVXA+(1/)(9*A/98)= (4=/c)T, (2.11)

and
(—1/¢)(8/8%) (V-A)—Vipy=4np, (2.12)

where J and p are current and charge densities, respec-
tively, and where the incoming wave solution of the
above equations are given by Egs. (2.5)-(2.7). In terms
of the solutions #; of Eq. (2.8) the current density is

 In this case our label % specifies the wave vector k (3 numbers)
and the energy band.
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given by the standard time-dependent perturbation technique
" one obtains
—e
J=—-2 (wx*Vue— ue V™) Cnk=Cnk O+ Cnt P 4-Car P4+ - - | (2.26)
2mi 2A where
~ S, @13 0o, .27
e ¢ (—1%) (Bi—En o) tget [
)= )
and the charge density is given by cnb =21 (n o] B) (Be— Entltotic) (2.28)
p=—e >k (wr*ur—mno), (2.14) (n| &| m)(m| £ | By
where ca®=22120 I:Zm =l nw k]
no=3"n (i* 1) (2.15) (Ek—Em+l’ﬁw+ie)T< o[y
is the unperturbed density of electrons and en, is the eilB) (Bi—Butlhartlhie) tg2 et
charge density of the ions. Summations over % in the (2.29)

above equations go only over occupied states. The
current and charge densities satisfy the usual continuity
equation

(9p/0t)=—V-J. (2.16)
Now let us assume that
=+ .
A= lim X a;(x)eileteet/, (2.17)
e0,e>0 [=—
where
a_i=ar*, (2.18)

and where 7 assumes all integer values. The factor e<t/#
represents an adiabatic switching of the external field
and it is understood that we will put e equal to zero at
the end of all our calculations. The expressions for 3C;
and 3C; in Eqgs. (2.9) and (2.10) then become

3@1=Zl Ele—ilwteetlh’ (2.19)

and
3C2=Zl ,q”,e—i(l-('-l’)wteht/h, (2.20)

with
£1=(—ihe/mc)(a;- V+3V-a;) for 1520, (2.21)
£o= (—ihe/mc) (a0 V+3V-a0)—edy, (2.22)

and
ny= (62/2771,62)8['3[/. (2.23)

At time ¢{=—o only the /=-1 components of the
vector potential are switched on and if one treats this
as a perturbation on the motion of the electrons it is
to be expected that

|ar| ~ | Aso| 1" for 10, (2.24)

and the leading terms in ap and &, are of second order
in IAinol .

To find a formal solution of the time-dependent
Schridinger equation (2.8) we may expand Uy as

ur() =2 n car()ua® (2). (2.25)

If one assumes further that the electron under con-
sideration was in the unperturbed state k at time
= —o0, by using Egs. (2.3), (2.8), (2.19)-(2.23) and

X )
(Ex— Ent-lho+-1'ho2ie)

and where (#|&|m) and (n|nuw|m) are the matrix
elements of the operators & and 7, respectively,
between the stationary unperturbed states # and m.
In Eq. (2.26), cax® is independent of the induced
potentials, ¢nx® is linear, ¢,.® is bilinear and so on.
We want to emphasize at this point that the expansion
in Eq. (2.26) is not in powers of | Aine| and in order to
achieve that we will later on rearrange these terms
with the help of Eq (2.24).

The perturbed wave function %, for the electron
initially in the state 2 may now be seen from Egs. (2.3),
and (2.25)-(2.29) to be

uy =0 (X)e—(ilh)Ekt_l_Zl \I/k(l)l(x)e—(ilh) (Ertlhw)t

'I‘Zl.l’ W, DW= GilR) (Bptlhotlho)t L . . . , (2.30)
where
(n| &0 YT, @
W, Wi=37 —, (2.31)
(Ex+ilhw— E,~+ie)
and

(n| &1 m)(m) £ | k)
(Ext1'Tw— Eptie)
v,
X .
(Bt — Ey+2ie)

\p,,<z>w=zn{zm[ J#e nwlk>}

(2.32)

Alternatively, it is equivalent to saying that ¥; (! and
W, DW satisfy the differential equations

(3Co— Er—lhw) ¥, Mi= — £0, ) (2.33)
and
(3Co— Ex—lhw— Vo) ¥y OW = — g, OV —p 3, ©)
(2.34)

respectively, with an extra restriction that solutions of
the homogeneous part of the above equations must be
taken as either outgoing or damped waves.

At this point a few words about the superscripts on
W;@4-ls gre in order. The left-hand superscript in the
bracket denotes whether ¥, is independent, linear,
bilinear, etc. in the induced components of the potential,
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whereas the superscripts following it denote exactly
which components of the potentials occur in the
expression for ¥;. For example, the superscripts in
¥ DWW imply that ;@ is bilinear in a; and ay.

When one expands the current density and the charge
density, respectively, as

&) =21 Ja(x)e 2, (2.35)
and

P (X,t) =Zl p1 (X)e—ﬂwt )
Maxwell’s equations, which are to be solved to find the
induced potentials, become, for 10,

(2.36)

VXVXaz—[(l2w2/c2)az]= (47r/c)iz, (237)
V-.a;= (47r6/1:lw)pz, (238)
and for /=0,
VX VX 0= (4r/6)jo, (2.39)
— V2by=47pg. (2.40)

The expressions for components of the charge and
current densities on the right-hand sides of these
equations may formally be written down by using
Egs. (2.13), (2.14), (2.30), and (2.35). For any ! these
contain all the components of the unknown potentials,
and the above set of equations is thus essentially a set
of coupled integrodifferential equations. However, in
the perturbation approximation where one keeps only
the leading powers of |Ainc| in jj, it is possible to un-
couple the equations for /=1 and in principle to solve
for a;. With this solution for a; one may find j, which
contains only the known a; and the unknown a,, and
thus go on to solve the equations for /=2. This pro-
cedure may be carried forward to any higher /. In the
next section we will obtain the expressions for j; and
j2 in this approximation. The charge densities may
always be written down by using the continuity equa-
tion, once the current densities are known.

3. LINEAR AND BILINEAR CURRENTS

In order to calculate the fundamental and second
harmonic fields of Egs. (2.37) and (2.38) we need
explicit expressions for the current and charge densities
for I=1 and I=2. By keeping only the lowest order
terms in | Aine| and by using Egs. (2.13), (2.14), (2.24),
(2.30) and (2.35) one obtains

—eh
Ji=—— 3k [T OV, O1— D19, * 0
2m3
G, FOIYY, O —F, O gy, * -1

——a; 2 U ¥ OV, O
mc

3.1)

and

=i P00, (32)
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where

eh
jz{L)= —_— Zk [‘I/k*(O)V\I/k‘l)z—‘l'k“)"’v\lfk*(o)
2msi

+T, ¥ -2y F, O —F, O FF,* 12
2

——2, L U FOT, O
mc

(3.3)

and

eh
jo VD) = _T S [T OV, @1, Uy, *O
mi

T ¥ @I, O, (O g ¥ @—1-T1]

eh
—_ Zk |:\I,k*(1)——1v\1/,c(1)1_\p,c (l)lv\pk*(l)—lj
2ms
&2
——a; > [ * O, O F W=y, 0],
mc

(3.4)

Our approach has been quite general till now as far
as the form of ¥ (x) is concerned. But in order to make
use of this formulation for a real solid we will have to
develop in future a proper approximation scheme to
calculate j; and j,. To facilitate this, we will first
consider the simplest case with V' (x)=0, and discuss
how these results may be used for a finite metal. We
will also consider briefly the case of bound electrons in
crystals which lack inversion symmetry.

(A) Free-Electron Gas

When V(x)=0, the solution of Eq. (2.4) may be
written as

VO — Wy (0 = (27r) 3127k x| (3.5)
where
¥ 4rk?dke
> U F O, 0 = 2/ =n, (3.6)
o (2m)3
and where the unperturbed energy Ej is given by
Ey=%2k%/2m. (3.7
With an expansion
a1(x)=2, a1(ge™ >, (3.8)

it is now possible to obtain from Egs. (2.31), (3.1), (3.5),
and (3.6) the Fourier transform j;:(q) of the current
J1(x) ast®

(k+a/2){ (k+a/2)-a:(q)}

en?
(0= (m)> 5|
mec

Eyyq— Ex—ho
(k—a/)((—0/2) m(@) ] én
- Ey q— Extho ]_Eal(‘l) . (3.9

5In Eq. (3.9) we may extend the summation over k to all
states by introducing inside the summation sign the occupation
numbers 7; which, at temperature 7=0°K, is equal to 1 for
|k| <kr and zero for |k|>k¥.
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The macroscopic polarization P is given by

oP/ot=]J (3.10)
which leads to
P=—j/ilw, (3.11)
where
P=3", Pieilot, (3.12)

In terms of the polarization Py the linear transverse and
longitudinal dielectric tensor may be defined in the
usual way

4rc
[e(qw)—1]-a;=—P1.

1w

(3.13)

From Egs. (3.8) and (3.10) we therefore obtain'é

Teim

el (g,0) = 1 ————(2m)"?

722
)

-<ﬁh(2+k.q+qz/2>—1:|’ (3.14)

and
w2 4mwe?
e (g0) = 1= ———— (o)
w?  mwig?
Mw -1
XZk[<7—k q~92/2>
M -1
—<—h—+k-q+gz/2> :l, (3.15)
where

wp= (drne?/m)!'2, (3.16)

is the plasma frequency of the electrons.

Integrations over k in Eqgs. (3.14) and (3.15) may be
done in general to obtain the well-known results derived
by Lindhard.l” These integrations are, however, much
simpler in the optical regions where the Fermi velocity
V j=tky/m<w/q, the velocity of light (long-wavelength
approximation). In this case one finds the familiar
results

glons(qu)~1 — (wp?/w?) (1+3V A¢/w?),  (3.17)
and
e (qu)~1— (/) 143V ¢/, (3.18)
which may further be approximated to
glonevgtie] — g, 2 /02, (3.19)

This leads to a simple expression for the current density

16 While deriving these expressions one uses the identity that
the summation over k for an odd function of k gives zero since
2 f(k) =2y f(—k). This symmetry has been used repeatedly
in this paper. .

17 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, 8 (1954).
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which is given by
J1(x)= (—ne?/mc)a,(x). (3.20)

An inspection of the expressions for ji(x) and j»¥ (x)
in Egs. (3.1) and (3.3) shows that j»©’(q) may be ob-
tained from the expression for j1(q) simply by replacing
a:(q) and w by a:(q) and 2w, respectively. To find the
bilinear second harmonic current jo¥%) let us assume
that the solution of Eq. (2.37) gives a;~e*®*, From
Egs. (2.31), (2.33), and (3.4)-(3.6) one therefore finds

12D = — (¢'n/2m’c¢w) qar- a1(1+ (6/5)V f¢*/w?)

— (e*n/2m*c*w) q:(q:- a1)2((12/5) (V /2 /ws?))
— (e*n/2m*Cw)ar(q.- a1) 2+ (12/5) (V 2¢2/?)), (3.21)

in the approximation where V,<w/¢:; In the gauge-
independent form, i.e., in terms of electromagnetic
fields E; and H; the bilinear current is

§2 VB = (¢n/ 2m2c?) (14 (6/5)V g2 /w?) ExxX Hy
+ (@n/2m*?)((12/5)(V /) (Br- a0)*q:
+ (en/2m??) 3+ (18/5) (V 2q2/?))ErEr-q..  (3.22)

Neglecting all the terms of the order V,%¢2/w? we may
write!8

J2 VD) (x) = (ebn/2m2cw?) E1 X Hy
- (ie3/2m2w3)[nE1- VE1+2E1V . (nEl)] . (323)

This model may be applied to a finite metal with a
plane boundary with the following modifications. In
the usual case when one excites only the transverse
mode of the fundamental frequency in the solid, it may
be seen from Egs. (2.37) and (3.20) and the relation
E1= (iw/c)a; that

V- Ei= (dne2/me?)V - (nE,). (3.24)

From the solution!? for the fundamental field it is also
known that V-E; is zero inside the metal and may be
taken as a delta function at the surface corresponding
to the classical discontinuity of the normal component
of E; across the plane boundary. We may therefore
again use an expression

J2 WD) = (—iedn/4m®)V (E1- Eq)
— (1e3/m2?)E;v - mEy), (3.25)

which is equivalent to Eq. (3.23), for a finite metal with
the new interpretation of the second term as purely a
surface term. From Eq. (3.24) and the fact that except
for the normal component Ei-VE; is zero, the above
expression has the same form as Eq. (6.4) of I which
was derived by using the Boltzmann equation for the
distribution function of electrons. An equivalent form
was used in another paper? by us where the predictions

18Tn Eq. (3.23) the second term on the right has been split in
this particular form because (¢/iw)(E1+ VE;) term then cancels a
corresponding term in Ei;XH;= (¢/iw) E1 X (V XE;). Usefulness

of this form becomes more obvious while dealing with a finite

metal.
19 See Eqs. (4.7)-(4.13) and (4.19) of I.
% S, S. Jha, Phys. Rev. Letters 15, 412 (1965).
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of this theory were shown to be in good agreement with
the experimental results of Brown, Parks, and Sleeper®
for silver metal.

(B) Bound Electrons

Next let us consider V (x) to be given by a periodic
potential. The unperturbed states may now be taken
as Bloch waves

V0 W, (O = N2, (x,k)esx,  (3.26)

where & denotes the energy band and NV is the number
of cells in the crystal. In the dipole approximation?
a;(x) may be assumed to be constant within a cell.
Considering only vertical interband transitions, the
required matrix elements for calculating the current
density become
e
(O'K'| £1,2] 0, k)=—a1,2* Povic, bidic v (3.27)
mc
and
(O'K'|111]6,k)=0 for b0, (3-28)
where

Pork, sk =—1il / Up*(x,K)VU,(x,k) & (3.29)
cell

is the interband matrix element of the momentum
operator.

Using the above equations and Egs. (2.31), (2.32),
and (3.4), an expression for the bilinear current density
may be obtained. However, we will not write this
complicated expression involving products of three
momentum matrix elements because the result is
essentially the same as obtained by Kelley.?® Kelley has
also shown in his paper that the solid considered cannot
have inversion symmetry, since in that case a new set
of states of definite parity can be chosen and the product
of three momentum operators cannot connect states of
the same parity. We are interested here in the order of
magnitude of the induced field E; only, and we have
approximately®

| Poric, b1 | (| P| Dav, ~ (o) 12 (3.30)

in the optical region. With these considerations one
obtains

. e3 <P>ﬂv 3<P>5V3
3% ~m3cz< % > H20? ], (3.31)
()]
which leads to
et [{Phav\®
laz!~m36h2w4< . ><ﬁ>av3|all2. (3.32)

2 F. Brown, R. E. Parks, and A. M. Sleeper, Phys. Rev. Letters
14, 1029 (1965). See also: F. Brocon and R. E. Parks, ibid. 16,
507 (1966).

2 For more details about this model, see the paper by P. L.
Kelley, J. Phys. Chem. Solids 24, 1113 (1963).

% See Eq. (8) of Ref. (22).

2 R. A. Smith, Wave Mechanics of Crystalline Solids (Chapman
and Hall, Ltd., London, 1961), p. 409.
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Using the estimate in Eq. (3.30) for (p)ay, the second
harmonic electric field may be written in the familiar
form

l EZ' =Eatomic_ll Ellz, (333)

where
Egtomic™ (92/ 7'0) (h’w/ 83)2 ’

and where 7 is the Bohr radius and &g is the energy of
the first Bohr orbit. Since Z#w~&g in the optical region,
Eatom=~10-%-10"7 esu.

(3.34)

4. SECOND-ORDER TRANSITION
PROBABILITIES

In this section we will consider the process in which
an electron jumps from a state % to a state » by absorp-
tion of either two photons of the fundamental frequency
or one photon of the harmonic frequency. From Egs.
(2.25)-(2.29) the transition probability per unit time
for such a process is found to be

W =2d/dt| Cnp@ (term with [=2)
+Cue® (terms with I=1'=1) |2

2
=— 17| &2 7M1
h]{< | ol By (s B)

2

iy (”ffllmxmlfllk)}
Ey—E,+he
X8(Ei+2hw—E,), (4.1)
where we have used the identity
lim x2+62=7ra (). (4.2)

In order to obtain the orders of magnitude of the first
term in Eq. (4.1) which represents the contribution due
to the harmonic field as compared to the second and
third terms representing transitions of fundamental
photons, let us consider these matrix elements in the
dipole approximation. These are given by Egs. (3.27)
and (3.28) of Sec. 3. We thus obtain for the ratio of
these two contributions

W i (20) mchow\ 2| as|?
W s, (w+w)~<e(p)av> [a;]¢
If one uses estimates for (p)av given by Eq. (3.30) and
for |as| given by Eq. (3.32) one finds
W nie 2w)
W (0+w) 273w

4.3)

met

~1, (4.4)

for solids lacking inversion symmetry. This shows that
for such solids we cannot neglect the harmonic-photon
contributions on any e priori grounds.
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Now let us consider the second-order processes in
solids with inversion symmetry. Here one knows that
the induced harmonic field is zero in the dipole approxi-
mation and therefore is smaller by a factor row/c>210—2-
1072 as compared to the case of solids lacking inversion
symmetry. This immediately leads to the conclusion
that in this case W (2w)/W (w+w)~10—5% and we may
safely neglect the harmonic photon contributions. For
a specific case let us consider the second-order photo-
electric effect?® in metals. In our notation the second-
order photocurrent is given by that part of j, taken
outside the metal, which is asymptotically non-
vanishing at large distances from the metal and which
is proportional to the fourth power in the incident field.
The ratio of single-harmonic photon and double-
fundamental-photon contributions to the current may
be calculated for this case to be

jo(Ph) (20)) (hwmc \2l ay l 2

iete) \ @ /la]*
with the assumption that the depth of the surface
potential well, the Fermi energy #2/ks*/2m and #w are

all of the same order. By using Egs. (3.21) and (2.37)
one finds that for g;~w/c,

(4.5)

&7

[az| ~ [a? (4.6)

Mm2c%?

in metals. Equations (3.6), (4.5), and (4.6) then lead to
(BB (200) N2 /B2 \E  /e2\2
e )~
Fo®W (w4w) N/ \2mi he

for

4.7

ks’

~

2m
Actually we have dealt with only the second-order

25 For details about the usual model taken for this effect in
metals, see R. E. B. Makinson and M. J. Buckingham, Proc. Phys.
Soc. (London) 64A, 135 (1951); I. Adawi, Phys. Rev. 134, A778
(1964).
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optical absorption in this section but it is quite clear
that these arguments may also be extended to the
second-order emission.

5. CONCLUSIONS

We obtained the self-consistent expressions for the
second-order optical transition probabilities of the elec-
trons in a solid, by first considering the nature of in-
duced fields in the solid. We then showed that the
single-photon transition probability due to the second-
harmonic field produced in a solid lacking inversion
symmetry, is comparable to the double-photon transi-
tion probability due to the induced fundamental field.
In centrosymmetric metals it was shown that the
contribution due to the former process was smaller by a
factor (e*/%c)? than the latter and therefore could be
neglected. Although our results for the case of a general
solid lacking inversion symmetry were obtained by
using crude estimates for the interband momentum
matrix elements, which may at best be considered to
be a dimensional analysis, we would like to stress here
that our conclusions are based essentially on the
following general arguments. In the long-wavelength
approximation, in a solid lacking inversion symmetry,
the bilinear polarizability and hence the second-
harmonic field is greater by a factor ¢/rqw (7o is the
atomic radius) as compared to centrosymmetric solids.
Hence the single second-harmonic photon transition
probability is greater by a factor (¢/7ow)? as compared
to metals. This effectively cancels the factor of the
order (¢2/%c)? obtained for metals, in the optical region
where fiw~me*/h2.
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