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where the variable is the wavelength shift x. Knowing
this relation we can determine the shape of the Comp-
ton band. For x=0 we have the peak of the parabola.
The two ends are obtained by replacing x by
x = &(2X/c) sin(s p)v, . This result is valid for scat-
tering angles larger than yo. For the case of q & yo, the
shaded part of Fig. 1 is divided in two parts lying on

either side of the plane AB (Fig. 11).The part to the

right of this plane gives a section of the parabola men-

tioned above, while the other part to the left of the
plane AB gives a linear section of the profile. Using for
the variable x the limits

(2X/c) sin(-,'y)( ——,'s)~&@~& (2X/c) sin(-,'p)(v .„—s), .

we And easily
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which represent a straight line. On the basis of this cal-
culation we plotted the curve of Fig. 3 for y=10'.
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The arrangement of atoms around an edge dislocation in copper has been calculated by a variational
method using a central-force approximation. The pairwise interaction between discrete atoms was repre-
sented by a Morse potential function. In the calculation of the complete dislocation, the atoms were not per-
mitted to relax in a direction parallel to the dislocation line. This prevented dissociation. Linear-elasticity
theory is found to break down inside a core radius of 9 A for a complete (112) dislocation LBurgers vector
= (Qp/2)(110), where ao is the lattice constantj. The corresponding core energy is 0.65 eV per {112)plane.
If the core is replaced by a cylindrical hole of radius r,q (the equisalemt hole radius), the inside of which is
hollow and outside of which linear-elastic theory holds at all points, this radius is 0.8 A. The complete dis-
location was found to have a width of 13 A (i.e., about Qve Burgers vectors). The core region is found to be
neither hollow nor like a liquid. If the atoms are permitted to relax in a direction parallel to the dislocation
line, the dislocation spontaneously dissociates into two Heidenreich-Shockley partials; and this process in-
volves no activation energy. A stacking fault of infinite extent has an energy of 30 erg cm ' for the potential
and truncation used in the calculation. Certain precautions must be taken to ensure that the separation
distance of the partials is the same as the distance given by elastic theory. Several diferent potential forms
were used in the calculations of stacking-fault energy. The stacking-fault energy is found to be critically
dependent upon the form of the interatomic potential. For the pseudopotential for aluminum given by
Harrison, the stacking-fault energy is approximately 250 erg cm 2.

I. INTRODUCTION

HE elastic-continuum treatment of dislocations in
metal crystals has always suffered from djfQ-

culties associated with the dislocation core. Expressions
for the stresses around a dislocation, derived by the
continuum method, invariably have a singularity at the

+ Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

center of the dislocation. It is clear that such a singu-
larity does not occur in a real crystal. This dBBculty is
usually overcome by treating separately that part. of
the crystal which lies inside a small cylinderical core
whose axis is the dislocation and the radius of which is
r„say. This part is referred to as the dislocation core,
and the linear elastic theory is said to break down in
this region. The integratioris which are involved in cal-
culations of dislocation energy use r, as a lower limit of
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the radius. This procedure is unsatisfactory in that
without knowing the exact arrangements of atoms in
the core one has difhculty in choosing a value of r,.
Moreover, even when r, has been chosen, there is no
satisfactory way of dealing with that part of the crystal
which lies inside this radius. This paper describes a
method by which these diS.culties can be resolved. It
involves a three-dimensional atomistic treatment in
which the atoms interact with one another with forces
which are purely central.

A rough estimate of the core energy has been made

by Bragg, ' who obtained a value of 1 eV per atom plane
using the fact that the energy density in the core
cannot exceed the latent heat of melting. Hasiguti and
Doyama' arrived at a value of 1.1 eV per atom plane in
a calculation involving two dislocations of opposite sign
separated by one atomic plane This configuration is
equivalent to a row of vacancies. CottrelP assumed that
Hooke's law holds inside the core and found a core
energy of 1.3 eV per atom plane. Huntington, 4 who cal-
culated the electrostatic energy between atoms in a
dislocation in rocksalt, obtained approximately 0.5 eV
per atom plane for an edge dislocation in that material.
This appears to have been the first calculation of this

type to be based on a discrete atom model. Huntington
et al.' refined these calculations for both edge and screw
dislocations in the same material. Englert and Tompa'
have used a two-dimensional model to calculate the
positions of atoms in a plane normal to a (110)disloca-

tion in argon.
In recent years calculations of the energies and atomic

configurations of clusters of point defects have been

greatly facilitated by application of computer techniques
and the use of discrete-atom models. The interactions
between the atoms in a metal crystal have usually been
represented by a Born-Mayer potential' or a Morse
potential. The considerable success of these calcula-
tions has been summarized by Damask and Dienes. '
This paper reports the results of a project which

extends the method to the case of the edge dislocation
in a three-dimensional copper crystal. The calculations
involved the use of a Morse potential and were carried
out with the aid of a CDC 3600 digital computer. The
use of a Morse crystal (with its inherent stability)

'W. L. Bragg, Symposium on Internal Stress (Institute of
Metals, London, 1947), p. 221.

'R. R. Hasiguti and M. Doyama, Bull. Japan Inst. Metals,
October (1952) Lin Japaneseg; Bull. Phys. Soc. Japan, April
(1953).

'A. H. Cottrell, Dislocations and Plastic Ii/om in Crystals
(Clarendon Press, Oxford, England, 1956), p. 39.

4 H. B. Huntington, Phys. Rev. 59, 942A (1941).
5 H. B.Huntington, J. E. Dickey, and R. Thomson, Phys. Rev.

100, 1117 (1955).
6A. Englert and H. Tompa, J. Phys. Chem. Solids 21, 306

(1961).
g~ M. Born and E. Mayer, Z. Physik 75, 1 (1932).

P. M. Morse, Phys. Rev. 34, 57 (1929).
'A. C. Damask and G. J. Dienes, Point Defects in Metals

(Gordon and Breach Science Publishers, Inc. , Nevy York, 1964),
p. 11.

rather than a Born-Mayer crystal (whose stability can
only be achieved by application of an external force) is
discussed later in the paper.

Heidenreich and Shockley" have shown that it is
energetically favorable for a complete dislocation in a
face-centered lattice to split into two partial disloca-
tions, the region between the latter being a stacking
fault. In the present study both the complete and the
dissociated configurations were examined. Because cal-
culations which are based on the elastic-continuum
theory do not hold for the core region, it is not possible
within the framework of this theory to treat disso-
ciated dislocations in which the separation distance of
the partials is of core dimensions. It is not known,
therefore, whether or not there is an activation energy
for dissociation. As is shown later, the use of an atom-
istic model permits clarification of this point.

If one is to put any reliance on the results for the dis-
sociated dislocation, one would have to be sure that the
method of calculation is capable of giving an acceptable
value of the stacking-fault energy. This value would be
obtained from a calculation involving a fault of in-
finite extent (i.e., a case where the effects of the partial
dislocations can be ignored). Calculations of the stack-
ing-fault energy y in fcc metals, based on the electron
theory of metals, have been published. ""The essentials
of these treatments are as follows. Electrons in closed
shells make only a small contribution to p because they
mostly affect the interactions between nearest neigh-
bors, and nearest-neighbor relationships are not
violated at a stacking fault. The contribution of the con-
duction electrons toy arises from the change in the shape
of the Fermi surface near the Brillouin-zone boundaries.
Because of this, multivalent metals such as aluminum
should have a high y, because the conduction electrons
overlap the boundaries of the first zone; and a stacking
fault then produces a considerable change in energy.
Metals such as copper, silver, and gold, on the other
hand, have a low p. These metals have nearly spherical
Fermi surfaces which barely touch the zone boundary. "
In the present paper, a quite different approach is taken,
The stacking-fault energy is calculated by taking into
account the pairwise interaction between atoms and
assuming central forces.

The calculations described in this paper involved the
use of a Morse potential function and also several more
complex functions. These functions and their applica-
tion to calculations on lattice defects are discussed in
Sec. II. The calculations on stacking faults, complete
edge dislocations, and dissociated edge dislocations are
described in Secs. III, IV, and V, respectively.

I R. D. Heidenreich and Ql'. Shockley, Report on Strength of
Solids (The Physical Society, London, 1948), p. 57.

» A. Seeger and H. Bross, Z. Physik 145, 161 (1956).
's A. Seeger, Defects il Crystallirte Solids (The Physical Society,

London, 1955), p. 328.
» J. M. Zitnan, Primeiples of the Theory of Solids (University

Press, Cambridge, England, 1964).
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II. INTERATOMIC POTENTIAL FUNCTIONS

In the present calculations the interaction energy
between atoms was represented by a central-force func-
tion. In most cases a Morse function was used. The
interaction energy E(r,,) of a pair of isolated atoms is
then given by

E(r,;)=DIexpL —2n(r, ,—rp)]
—2 expL —n(r, ,—rp) j}, (1)

where r,, is the distance between the two atoms, D is
the dissociation energy of the pair, ro is the equilibrium
separation distance of the two atoms, and n is a con-
stant which is effectively a measure of the hardness"
of the interaction. The energy of any atom in the crystal
is then E,, where

(2)

and where J is the number of atoms in the sphere of
inQuence. J is, of course, related by a geometrical factor
to the distance over which the interaction extends. Giri-
falco and Wiezer" have derived constants for the Morse
potential for several different metals. For copper these
authors give n= 1.3588 A ', rp= 2.8660 A, and
D=0.34290 eV.

The values of the constants must, of course, depend
upon J.Clearly, if Jwere 12 (i.e., only nearest neighbors

interact), then rp would be equal to the nearest-neighbor
distance. The values given by Girifalco and Wiezer
were obtained with a large crystal (containing 4000
atoms) in which each atom was allowed to interact with
all other atoms. The field of each atom therefore vir-
tually extended to infinity. In variational calculations
of the type used here, the successive relaxations of atoms
are rather time consuming even when the latest com-
puters are employed; so it becomes impracticable to
consider such long-range interactions. Moreover, one
cannot be certain that the field of an atom is still ade-
quately described by a Morse function at distances
greater than a few nearest-neighbor distances. One
would expect screening eBects from other atoms to
modify the field. For both of these reasons it becomes
desirable to truncate the potential (i.e., to limit J to
some convenient finite number). It can be shown" that
as J decreases from infinity to 12 (the number of
nearest-neighbor atoms in the perfect fcc lattice), the
value of ro decreases from about 1.3do to do, where do is
the nearest-neighbor distance. There is also a corre-
sponding variation in n and D. In the work described
here the potential was truncated at 176 neighboring
atoms and the constants were rp 2.9130 A, a——

p ——3.6028
A, D=0.3226 eV, and n=1.2866 A ', where ap is the
lattice constant (=dpV2). These constants were de-
termined by the method described by Girifalco and
Wiezer. '4 This method uses the fact that bulk crystal

.5 M. Doyama and R. M. J. Cotterill, Bull. Am. Phys. Soc.
"L.A. Girifalco and V. G. Wiezer, Phys. Rev. 114, 687 (1959). 10, 323 (1965).
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FIG 2 Energy as a function of
distance for various potentials in
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atoms in the erst few neighboring
atomic shells is also indicated.

properties calculated with a particular truncated po-
tential must match the experimental values of those
properties. In this case the properties chosen were the
energy of sublimation, the bulk modulus, and the
lattice constant. An additional constraint was that the
Born stability criteria" have to be satisfied. Moreover,
the potential used here gives values of the elastic con-
stants which are in good agreement with the experi-
mental values. The experimental values of C~~, C~2, and
C44 are 1'/. 8g X10" 12.6&& 10rr and g.35)& 10r& dyn cm—s

respectively. " The theoretical values derived with
the Morse potential were 15.98&(10" 11.22&10" and
11.22)(10" dyn cm ' for the same quantities.

As was noted earlier, many previous atomistic calcu-
lations on lattice defects have involved the use of a
Born-Mayer potential. In the present study a Morse
potential function was preferred to a function of the
Born-Mayer type for reasons which are best understood
by reference to Fig. 1. In that 6gure both functions are
plotted as a function of radial distance for copper. The
Morse potential has both repulsive and attractive
terms. The Born-Mayer potential has only a repulsive
term, and a crystal which obeys this function must be
artiicially held together by forces applied to its surface.

One of the parameters which was calculated in the
present study was the stacking-fault energy y. It was
decided that a calculation of y for a whole series of dif-
ferent potential forms should be carried out. Interatomic
potentials for aluminum have been published recently
by Johnson et al. 's and by Harrison. " The potential
derived by Johnson et al. is for liquid aluminum at a

"M. Born, Proc. Cambridge Phil. Soc. 36, 160 (1940).
»H. B. Huntington, Solid State I'hysics, edited by F. Seitz

and D. Turnbull (Academic Press Inc. , ¹wYork, 1958), Vol. 7,
p. 213.

» M. D. Johnson, P. Hutchinson, and N. H. March, Proc. Roy.
Soc. {London) 282A, 283 {1964).

r9 W. A. Harrison, Phys. Rev. 129, 2512 (1963).

temperature of 750'C. It was derived from neutron
scattering data. The potential given by Harrison is for
solid alumiun and was derived from pseudopotential
theory. These two potentials are plotted, together with
the Morse potential (1'/6 neighbors) for aluminum, ss in
Flg. 2.

The next three sections of the paper describe in
detail the calculations and results for stacking faults,
complete edge dislocations, and dissociated edge dis-
locations, respectively.

III. CALCULATIONS OF STACKING-FAULT
ENERGY

The calculations of y were performed with a fault
which was effectively infinite (as opposed to a fault
bounded by partial dislocations). The upper part of the
atomistic crystal, which was fed into the computer, was
displaced by an amount (a&j6)(112) relative to the
lower part, where ao is the lattice parameter. Only the
intrinsic type of fault was examined, and in this par-
ticular study the atoms were not permitted to relax
(as they were in the dislocation calculations described
in the next section). Calculations on stacking faults in-
volving relaxations of the atoms are now being carried
out, but these will not be described here. The pre-
liminary results of that study show that there is an ex-
pansion of the spacing between planes of about 1%near
the fault.

Values of y for copper were obtained with the Morse
potential discussed in Sec. II and with the Born-Mayer
potential given by Gibson et al.""and Johnson and

~ R. M. J. Cotterill and M. Doyama, Bull. Am. Phys. Soc.
10, 1095 (1965). Further details to be published.' G. H. Vineyard and J. B. Gibson, Bull. Am. Phys. Soc. 6,
158 (1961).

~ J.B.Gibson, A. N. Goland, M. Milgram, and G. H. Vineyard,
Phys. Rev. 120, 1229 (1960).
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Brown" (see Fig. 1). Calculations of y for aluminum
were made for the Morse potential and for the potentials
given by Johnson et al "and by H.arrison" (see Fig. 2).
No Born-Mayer potential was available for aluminum.
In the case of the calculation using the potentials of
Johnson et al and Harrison, .values of y were obtained
for the actual potential derived from neutron scattering
data both with and without the approximate analytical
form for large radii suggested by Johnson et al. This
analytical solution has the form

V(r)=A(p/r)scosl2Z(r+P)} exp( —rr) . (3)

For the Johnson et al. potential the constants are

ss R. A. Johnson and E.Srownr Phys. Rev. 127, 446 (1962).

A =0.22g eV, p=2.66 A, X= 1.40 A ', p=0.14 A, and,=0.07g A-'. (These constants give a better 6t than
those given by Johnson et al. , viz. , A=0.041 eV,
p=2.6S A, Z =137 A-' p=193 A, and .=0.1S A-')
The actual potential and the analytical solution are
plotted in Fig. 3(a) for the sake of comparison. If the
same analytical form is used for the Harrison potential,
the constants are A=0.094 eV, p=2.40 A, E=1.46
A ', P=1.34 A, and v=0. This analytical solution is
plotted, together with the actual potential given by
Harrison, in Fig. 3(b).

Various truncations vrere used in the calculations.
For the nonanalytical forms of the Johnson et al. po-
tential and the Harrison potential the truncation was
determined by the extent of the curves published by
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these authors. In each case these oscillatory curves
extend out to about 8 A, and this corresponded to the
inclusion of everything out to and including the seventh
neighbor shell, a total of 134 neighboring atoms in all.
Various truncations were used for the remaining forms,
i.e., the Morse and Born-Mayer potentials. An effec-
tively infinite truncation was used for the Johnson et al.
potential and Harrison potential in which the analytical
approximations were used beyond 7 A, (using about
4000 neighbors). Morse potential calculations for alu-
minum were carried out using constants derived by two
different methods. As has been pointed out else-
where, '0'4 constants for the Morse potential derived
from the experimental value of the sublimation energy
Ez give anomalously high absolute values for the for-
mation energy of point defects. "An alternative method
for deriving the constants involves the use of the experi-
mental value of the single vacancy formation energy,
E~~. For both sets of constants, various truncations
were used.

Table I shows the results for each of the sixteen dif-
ferent calculations of p. To begin with, one may note
that p for copper calculated by using a Born-Mayer
potential is vanishingly small. Experimental values of p
for copper lie in the range 30—80 erg cm '.'~" As
might be expected from the shape of this potential (see
Fig. 1), the result is not affected by tightening the
truncation from 4000 atoms to 176 atoms. Even for the
effectively infinite truncation the Morse potential gives
a larger value of p than does the Born-Mayer potential.
The absolute value of y is still quite low, however. It
increases as the truncation is tightened, and for a
truncation at 176 neighboring atoms the value is quite
reasonable (30.8 erg crn '). It is for this reason that
the 176 neighbor truncation was used in the calculations
on dislocations described elsewhere in this paper.

Comparing the values of y obtained for aluminum
and copper by use of a Morse potential whose constants
were derived through the relevant values of Eq, we find

"Details are given in the two review papers by R. M. J.
Cotterill and M. Doyama in Lattice Defects and Their Interactions,
edited by R. R. Hasiguti (Gordon and Breach, Science Publishers,
Inc. , New York, 1966).

"When Morse potentials are used to calculate the formation
energy of point defects, the absolute values of the latter are always
rather high. Electron redistribution around the defect must
account for part of the discrepancy. Another source of error may
arise from the fact that the method used in deriving-the constants
of the Morse potential implicitly assumes that the electron en-
vironment which prevails during the measurement of the sublima-
tion energy is the same as that prevailing during the measurement
of the elastic constants. 'This is probably not true because the
evaporation of a neutral atom from the surface requires 6rst the
localization of an electron at the atom which is to be removed.
Because of these difBculties, an alternative approach may be used
which links the Morse potential to the experimental value of
Ep~, the vacancy formation energy, rather than Eg, the sublima-
tion energy.

~' A. Bowie and P. R. Swann, Phil. Mag. 6, 1215 (1961}.» L. M. Brown, Phil. Mag. 10, 441 (1964). L. M. Brown and
A. R. Tholen, Discussions Faraday Soc. 38, 35 (1964)."T. Jossang, M. J. Stowell, J. P. Birth, and J. Lothe, Acta
Net. 13, 279 (1965).

that for equivalent truncations the results are very simi-
lar. In fact, they differ by only a few percent. This is in
disagreement with experiment. The value of y in alu-
minum is generally regarded as being in the region of
200 erg cm '" (i.e., perhaps three to five times the
value of y for copper). It is not clear at this time just
why the calculated values of p for copper and aluminum
should be so close to each other.

The Morse potential whose constants were calculated
by using E&~ instead of Ez gives very poor results. For
all three truncations listed in the table the derived
values of p were very small and negative. The results
in this case are not very dependent upon the truncation.
This partly a reQection of the fact that the potential is
in this case quite "narrow" compared with the potential
derived from Eg. The constants of the potential also
show no change with truncation in this range.

The results for the more complex potentials are on the
whole more encouraging. It cannot be emphasized too
strongly, however, that calculations with these po-
tentials are at a very early stage of development. These
preliminary results should not be taken too seriously.
One difference between calculations with the complex
potentials and those employing the simpler potentials
concerns the effect of truncation. It can be seen from the
table that the effect of truncation on calculations with
the potentials of Johnson et al. and Harrison is to
decrease y. For a truncation at 4000 atoms the Johnson
et al. potential gives y=8.3 erg cm ', whereas for a
truncation at 134 atoms it gives y= —108 erg cm '."
Comparing the two potential forms given by Johnson
et al. and Harrison, respectively, for the same truncation
(at 134 atoms), we find values of —108 and 91 erg
cm '. It is not surprising that these potentials give
values of p which are approximately equal and opposite.
Beyond the first shell of neighbors the potentials are
almost exactly 180' out of phase with each other. For
an effectively infinite truncation (4000 atoms) the
Harrison potential gives y=253.2 erg cm—', which is in
good agreement with the generally accepted value of
200 erg cm 2 for aluminum. '2

Further calculations of y using the more complex po-
tentials are required. One urgent need is forpseudo-
potential curves for copper corresponding to the curve
for aluminum given by Harrison. One hopes that such
curves would produce relative values of y for aluminum
and copper which are in better agreement with experi-
ment. It would be desirable, too, to have pseudopoten-
tial curves which extend out to radii considerably
greater than the present limits of about 8 A, because
one can never be sure just how badly the results are
affected by truncation. It is too early to say whether or
not simple pairwise calculations in the central force
approximation will ever be capable of giving acceptable

9 This large negative value of y is a direct result of truncation.
Its appearance should not be taken to indicate that the hcp phase
is more stable than the fcc structure. This would necessarily be
so only for a truncation at next-nearest neighbors.
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TAsLE I. Calculations of y for various analytical and nonanalytical potentials.

Metal

Copper

Metal

Copper

Aluminum

Metal

Constants

Gibson et al.

Constants

Derived from Eg

Derived from Eg

Derived from Ey~

Constants

Born-Mayer: V(r) =I.exp( —Xr)

Truncation L (eV) Xg. ')

4000 atoms 0.053 13.9
176 atoms 0.053 13.9

Morse: V(r) =D(exp( —2ngr —rag) —2 exp( —at r—ro]))
Truncation D(eV) a (L r) rs(a)

4000 0.3236 1.2941 2.9133
200 0.3228 1.2888 2.9135
176 0.3226 1.2866 2.9130

4000 0.2774 1.1180 3.3005
200 0.2763 1.1119 3.3013
176 0.2761 1.1096 3.3007
134 0.2762 1.1039 3.2966

4000 0.1262 2.2623 2.8823
176 0.1262 2.2623 2.8823
134 0.1262 2.2623 2.8823

Jonson et al :V(r.) =A(v/r)8 cos(2E(r+P)) exp( —rr)
Truncation A (eV) v(A) ZQ ')

y erg cm

0.007
0.007

y erg cm

0.422
17.9
30.8
0.412

16.3
27.9
43.8—0.37—0.37—0.32

7 erg cm

Aluminum
With analytical

approximation at
large radii

Nonanalytical

4000 0.228 2.66 1.40 0.14 0.078 8.3

—108.0

Metal Constants

Harrison: V (r) =A (p/r)s cos{2X(r+P)) exp (—rr)
Truncation ci (eV) p (X) E(A. ') y erg cm—2

Aluminum
With analytical

approximation at
large radii

Nonanalytical

4000

134

0.094 2.40 1.46 1.34 253.2

91.0

values of y. If scattering of electrons or changes in elec-
tron density at the fault really are the predominating
effects, such calculations may not be successful unless
electron redistribution can be allowed for in the inter-
atomic potential in a self-consistent manner.

The calculations described in the remainder of this
paper involve only the Morse potential.

IV. CALCULATION OF THE ENERGY AND
ATOMI C CONFI GURATION OF A
COMPLETE EDGE DISLOCATION

A. Nature of the Problem

According to the linear isotropic elastic continuum
theory, the displacements parallel to the three axes x,
y, and s, due to an edge dislocation lying along the
y axis, are respectively"

b s 1 xsI=—arctan — +
2s x 2(1—v) r'

n= 0,

b g'
(2v —1) lnr+-

4s (1—v) r2

vb
+E--

4s.(1—v) kr, ~]
(6)

The difhculties associated with the choice of rg~ and
E„„~,the core energy, can best be appreciated by
reference to Fig. 4, which is a plot of dE/dr against r.
Differentiating Eq. (6) with respect to r, we have

pP
dE~/dr =

4s.(1—v) r

where b is the Burger's vector, v is Poisson's ratio, and
r is (x'+s')'". The elastic energy per unit length of the
dislocation is, for a suKciently large crystal, '0

pb' /rr)
E in'

i
1 +Ecore

4~ (1—v) t rcv/

where p is the shear modulus and r~ is the outer radiius
of the crystal containing the dislocations. The second
term in the brackets arises from relaxation of surface
stresses. The superscript letter E is used to denote
applicability to the case of an edge dislocation. The
energy per unit length of a cylinder of radius r, inside
the crystal, having the dislocation located at its axis, is

J. Friedel, Dislocutions (Addison-Wesley Publishing Com-
pany, Inc. , Reading, Massachusetts, 1963), p. 2p. The quantity dEa/dr, which is plotted as the dashed
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FIG. 4. Schematic plot of dE/dr as a function of r for a disloca-
tion. r is the distance from the center of the dislocation, and E is
the energy rvithin a radius r. r, and r,h are the core and equivalent
hole radii, respectively. The areas of the horizontally and vertically
shaded regions are both numerically equal to the core energy.

jul

E~(r) = ln
4Ir(1—v) r.h~

and this equation indicates that the dislocation behaves
as if it obeyed linear elastic theory down to a radius
r,h~, with the region inside this radius hollow. The
position of r,h~ is clearly such that the area lying under
the dashed curve between r,h~ and ro~ in Fig. 4 (the
vertically shaded region) is equal to the area under the
solid curve between r=0 and re~ (the horizontally
shaded region). st

B. Method of Computation

The edge dislocation examined in the present study
lies along a (112) direction (in a (111) plane). Its
Burgers vector was of the type (cs/2)(110). There are
six different resolved atomic positions on a (112) plane

3~ In reality the solid line in I ig. 4 is not continuous because the
crystal is atomistic. The horizontally shaded region should there-
fore be replaced by a histogram having the same area.

curve in Fig. 4, has a singularity at the origin. Suppose
that the actual curve follows the solid line, which must,
of course, join the dashed line at the point beyond
which the elastic theory holds. It is clear that a deter-
mination of the position of the solid line would allow
the dislocation energy to be calculated because the area
of the horizontally shaded region is equal to E,.„~,and
the solid line joins the dashed line at rz~. All quantities
in Eq. (5) would thus be determined.

It may be noted that Eq. (6) may be rewritten by
using the substitution

pb' rex)
E„,P = ln

47r (1—v) r,hS

where r,g~ is called the equivalent hole radius for the edge
dislocation. (The meaning of this term will become ap-
parent later. ) Equation (6) then becomes

normal to the dislocation line. These resolved positions
are related to atoms in six successive different (112)
planes. Outside of this set of planes the crystal is re-
peated. All relaxing operations need be carried out,
therefore, only on atoms in these planes; and the crystal
is made in6nite along the dislocation line by the use of
periodic boundary conditions which permit sirnul-

taneous movement of equivalent atoms. Calculations of
the energy and atomic configuration of the dislocation
were made for both elastic and atomistic models. In the
6rst case the atoms were considered to be embedded in
an elastic medium, and their displacements were then
given by the isotropic elastic continuum theory. Their
energies were calculated on the basis of interactions in-

volving the Morse potential discussed elsewhere in this
paper. This model will be designated elasto-atomic. It
provided a convenient starting point for the atomistic
calculation. In this second model the atoms were erst
located at the elasto-atomic positions and then allowed
to relax until equilibrium prevailed.

The construction of the elasto-atomic dislocation in-
volved some complications. Equations (4) are derived
from a model in which the extra half-plane (having a
thickness b, where b is the Burgers vector) is made by
inserting an extra half-plane of thickness b/2 above the
slip plane and removing a similar half-plane below the
slip plane. Atomistic planes with thickness b/2 do not
exist in the face-centered cubic lattice. The actual de-
formation of the perfect lattice corresponding to
Eqs. (4) is shown in Fig. S. It can be seen that the dis-

location does not have the desired symmetrical form
near the center. This diKculty was overcome by the
process indicated in Fig. 6. The plane of the 6gure is

(112),and in this projection the 110layers are stacked in
an A BABAS sequence in the perfect crystal LFig. 6 (a)j.
The dotted line indicates the slip plane. Two adjacent 3
and 8 layers were electively removed from the crystal

by pushing the lower left quadrant of the crystal to
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FzG. 5. A plot of the actual displaced positions of the atomIc
layers around an edge dislocation, as calculated from the linear
isotropic elastic-continuum equations LEqs. (4)g. Note that the
planes of zero distortion parallel to the slip plane are OBset.
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the left by an amount b LFig. 6(b)]. The 8 layer im-

mediately to the right of the resulting gap was then
moved to the left by an amount b/2 so as to bring it
immediately below the A layer located on the origin
LFig. 6(c)j.The disturbed crystal was now symmetrical
about the plane passing through the dislocation line. All
atoms were then given the elastic displacements indi-
cated by Eqs. (4).

As was noted previously, there are six different types
of resolved atomic positions on a {112}plane in the fcc
lattice. These arise from six consecutive different types
of {112}planes. Outside these six planes the pattern is
repeated. This fact permits considerable simplification
of the computer calculations, because every atom out-
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FIG. 6. Step-by-step procedure for the construction of the
elasto-atomic edge dislocation by a method which overcomes the
difBculties apparent in Fig. 5. A full description of the procedure
is given in the text.

side these six basic planes is related to an atom in one
of the six planes by a simple translation vector in the
(112) direction. The crystal which is fed into the com-
puter can therefore be made effectively infinite along
the dislocation line by use of periodic boundary condi-
tions. In the present study the number of atoms in each
{112}plane was about 700.

For convenience, the x and y axes were taken to lie
in the (111) slip plane. They were placed along the
L110j and L112$ directions, respectively. In order to
facilitate the computer calculations, the units along
these axes were chosen in such a way that the position
of every atom in the perfect crystal could be given by
integer coordinates. The units along the x, y, and z axes
were d/2, d/2&3, and (gas)d, resPectively, where d is the
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nearest-neighbor distance. The dislocation was parallel
to the y axis and cut the xz plane at @=0,z=0.5.

The positions of the atoms in the perfect crystal were
first fed into the computer; and the energy of each atom
was calculated, the pairwise interactions being repre-
sented by the Morse potential function discussed earlier.
The crystal was then deformed in such a way that the
atoms were displaced to the elasto-atomic positions. The
energy of the resulting elasto-atomic edge dislocation
was calculated as a function of radial distance from the
center of the dislocation. The atoms were then allowed
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COMPLETE EDGE Dl S LOCATION

FIG. 8. Positions of atoms in three consecutive {112}planes
immediately adjacent to the planes shown in Fig. 7.

COMPLETE EDGE DISLOCATION

Fro. 7. Positions of atoms in three consecutive {112)planes
normal to the complete edge dislocation line. It may be noted that
the distortion of the lattice in the core region is not very severe.
The core is neither hollow nor like a liquid.
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COMPLETE EDGE DI SLOCAT ION

Fzo. 9. Positions of atoms in two (111) planes, one above
(triangles) and one below (circles) the slip plane of the complete
edge dislocation. The dislocation line lies along the (112) direction
indicated by the arrow.

to relax, one at a time, in a series of cycles, until equi-
librium prevailed throughout the crystal. " '4 The en-

ergy of the resulting atomistic dislocation was also calcu-
lated as a function of radial distance from the center of
the dislocation. The strain energy inside a certain radius
is s P", i (E;—Es), where ri is the number of atoms
inside that radius, E; is the energy of the ith atom after
relaxation, and Ep is the energy of an atom in the perfect
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4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 40 0 0 0 0 0 0 0 0 p 0 p p p p 0 0 0 0 0 0 0

DISSOCIATED EDGE DISLOCATION

FIG. 10. Positions of atoms in two (111) planes, one above
(triangles) and one below (circles) the slip plane of the dissociated
edge dislocation. The position of the original complete dislocation
line is along the (112) direction indicated by the full arrow. The
partial dislocations, indicated by the dashed arrows, and the
region of stacking fault which separates them can easily be dis-
tinguished by observing the figure from either side at a low angle.

"This process, and also the question of corrections for the
double counting of atomic bonds, is discussed in greater detail
elsewhere (Refs. 33, 34).

"M. Doyama and R. M. J. Cotterill, Phys. Rev. 137, A994
(&96S).

'4 R. M. J. Cotterill and M. Doyama, Lattice Defects in
Quenched 3SIetals, edited by R. M. J. Cotterill, M. Doyama, J. J.
Jackson, and M. Meshii (Academic Press Inc. , New York, 1965),
p. 653.

crystal with respect to its 176 surrounding neighbors
(see Sec. II). The factor rs allows for the fact that each
bond between atoms is counted twice in the calculation.
Ep= 7.07066 eV.

C. Comylete Edge Dislocation —Results

During the calculations for the complete dislocation
the atoms were not permitted to relax in a direction
parallel to the dislocation line. This prevented disso-
ciation, as is discussed later. The positions of the atoms
near the center of the dislocation are plotted in Figs. 7
and 8. As was noted in Sec. IVB, there are six non-
equivalent {112}planes which lie normal to the dis-
location line. The figure is therefore given in two parts
for the sake of clarity, three planes being plotted on
each half. It can be seen from the figure that the {111}
planes parallel to the slip plane and close to it show
appreciable distortion. Figures 9 and 10 are views
looking down onto the slip plane. They show the posi-
tions of atoms in the {111}plane immediately below
the slip plane and the {111}plane immediately above
the slip plane. The positions of some of the atoms close
to the center of the dislocation are given in Tables II
and III. Also given in the tables are the energy of each
atom, E;, and its distance from the center of the
dislocation.

The energy of the complete dislocation is plotted as
a function of radius in Fig. 11. Both the elasto-atomic
and atomistic energies are given. The energies have
been plotted against lnr so that the extent of the linear
region of the curve Lwhich would be in agreement with
Eq. (9)j can clearly be seen.

V. CALCULATION OF THE ENERGY AND
ATOMIC CONFIGURATION OF A

DISSOCIATED EDGE DIS-
LOCATION —RESULTS

The final positions atta, ined by the atoms in the
study of the complete edge dislocation were used as the
initial positions in the examination of the dissociated
dislocation. When the atoms were allowed to relax in a
direction parallel to the dislocation, the dislocation
spontaneously dissociated. The positions of the atoms
near the dissociated dislocation are shown in Fig. 10
(which is to be compared with Fig. 9). Two distinct
partial dislocations can be observed in Fig. 10, and the
region between them contains a stacking fault. The
separation distance between the partials is approxi-
mately 20 A or Sb. There are at least two reasons why
this separation distance might be in error. They are dis-
cussed in Sec. VI of this paper.

The energy of the dissociated dislocation is plotted as
a function of radius in Fig. 11.This curve has been made
to correspond as closely as possible with that of the
complete dislocation. The radius in Fig. 11 is measured
from the center of the original complete dislocation.
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TABLE II. Positions and energies of atoms around
elasto-atomic edge dislocation.

TABLE III. Positions and energies of atoms around
complete edge dislocation.

Identity
Coordinates

Distance Energy
from the
center (eV) Identity

Coordinates
y

Distance Energy
from the E;

center (eV)

1
0—1
1

2—2—2
2

0
1
3—3

—1
1—3
3

2—2—2
2

3—3

—4
—3

3—4
4

0—1
1
1

—4
2—2

4—2
2

5—5—5
5

3—3—3
3

5—5—5
5

4
4

2 2
5 —1
3 0
3 0
5 2
5 2
1 1
1 1

2 —1
2 —1
2 2
2 2

5 —1
5 —1
0 0
0 0
5 2
5 2
4 1
4 1

0 3
3 3
3 3
1 —2

2 —1
2 —1
4 —2
4 —2

2 2
2 2
0 3
0 3

3 0
3 0
1 1
1 1

1 —2
1 —2
3 3
3 3

5 —1
5 —1
5 2
5 2

4 —2
4 —2

0.000
0.000—0.929
0.929

1.243—1.243—1.757
1.757

0,000
0.000
2.330—2.330

—0.982
0.982—2.670
2.670

1.071—1.071—1.929
1.929

2.136—2.136
3.375—3.375

—2.864
2.864—3.625
3.625

0.000—0.989
0.989
0.000

3.196—3.196
1.036—1.036

—3.804
3.804—1.964
1.964

4.402—4.402—4.598
4.598

2.071—2.071—2.929
2.929

4.243—4.243—4.757
4.757

3.110—3.110

3.000
4.000
1.000
1.000

0.000
0.000
4.000
4.000

2.000
5.000
3.000
3.000

5.000
5.000
1.000
1.000

2.000
2.000
2.000
2.000

5.000
5.000
0.000
0.000

5.000
5.000
4.000
4.000

0.000
3.000
3.000
1.000

2.000
2.000
4.000
4.000

2.000
2.000
0.000
0.000

3.000
3.000
1.000
1.000

1.000
1.000
3.000
3.000

5.000
5.000
5.000
5.000

4.000
4.000

0.046
1.046
0.903
0.903

—0.068—0.068
0.856
0.856

1.990—1.010—0.127—0.127

1.966
1.966
0.838
0.838

—1.039—1.039
1.917
1.917

—1.082—1.082—0.157—0.157

1.875
1.875
0.824
0.824

2.963
2.955
2.955—2.037

—1.119—1.119—2.048—2.048

1.847
1.847
2.931
2.931

—0.175—0.175
0.812
0.812

—2.072—2.072
2.901
2.901

—1.147—1.147
1.828
1.828

—2.099—2.099

0.371
0.446
0.569
0.569

0.775
0.775
0.925
0.925

1.216
1.233
1.273
1.273

1.294
1.294
1.363
1.363

1.366
1.366
1.506
1.506

1.676
1.676
1.771
1~ 771

1.820
1.820
1.832
1.832

2.011
2.064
2.064
2.071

2.074
2.074
2.144
2.144

2.197
2.197
2.214
2.214

2.269
2.269
2.313
2.313

2.341
2.341
2.447
2.447

2.512
2.512
2.614
2.614

2.631
2.631

—7.449—5.509—5.816—5.816
—6.878—6.878—6.162—6.162
—7.070—7.269—6.921—6.921
—6.940—6.940—6.373—6.373
—7.175—7.175—7.080—7.080
—7.000—7.000—7.016—7.016
—7.026—7.026—6.865—6.865
—7.042—7.034—7.034—7.057
—6.998—6.998—7.046—7.046
—6.985—6.985—7.035—7.035
—7.042—7.042—6.998—6.998
—7.036—7.036—7.059—7.059
—7.021—7.021—6.995—6.995
—7.040—7.040

3
0 4

1
1 1

2 0—2 0—2 4
2 4

0 2
1 5
3 3—3 3

—1 5
1 5—3 1
3 1.

2 2—2 2—2 2
2 2

3 5—3 5
4 0—4 0

—3 5
3 5—4 4

0 0—1 3
1 3
1

4 2—4 2
2 4—2 4

—4 2
4 2—2 0
2 0
5 3—5 3—5 1
5 1

3 1—3 1—3 3
3 3

5 5—5 5—5 5
5 5

4 4

2—1
0
0
2
2
1
1

—1—1
2
2

—1—1
0
0
2
2
1
1

3
3
3—2

—1

—2—2

2
2
3
3

0
0
1
1

—2—2
3
3

—1—1
2
2

—2—2

—0.002
0.001—0.914
0.916
1.104—1.107—1.836
1.838

0.000—0.001
2.200—2.202

—0.960
0.961—2.769
2.771

1.056—1.057—1.917
1.918
2.112—2.113
3.268—3.270

—2.874
2.875—3.715
3.716

0.000—0.974
0.975
0.000

3.164—3.166
1.035—1.036

—3.835
3.834—1.947
1.948

4.320—4.322—4.671
4.672

2.071—2.072—2.916
2.917

4.209—4.210—4.795
4.796

3.108—3.108

3.000
4.000
1.000
1.000

0.000
0.000
4.000
4.000

2.000
5.000
3.000
3.000

5.000
5.000
1.000
1.000

2.000
2.000
2.000
2.000

5.000
5.000
0.000
0.000

5.000
5.000
4.000
4.000

0.000
3.000
3.000
1.000

2.000
2.000
4.000
4.000

2.000
2.000
0.000
0.000

3.000
3.000
1.000
1.000

1.000
1.000
3.000
3.000

5.000
5.000
5.000
5.000

4.000
4.000

—0.078
0.984
0.968
0.968

—0.090—0.090
0.935
0.935

1.982—1.071—0.113—0.113

1.972
1.972
0.904
0.904

—1.077—1.078
1.946
1.947

—1.096—1.096—0.135—0.135

1.917
1.917
0.877
0.877

2.966—2.959
2.959—2.073

—1.118—1.118—2.078—2.078

1.890
1.890
2.943
2.943

—0.154—0.154
0.854
0.854

—2.090—2.091
2.919
2.920

—1.139—1.139
1.866
1.866

—2.108—2.108

0.472
0.395
0.596
0.597

0.732
0.734
0.984
0.986

1.210
1.283
1.209
1.210

1.294
1.294
1.423
1.424

1.392
1.392
1.521
1.522

1.677
1.678
1.714
1.715

1.845
1.845
1.883
1.883

2.013
2.066
2.066
2.101

2.061
2.062
2.167
2.168

2.227
2.228
2.219
2.219

2.225
2.226
2.353
2.354

2.355
2.355
2.455
2.456

2.494
2.494
2.644
2.645

2.636
2.636

—7.325—6.265—6.337—6.335
—7.279—7.278—6.488—6.483
—6.896—7.032—7.207—7.205
—6.914—6.913—6.631—6.628
—7.031—7.031—6.952—6.951
—7.026—7.026—7.163—7.162
—6.981—6.980—6.752—6.749
—7.020—7.024—7.024—7.040
—7.024—7.024—7.037—7.038
—6.996—6.995—7.034—7.034
—7.138—7.139—6.848—6.846
—7.039—7.040—7.047—7.047
—7.029—7.030—7.005—7.004
—7.039—7.039

This means that in most cases points in the two figures
correspond to the same atoms. Clearly, the energy of
dissociation is the vertical distance between the asymp-
totic regions of the two curves. It must be emphasized
again, however, that this will only be the true disso-
ciation energy if the separation distance of the partials

is the true separation distance. As was noted earlier,
and as will be discussed in Sec. UI, it is quite unlikely
that the true separation distance is obtained in the
present calculations. The positions of the atoms sur-
rounding the dissociated edge dislocation are given in
Table IV.
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TABLE IV. Positions and energies of atoms around

dissociated edge dislocation. I.2—

I.O—
Energy

jV,.
(e~)

Distance
from the

center
Coordinates

Identity
O
t- 0.8—
O
O
CO

o O6

—7.184—6.816—6.798—6.801

0.502
0.315
0.573
0.573

—0.115
0.885
0.887
0.887

2.580
4.393
1.379
1.379

—0.001—0.001—0.957
0.955

1
0—1
1

—7.191—7.191—6.755—6.757

0.727
0.727
1.007
1.007

—0.115—0.115
0.891
0.891

—0.416—0.416
4.332
4.333

1.052—1.053—1.911
1.910

2-2
—2

2

C1~ O.4

O

0.2

UJ

X

x

mb) g,
~ @4,

it
I.O

8
—7.021—7.060—7.208—7.208

1.144
1.306
1.167
1.167

1.901—1.099—0.114—Q.114

2.219
4.802
2.601
2.602

0.000
0.000
2.106—2.108

2—1
0
0

0
1
3~3 X

la I I I II
0.4 0.6

I I I I 'I II'I
2 3 4 6 IO

—7.019—7.021—6.702—6.705

0.0
O. I

1.242
1.242
1.466
1.466

5.215
5.213
1.260
1.262

1.902
1.902
0.895
0.895

-0.966
0.965-2.860
2.860

1
~3

3

0.2

DISTANCE FROM CENTER OF EDGE DISLOCATION

IN NEAREST NEIGHBOR DISTAN CES—7.063—7.064—7.012—7.014

1.407
1.408
1.499
1.498

—1.099—1.099
1.904
1.904

1.803
1.803
2.196
2.195

—1—1
2
2

1.049—1.050—1.931
1.931

2—2—2
2

—7.068—7.070—7.231—7.232

1.676
1.676
1.658
1.659

2.097—2.099
3.160—3.161

—1.101—1.101—0.118—0.117

4.811
4.811—0.369—0.368

—1
0
0

(i.e., —b/8~&n(x) &~b/8) ""Usin. g this criterion, the
dislocation in the present study is found to have a width
of Sb.

It may be noted here that the distortion of the lattice
in the core region is not very severe. The core is certainly
not hollow; neither could it be said to be a good ap-
proximation to a liquid.

The energy plot of Fig. 11 is, of course, directly re-
lated to Fig. 4. The point at which the atomistic curve
deviates from a straight line is equivalent to the point
at which the solid and dashed lines meet in Fig. 4 (i.e.,
the point at which r= ro~). Thus the core radius can be
read off directly from Fig. 11 and one obtains a value

—6.998—7.000—6.677—6.678

1.905
1.905
0.893
0.893

5.166
5.165
4.175
4.177

1.848
1.848
1.930
1.930

—2.898
2.897—3.806
3.807

~3
3

—7.058—7.057—7.057—7.047

0.125
3.124
3.123
0.927

1.966
2.025
2,026
2.115

3
3
3—2

2.908
2.908
2.908—2.090

O.QOO—0.972
0.973
0.000

0

1

—7.070—7.069
—'7.050—7.050

—1.107—1.107—2.091—2.091

1.825
1.825
3.925
3.926

2.047
2.047
2.179
2.178

3.142—3.143
1.038—1.039

-1
—2—2

4
4
2—2

—3.865
3.864

—1.946
1.946

1.901
1.901
2.908
2.908

—6.989—6.986
—7.054
—7.053

2.129
2.128
0.115
0.114

2.246
2.245
2.194
2.194

4
4

—2
2

rg =3 6do.

Furthermore, the energy at that point is equivalent
to the horizontally shaded region of Fig. 4 and is simply
the core energy. In the present case this is

—7.240
—7.240
—6.700—6.698

—0.127 2.168
—0.127 2.169

0.884 2.397
0.884 2.397

2.673
2.675
1.092
1.093

4.213
—4.215
—4.753

4.752
E.„,~=0.65 eV per ds/2V3.—7.050—7.049

—7.050—7.049

2.076—2.077
—2.920

2.920

0.927
0.927
3.099
3.101

—2.095 2.359—2.095 2.359
2.906 2.448
2.905 2.447

3

—3
3

—2—2
3
3

This value is generally about twice as large as the pre-
vious estimates listed in the Introduction. It might be
noted here, however, that all calculations using a Morse
potential based on the experimental value of Zq give
defect energies which are too high by a factor of about
3.' "If that correction is made here, the calculated core
energy is slightly below previous estimates.

Finally, it will be noted that the intercept on the lnr
axis of the extrapolated straight-line region in Fig. 11

2.474 —7.070
2.474 —7.070
2.670 —6.986

—1.117—1.117
1.891

4.847
4.846
5.093

4.183—4.184—4.832

VI. DISCUSSION

It can be seen from Figs. 7, 8 and 9 that the complete
edge dislocation is not very wide. Formally, the width
is de6ned as being the range of x within which the dis-
placement is less than one-half of its limiting value

3'A. H. Cottrell, Disiocutiols and P/istic FIom ie Crystuts
(Clarendon Press, Oxford, England, 1953), p. 61.

"A. J. Foreman, M. A. Jaswon, and J. K. Wood, Proc. Phys.
Soc. (London) A64, 156 (19S1).

Fxo. 11. Energy within a given radius as a function of that
radius as measured from the center of an edge dislocation. The
three cases, elasto-atomic, complete, and dissociated, are shown.
The energy given in the figure is for a length ds/2v3 of dislocation.
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is equal to r,h, the equivalent hole radius in Fig. 4.
This is found to be

r,h~=0 3do.

A calculation of the dislocation energy using the elastic
continuum Eq. (9) and this value of r,h~ would auto-
matically take into account the true energy of the core.

A remark. about terminology may be appropriate
here. It will be noted that the term cltog radius has not
been used. This is to avoid ambiguity because that term
might reasonably be applied to both r&~ and r,h~. On
the other hand, the terms core radius and eqlivaleet hole
radius are quite apposite in that they can be applied to
these two radii respectively without risk. of confusion.

The spontaneous dissociation of the edge dislocation,
when the atoms are allowed to move in the y direction,
is clearly demonstrated by the difference between
Fig. 9 and Fig. 10.The equilibrium separation distance
of the partial dislocations is achieved when the re-
pulsive force between them is just balanced by the
attractive force of the stacking fault which separates
them. If conditions were such that no other factors
affected the separation, one could, in principle, make
an estimate of the stacking-fault energy using this
distance.

The magnitude of the force per unit length between
two parallel ininite complete pure edge dislocations is"

pbg~b2~
pg

7

2pr(1 —v)r

ration of the partials, r~~.

pdp' 2+ r

~eq
g

24xr 1—v

LLJ 0
LLI DISTANCE

Using the experimental values for copper, p=4.9&(10"
dyn cm—' dp ——2.5 A, y~60 erg cm—'"—"and p=0.3,
we obtain

e„~ 18A.

In the present calculations, however, there are at least
two reasons why the separation distance might be in
error. It must be noted that the present calculations are
strictly applicable only to the'absolute zero temperature
so that the two partials have no chance of overcoming
the Peierls-Xabarro barrier. ' "The situation is shown

where b j and b2 are the Burgers vectors of the respective
dislocations, and r is the distance of separation. The
corresponding force between screw dislocations is

b~Sb2S
pS

27rr

For a dissociated edge dislocation the partials have both
edge and screw components, where bP=dp/2, bP=dp/2,
bts=dp/2%3, and bss= —dp/2V3. The force per unit
length between the partials, when they are separated by
a distance r, is

QJ 0z

0-

0
QJ 0

Dl STA NCE

D I STA NCE

{c)

Pdp

Spr(1 —p)r 24trr

1
7

Ss-r (1—r) 3

Pdp
ptotal—

Equating F'""to zero, we obtain the equilibrium sepa-

"A. H. Cottrell, Ref. 35, p. 45.

The force per unit length due to the stacking fault is
simply —p. Thus the total force trying to separate the
partials is

+

w 0
D I STANCE

(d).

FIG. 12. Schematic plot of the relative energies of a system of
two partial dislocations separated by a stacking fault. The relative
energies are shown as a function of the distance separating the
partials. The Grst three curves show the separate components
arising from (a) the stacking fault, (b) the interaction between
the partials, and (c) Peierls-Nabarro barrier. Curve (d) is the
result of summing the various components.

"R. Peierls, Proc. Phys. Soc. (London) 52, 34 (1940)."F. R. N. Nabarro, Proc. Phys. $oc. (London) 59, 256 (1947).
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in Fig. 12, and there are three energy components to be
considered. The stacking-fault term increases linearly
with separation, while the interaction term falls
asymptotically to zero. The Peierls-Nabarro energy is
periodic (but, of course, is not necessarily sinusoidal).
Summing up these three contributions, we obtain the
net energy curve shown at the bottom of the 6gure. It
can be seen from the 6gure that even at the absolute
zero temperature, the complete dislocation will move
to position A. This position is probably the one which is
achieved by the second partial dislocation in the present
calculations. At a Gnite temperature the partial could
move to position B, and eventually by a series of jumps
to C, by a thermally activated process. The second.
source of error concerns the stacking-fault term itself.
If the stacking fault which appears between the partials
is to play its proper role in determining the separation
distance, the stacking-fault energy predicted by the
model would have to rnatch the true value of that
parameter. This poses considerable dif5culty. Details
of a calculation of the stacking-fault energy of copper
based on the Morse potential are given in Sec. III. It is
found that the calculated stacking-fault energy depends
upon the truncation of the potential. For no truncation
the value is close to 1 erg cm '. This is only about 2%%u~

of the experiments, l value for copper. Truncation at 176
neighbors gives an "artificial" value of 30 erg cm '.
This is the main reason why this truncation was used
in the calculations.

SUMMARY

The calculations described here demonstrate the fact
that a three-dimensional atomistic crystal with central
forces is capable of supporting a dislocation which has
all the features expected of such a defect in a real
crystal. The dissociation of a complete dislocation,
which on the basis of experiment is known to occur in
practice, is observed in the model; and within the
framework of the calculations reliable energies and
atomic con6gurations are obtained. With certain pre-
cautions this method might even give meaningful values
of stacking-fault energy. Because theoretical work on
dislocations is now inclining towards investigations of
their interactions with point defects, which are them-
selves best treated through atomistic models, it is
believed that the approach adopted here is superior to
methods which employ the elastic-continuum theory.

The specific dislocatiog. qxgminqd her|; wa, s the edge

dislocation in copper. A variational method was ern-
ployed (with the aid of a digital computer), and the
pairwise interaction between discrete atoms was repre-
sented by a Morse potential function. For the complete
dislocation it was necessary to impose a constraint
which prevented atoms from relaxing in a direction
parallel to the dislocation line. This prevented disso-
ciation. For the complete dislocation [Burgers vector
(ao/2)(110)) linear elastic theory was found to break
down inside a core radius of 9 A. The corresponding core
energy, 0.65 eV per (112}plane, is somewhat greater
than most previous estimates, but it is shown that the
calculated value may be too high by a factor of about 3.
If the core is replaced by a cylindrical hole of radius
r,q (the equivalent hole radius), the inside of which is
hollow and outside of which linear elastic theory holds
at all points, this radius is 0.8 A. The complete disloca-
tion was found to have a width of 13 A (i.e., 5b). The
core was found to be neither hollow nor like a liquid.

The removal of the constraint on the atomic relaxa-
tions permitted spontaneous dissociation of the dis-
location into two Heidenreich-Shockley partials. This
process involves no activation energy.

For the Morse potential a stacking fault of infinite
extent in copper has an energy of 30 erg crn ' (for a
truncation at 176 neighboring atoms). It was found that
certain precautions must be taken to ensure that the
separation distance of the partial dislocations is the
same as the distance given by elastic theory. A whole
series of interatomic potentials was used in the calcu-
lations of stacking-fault energy, and the derived values
of this parameter were found to be critically dependent
upon the potential used. A preliminary account of this
type of calculation has been published previously. ""
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