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Electron Energy Bands in Tellurium*
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The method of pseudopotentials was used to calculate the electron band structure of tellurium along the
kz axis. The calculation was performed in two stages. First, a model pseudopotential, based on the free-atom
data of Herman and Skillman, was used to compute a preliminary band structure. Perturbation theory was
then used to estimate the changes in the band structure caused by corrections to the model pseudopotential.
The calculated band structure shows a direct energy gap at the top of the 8rillouin zone (kz=7r/c) and an
indirect gap of about the same magnitude between the valence band edge at kz=0 and the conduction band
edge kz=s/c. It was found that s-p mixing is significant in the important valence and conduction bands.
Because of this mixing, spin-orbit splitting, which was calculated in a second-order perturbation approxi-
mation, is much smaller than the corresponding splitting of the Sp free-atom level. The calculated band
structure is consistent with the major features of the experimental infrared absorption spectrum including
the 11-p peak observed by Caldwell and Fan.

I. INTRODUCTION

S INCE 1954, when Loferski' first observed the polari-
zation dependence of the fundamental optical

absorption edge in single crystals of tellurium, there
have been several attempts to construct an energy-band
scheme which is consistent with such observed proper-
ties of the crystal. ' 5 Most of these investigations have
been of a semiempirical nature in that they made use
of symmetry-imposed restrictions on the degeneracies
of the bands and then relied on experimental results or
rough estimates of certain matrix elements in an
attempt to deduce the ordering and spacing of the
bands. Although the proposed band structures have
some features in common, such as a minimum energy
gap on the kz axis, there are important areas of disagree-
ment. For example, Reitz's proposed band structure, '
which is based on the tight-binding method, indicates
that the minimum energy gap is at the top of the first
Brillouin zone (kz=7r/c), while Nussbaum and Hager, '
who used the nearly-free-electron approach, suggest
that the minimum gap is indirect, with conduction and
valence band extrema near the center of the positive
kz axis. Also, as might be expected, the over-all shapes
of the energy bands deduced from the tight-binding
and nearly-free-electron models are quite different.
It was the existence of such uncertainties which
prompted the present attempt to determine the band
structure from more fundamental considerations.

*Based on a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at Texas
Christian UU'niversity.

f Present address: Fort Worth Division of General Dynamics,
Fort Worth, Texas.' J. J. Loferski, Phys. Rev. 93, 707 (1954).' For a review of work prior to 1961, see J. S. Blakemore, D.
Long, K. C. Nomura and A. Nussbaum, in Progress in Semi-
conductors, edited by A. F. Gibson (John Wiley R Sons, Inc. , New
York, 1961),Vol. 6.' A. Nussbaum and R. J.Hager, Phys. Rev. 123, 1958 (1961).

4 M. Hulin, Ann. Phys. (Paris) 8, 647 (1963).
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The immediate objective of this work is, therefore,
the calculation of the tellurium band structure along
the kz axis with sufhcient accuracy to determine the
ordering of energy levels and, at least roughly, the
spacing between levels. The calculated band structure
should be adequate for the interpretation of the main
features of the optical absorption spectrum and should
provide qualitative information regarding the effective
mass and density-of-states functions.

The choice of a calculation method was inQuenced

by the demonstrated accuracy of the pseudopotential
approach when applied to semiconductors of the
diamond structure ' and by the apparent success of
several approximation schemes based on the idea of an
atomic pseudopotential. "These investigations seem to
support the contention that, as a 6rst approximation,
a valence electron in a metal or semiconductor may be
treated as though it exists in the field of a periodic array
of neutral, weakly attractive pseudo-atoms. Further,
the band structure seems to be rather insensitive to
"reasonable" approximations to the pseudopotential,
i.e., the main features of the band structure seem to be
determined to a large extent by the symmetry of the
crystal. This last point is most clearly illustrated by the
recent work of Falicov and Golin. "With these results
in mind, the tellurium band structure was calculated
in two steps. First, a preliminary structure was deter-
mined on the basis of a simplified atomic pseudo-
potential constructed from the free-atom wave func-
tions of Herman and Skillman. "Spin-orbit effects were
included by means of a second-order perturbation
calculation. Next, 6rst-order perturbation calculations
were used to estimate the changes in the band structure

~ J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).
L. Kleinman and J. C. Phillips, Phys. Rev. 116, 880 (1959).' L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960)."J. Callaway, Energy J3and Theory (Academic Press, Inc. ,

New York, 1964), and references cited therein."L.M. Falicov and S. Golin, Phys. Rev. 137, A871 (1965);
S. Golin, Phys. Rev. 140, A993 (1965).

~ F. Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc. , Englewood CliBs, New Jersey, 1963).
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induced by corrections to the pseudopotential. The
perturbation calculations showed that such changes are
small, thus justifying the use of a model pseudo-
potential. The final result is, therefore, an adjusted band
structure which is qualitatively the same as the pre-
liminary structure.

In Sec. II a brief review of the pseudopotential
method is given. Section III contains a discussion of the
tellurium crystal and its space group. The construction
of an approximate crystal potential and pseudo-
potential is described in Sec. IV. In Sec. V a discussion
is given of the calculated band structure, spin-orbit
splitting, and the perturbation calculations used to
adjust the preliminary structure. Finally, in Sec. VI
the adjusted band structure is used to interpret certain
infrared absorption measurements and is compared
with recently published calculations for selenium, "
which has the same crystal structure.

II. THE PSEUDOPOTENTIAL METHOD

The concept of a pseudopotential has its origin in a
reformulation of the valence-state Schrodinger equa-
tion. ~ In its most general form, the pseudopotential
theorem states that the valence-state equation,

is equivalent to an effective wave equation,

(—V'+ V(x)+ U~) (p„g(x) =F,(k) q „z(x), (2)
with

(3)

where lit, ) is a core state and IF,) is an arbitrary
vector. '4 It has been shown that the expectation value
of Vg is positive, thus tending to cancel the expectation
value of the attractive crystal potential V. This
tendency to cancel means that the pseudopotential,
V+Uz, is weaker than the actual crystal potential V.
Thus the effective wave function y„z requires fewer
terms in a plane-wave expansion than the actual wave
function P„q. For this reason it has been suggested that
the effective wave equation be used as a starting point
for a plane-wave, linear-variational calculation of the
valence-electron energies E„(k)'.

The arbitrariness of Vz implied by its definition
suggests that the

I
F,) be chosen so as to minimize the

expectation value of the pseudopotential. Cohen and
Heine'5 have shown that a near-optimum pseudo-
potential is

U(x)+U = (1—Z.I4.)Q.I) U(x),

which is obtained by taking IF,)=—V(x) IP,). This
form was used in the present calculations.

In practice, V& is replaced by a local repulsive

D, J. 01echna and R. $. Knox, Phys. Rev. 140, A986 (1965)."B.J. Austin, V. Heine and L. J. $ham, Phys. Rev. 127, 276
(&962).

"M. H. Cohen and V. Heine, Phys. Rev. '122, 1821 (1961).

potential that is denoted by V»(x). Thus,

V~n(x) = —Z.(1t.l Ul v ")k.(x)/v" (x)

Phillips and Ikleinman~ have shown that if p„i, may be
approximated by a state of definite angular momentum
I,, in each atomic core, then Vgz, reduces to the following
spherically symmetric potential within each core:

F g(r)'()=—Z- &- (')U.(')&.(')d", (4)
~.~(r)

where P„~ is the radial wave function for the core state
with quantum numbers nl, U, (r) is the spherical
average of the crystal potential in the core, and P, I, is
the radial part of q„i,. If angular-momentum mixing is
important, it has been suggested that Vgx, be approxi-
mated by a linear combination of potentials of the form
(4). In order to apply (4) it is, of course, necessary to
introduce some additional assumptions regarding the
behavior of the unknown function, y„q, in the atomic
core. Phillips and Kleinman have given arguments
which indicate that, except for the l dependence implied
in (4), the repulsive potential is rather insensitive to
approximations to P,~. Thus, the most serious un-
certainty seems to lie in the assumption of a single
angular-momentum state or a definite mixture of states.
In subsequent sections of this paper, this problem will
eb examined for the particular case of tellurium.

H one accepts the form (4) and makes the additional
assumption that the crystal potential is a sum over
all atom sites of a spherically symmetric potential V(r),
then the pseudopotential appearing in the effective
wave equation (2) is just a sum over all sites of a
spherically symmetric "atomic" pseudopotential. In
this case the plane-wave matrix elements of the pseudo-
potential have the simple form

(kl U+ U»tlk+K)=S(K) v(IKI),

where Ik) is a plane wave, K is a reciprocal lattice
vector, S(K) is the structure factor, and V(l Kl) is the
Fourier transform of the atomic pseudopotential,
V(r)+V»'(r) Thus t. he introduction of an atomic
pseudopotential simplifies the calculation of the matrix
elements needed for a plane-wave, variational calcu-
lation of the band structure.

III. THE TELLURIUM CRYSTAL

The tellurium crystal structure is illustrated in Fig. 1.
The Bravais lattice is hexagonal as shown in the upper
half of the figure. The lower half shows how the nearest
neighbors of an atom are located by screw operations
along the C axis. The space group can be generated by
combining the following symmetry operations with all
lattice translations: (1) F,, the identity; (2) Cs, a 120'
rotation of the crystal about the C axis followed by a
translation C/3 along the axis; (3) Css; (4) Cs "~, a 180'
rotation about the X&'& axis followed by a translation
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TAsLE I. Double group character table for the group
of fr on the kz axis of tellurium. T is a 2z rotation, a = exp(2m. i/3),
5=exp( —fkzC/3), and v~ are the spin up (+) and spin down (—)
functions.

LPTjl CK

Represen-
tation E~

A4
b, 5

eB

—e5

1 5 5
pe 1 +g &4P

1 *5 &52
2 —1 E+~ gg2

—1 65—1

C3 C32 1'& TCS TCI2 Basis

51V ) 62V+
A].V+.) 63V
62V ) 63V+

FIG. 1.The tellurium
crystal. (2)

x(')

C/3; (5) C &'& a 180' rotation about Xt'l; (6) Cs~'&, a
180' rotation about X(3' followed by a translation
2C/3. The operations are defined with the point trans-
formation convention and the notation adopted by
Blakemore et at.'.

The first Brillouin zone is a right hexagonal prism
centered at k=O with bases parallel to the x-y plane
of Fig. 1 at kz=x/C. The double-group characters for
the group of the wave vector on the kz axis are given
in Table I.The representations A~, A2, and ~3 are formed
from spin-independent basis functions; h4, 65, and 66
are the extra representations whose bases are the spin-
independent functions shown in the right-hand column.
For more details concerning the tellurium space group
and its representations, the reader is referred to
Asendorf's article '6

IV. CALCULATION OF THE
PSEUD OPOTENTIAL

Previous studies of the cancellation of the crystal and
repulsive potentials have shown that the net potential
(the pseudopotential) is quite sensitive to approxi-
mations to the core functions. In fact, the work of
Kleinman and Phillips' suggests that, given a realistic
crystal potential, the band structure is more sensitive
to approximations to the core eigenfunctions than it is
to the choice of the crystal potential itself. Thus, if one
is given a set of core functions which are eigenfunctions
of an approximate crystal Hamiltonian, it may be
better to construct a pseudopotential on the basis of the
information given than to use approximate core eigen-
functions of a more accurate Hamiltonian. The calcu-
lations described below, therefore, started with the
assumption that the core functions are Bloch sums of the
free-atom orbitals computed by Herman and Skillman.
Next, a crystal potential which is consistent with this
assumption was chosen, thus providing the information
necessary for the determination of an approximate
pseudopotential.

Figure 2 shows the Herman-Skillman and Thomas-
Fermi screening functions, which are defined as

f(r) =—(r/2~) V(r)

where V(r) is the atomic potential. The Thomas-Fermi

"R.H. Asendorf, J. Chem. Phys. 27, 11 (1957).
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potential is the less attractive of the two because it is a
neutral-atom potential, while the Herman-Skillman
potential is that of a bound atomic electron. In the core
(r(2 Bohr radii), however, there is not much difference
between the two functions because the potential in the
core is dominated by the strongly attractive contri-
bution of the core itself.

In a crystal, one effect of neighboring atoms is to
make the potential more attractive everywhere, but,
in the core of a high-Z atom such as tellurium, this
additional attractive potential should be small com-
pared to the atomic-core potential. For this reason, the
calculation was started with the tentative assumption
that, in the core, the effect of neighboring atoms in the
tellurium crystal is just enough to make up the small
difference between the Thomas-Fermi and Herman-
Skillman potentiais. In other words, the assumption
was that a crystal potential which is consistent with
the choice of Herman-Skillman wave functions can be
constructed by summing the Thomas-Fermi potential
over all atom sites. This assumption was tested by
calculating the spherical average

1 2

U, (r) = V(r, 6, q)r' sin8d8dp,
4mr2 p p

where V(r, o, p) is the approximate crystal potential
obtained by summing the Thomas-Fermi atomic
potential over an atom at the origin and its first, second,
and third nearest neighbors. In the core, U, differed
from the Herman-Skillman potential by less than 5%,
which is within the accuracy of the spherical average
approximation, thus justifying the use of the Thomas-
Fermi crystal potential with Herman-Skillman core
functions.
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Herman-Skillman wave functions and potential were
used for E„&and U„respectively. The integrals appear-
ing in (4) involve the unknown function P„i and so were
approximated by the procedure given below.

From (1), (2), and (3) it is easily verified that the
actual wave function is given by

-I
10

Therefore,

(P-I ~")
4wk= awk Qa tea ~

E„(k)—E
(5)

(P. l&-&
(P-I ~"&

E„(k)—E
(6)

( p 2

('(a. u. )

FIG. 2. The Thomas-Fermi and Herman-Skillman screen-
ing functions for tellurium. The functions plotted are f(r)= —(r/2Z) V(r) where V(r) is the atomic potential. r is in atomic
units.

The Thomas-Fermi model of the crystal potential is,
of course, an oversimplification for the region between
atomic cores where exchange and crystalline field
effects are known to be important. On the other hand,
the potential should be quantitatively accurate in the
core, and provides at least a qualitative description
of the potential outside the core. Thus, the Thomas-
Fermi potential was used as a semiquantitative model,
subject to an empirical correction for its inaccuracy
outside the core. This empirical correction is discussed
in Sec. V.

To construct a repulsive potential V» it is necessary
to introduce some assumptions regarding the l depend-
ence of p,i„as noted in Sec. II. If one were to follow
the suggestion of Phillips and Kleinman, it would be
necessary to compute a repulsive potential which is a
linear combination of the VgL, '.

Ugz, (x) =pi toi (k,e) Vgz, '(x),

where the sum is over all angular momenta included
among the core states. For tellurium, 1=0, 1, 2. To
avoid the complications associated with the calculation
of the ~&, which may vary from point to point within
the Brillouin zone, it was assumed that, as a first
approximation, q„q could be considered a pure p state
for all bands of interest and that the effects of any
angular-momentum mixing which may exist are small
enough to be treated by perturbation theory. Thus it
was assumed that co0=co2=0 and orq=1, so that the
repulsive potential was given by (4) with l=1. The
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FIG. 3. Fourier transforms of the crystal potential and pseudo-
potential. The functions illustrated here are to be multiplied by
the tellurium structure factor.

The set of Eqs. (6) was solved for the unknown quanti-
ties (P, I q„i,&, which are the integrals appearing in (4),
by taking F,= —Vg„approximating E„and E, by the
Herman-Skillman atomic term values, and assuming
that P,q reduces to the Herman-Skillman 5p function
in the core. Substitution in (5) determined p„q and,
hence, its radial part P„i. The p-st.ate pseudopotential
was then computed according to (4). Figure 3 shows
the Fourier transforms of the Thomas-Fermi potential
and the p-state "atomic" pseudopotential. This
illustrates the expected result: partial cancellation of
the crystal potential and the repulsive potential yields
a pseudopotential which is generally attractive and
much weaker than the crystal potential.
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Following Phillips and Kleinman, q,~ was expanded in
spherical waves,

and V~ was rewritten as a sum over the core angular
momentum states,

2

Vz=Z Vz'
lM

-.9

I

&/zc

k {a.u. )
&/c

From the definition of Vz given in Sec. II, it is easily
FIG. 5. Calculated

and structure with venfied that
spin-orbit splitting. 2

Vgy„g(x) = Q Vgg'y„g'(x)

if the crystal potential is assumed to be spherically
symmetric in the core. Also, because Vgl. '(x) is spheric-
ally symmetric in each core,

« ~l v»'I ~ ~&=&~(~ ~'I v»'I v ~'&

Therefore,

~E (k) =&~«"'I V~' V»'I ~ ")—

originally anticipated. "This explanation was confirmed,
in part, by comparisons of some of the integrals,
(q„qIp, &, for s and p states. For example, the ratio of
the s-state occupation probability to the p-state
probability is 1.27 for AP at kz ——z/C, and the corre-
sponding ratio for DP at kz vr/C,

——where the splitting
is significant, is 0.005. Thus it is clear that there is
considerable mixing of angular-momentum states in

p„z and that the extent of this mixing varies markedly
from state to state. This means that the assumption of
a pure p-state pseudopotential was an oversimplifi-
cation; the repulsive-potential operator defined in Sec.
II should have been replaced by a rather complicated
mixture of the V~I, ' for /=0, 1, 2. On the other hand, if
the band structure is as insensitive to errors in the
pseudopotential as expected, the introduction of a
more accurate and more complicated expression for the
repulsive potential should result in only small changes
in the band structure. For this reason, the difference
between the exact operator, Vg, and the local approxi-
mation, Vgl.', was treated as a perturbation, the varia-
tionally determined band structure and wave functions
being the unperturbed quantities.

The corrections applied to the calculated band
structure were

~E.(k) = i@.~I Vz Vol.'(x)
I y.~)—

"In their linear combination of atomic orbitals study of
selenium, which was published after the present calculations had
been concluded, Olechna and Knox (Ref. 13) found the s-p
hybridization had a pronounced eGect on the band structure.
Thus, their results provide a strong indication that s-p mixing is
also significant in the valence states of tellurium.

+«."Iv--v- I'"&
—Z&~"'I v~ 'I ~"'&.

l=3

The last term, which is a correction for the presence
of l) 2 terms in q,~, was not considered in computing
AE„(k). The s and d repulsive potentials were calcu-
lated according to (4) with the approximation

p„&(r)=rj &(r),

where j&(r) is the spherical Bessel function. This
approximation was based on the observation that
Ik+KI =1 for the dominant terms in the plane-wave
expansion of y„q. The AE„(k) were calculated at kz=0
and kz ——z/C for the LP and A4 bands of Fig. 4. It was
found that the correction was too small (AE„(0.01 Ry)
to require a reordering of the levels. This result is
encouraging in one sense, for it shows that the main
features of the band structure are insensitive to the
variations of the pseudopotential that result from
variations of the mixtures of s, p, and d states in y„q.

However, the mixing corrections failed to produce a
significant change in the predicted energy gap, which
is too large by more than a factor of 2. As was noted
earlier, the magnitude of the energy gap did not change
much as the order of approximation was increased in
the variational calculation of the energy bands. Thus
it did not seem likely that the failure to predict the
correct gap was due to convergence difhculties. Rather,
it was concluded that the poor prediction was due to
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VI. COMPARISON WITH EXPERIMENT

The selection rules for electric dipole transitions
between bands on the kz axis have been reported by
Hulin4 and are summarized in Table II. The symbols 0.

and x refer to the polarization of the radiation, 0-

TABLE II. Selection rules for electric dipole transitions
between states on the kz axis.

Initial
state

Final state
b,2

~olechna and Knox (Ref. 13) have demonstrated that, for
selenium, the introduction of an exchange potential does indeed
narrow the energy gap. They have also shown that with a physi-
cally reasonable choice of the exchange potential, the predicted
gap is in good agreement with experiment.

an inadequate approximation to the crystal potential,
particularly in the region between atomic cores where
the Thomas-Fermi theory is least accurate. Therefore,
at this point, the remaining problem was to determine
whether or not a physically plausible adjustment of
the Thomas-Fermi crystal potential could be found such
that the correct energy gap is produced without causing
drastic alterations of the calculated band structure.

From the perturbation calculations described earlier,
it was evident that the minimum energy gap could be
narrowed by adjusting the pseudopotential so that it
is more attractive outside the core. Such an adjustment
might be attributed to the addition of an exchange
potential, which is attractive and is usually significant
outside the core."To see how a more attractive crystal
potential would aRect the over-all band structure, the
Fourier transform of the pseudopotential was arbi-
trarily altered, as shown in Fig. 6. First-order pertur-
bation corrections were then computed at selected
points on the energy bands. The significant results are:

1. The energy gap was narrowed, as expected, by
increasing the energy of 53' and decreasing the energy
of Aq4 at kz=~/C. It happened that the arbitrarily
adjusted pseudopotential shown in Fig. 6 produced the
correct gap.

2. The hP level at k z= vr/C was lowered substantially.
In fact, the computed energy shift was too large to be
meaningful in a first-order perturbation treatment.

3. The A~' band was raised near kg=0 so that the
direct and indirect gaps have about the same value.

4. The level at Aq', kz ——z/C was raised, thus in-
creasing the gap between d ~4 and 634.

Of course, these perturbation calculations have only
qualitative significance. The important point is that
it was possible to adjust the pseudopotential so as to
obtain the correct energy gap without changing the
ordering and general shapes of the energy bands shown
in Fig. 4.
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Fro. 6. Fourier transform of the adjusted pseudopotential. This
adjustment was used to obtain estimates of the sensitivity of the
band structure to changes in the pseudopotential.

meaning that the electric field vector is parallel to the
C axis of the crystal (E~~C) and vr meaning EJ C. An
allowed electric dipole transition is indicated by the
symbol denoting the polarization. It can be shown that
magnetic dipole transitions can occur in all situations
where electric dipole transitions are forbidden.

Experimental investigations by Loferski' and, more
recently, by Blakemore and Nomura" and by Sobolev'
show that the infrared absorption coefficient corre-
sponding to the excitation of electrons across the energy
gap is much larger for x radiation than for t7 radiation.
According to the selection rules discussed above, this
result implies that the valence and conduction band
edges belong to diferent irreducible representations.
The calculated band structure indicates that both
direct and indirect transitions are involved in the
absorption process. However, because indirect transi-
tions are nominally forbidden, the polarization depend-
ence of the absorption coefficient should be dominated
by direct transitions from 633 to d, z' at kz= ~/C, which
is in agreement with the experimental result. "

Caldwell and Fan" have observed an absorption peak
at a photon wavelength of 11' (=0.007 Ry) with
incident 0- radiation; it was not observable with x
radiation. The temperature sensitivity of the peak
indicates that it is associated with transitions of holes
from one valence band to another. Because the peak is
observed at low temperatures, the valence bands

~' J. S. Blakemore and K. C. Nomura, Phys. Rev. 127, 1024
(1962).

~ Spin-orbit splitting is negligible in this case. Thus the spin-
independent structure of Fig. 4 is used.
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—.7 allowed with cr radiation while in tellurium the allowed
transitions occur with x radiation. Also, because the
A~' and A3' bands do not cross in selenium, there is no
gap comparable to the 11-p gap in tellurium. Thus it
seems that the major differences between the selenium
and tellurium absorption spectra are explained by the
Olechna-Knox calculations for selenium and the present
calculations for tellurium.
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0 C/2c
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Fio. 7. Detail from Fig. 5 showing the proposed origin of the
11-p absorption peak. It is suggested that a detailed calculation
of the spin-orbit e6ect at the point of intersection of AP and b, 33

would result in the removal of the apparent degeneracy of the
corresponding A~ bands, thus producing the gap sketched above.

involved must be near the valence band edge. Thus, the
data imply that there are two valence bands of the
same symmetry, separated by a small gap and lying
near the maximum valence-band energy. The structure
shown in Fig. 5 suggests that the peak is a result of
transitions between the two 65 bands that appear to
cross near kz=~/C. The removal of this apparent
degeneracy by a more complete treatment of the spin-
orbit effect would result in a small gap between the A~

bands, as sketched in Fig. 7. If the AP and d, P bands
cross, as Fig. 4 and the supporting pseudopotential
correction study indicate, then the existence of such a
small gap is assured. However, the position and magni-
tude of the gap remains uncertain because the calcu-
lation of those features requires a detailed knowledge
of the ~~' and 63' wave functions near the gap. The
perturbation calculations of Sec. V show that the 63'
function is sensitive to errors in the pseudopotential
in that region.

Recent calculations of the selenium band structure
by Olechna and Knox" make possible some interesting
observations concerning the selenium and tellurium
absorption spectra. In comparing the present tellurium
band structure with the selenium results reported by
Olechna and Knox, it should be noted that, because of
the point transformation convention used in the present
paper, the symbols 62 and 63 should be interchanged.
According to the Olechna-Knox calculations the
selenium hP band (in the notation of the present paper)
lies below the A~' and A2' bands. In tellurium the 63'
band crosses A~' and forms the valence band edge at
kz=z/C. Therefore, in selenium, the transitions corre-
sponding to the fundamental absorption edge are

VII. SUMMARY AND CONCLUSIONS

The method of pseudopotentials has been applied to a
study of the tellurium band structure along the kz
axis. It has been shown that the main features of the
energy bands are insensitive to small errors in the
pseudopotential, thus justifying the use of a simplified
crystal potential and a p-state atomic pseudopotential.
The calculated band structure is consistent with
infrared absorption data and, in view of the rather
rough treatment of the crystal potential, gives a
reasonably accurate prediction of the energy gap. The
correct gap can be produced by making the model
pseudopotential more attractive between atomic cores.
The calculations also show that there is considerable
s-p and possibly p-d mixing in the important valence
and conduction states and that the extent of this
mixing is strongly dependent on the state. Although
corrections for the presence of mixed states do not
alter the qualitative features of the energy bands in the
absence of a spin-orbit interaction, mixing effects are
responsible for the spin-orbit splitting being much
smaller than the assumption of pure p bands would
suggest.

It is evident that the success of the present calcu-
lation depends strongly on the insensitivity of the
band structure to small errors in the pseudopotential.
The origin of this insensitivity is well-known. The
crystal and repulsive potentials cancel each other to
such an extent that the Hamiltonian matrix is domi-
nated by the diagonal kinetic-energy terms. It is
therefore expected that small errors in the weakly
attractive pseudopotential result in even smaller errors
in the band structure, regardless of the crystal structure
and the presence of angular-momentum mixing in the
valence states. Nevertheless, it is encouraging to note
that this effect has now been demonstrated by actual
calculation for the tellurium structure, as well as cubic
structures, for a case where s-p-d mixing leads to
significant uncertainties in the pseudopotential.
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