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an External Magnetic Field
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A general transformation of the tight-binding determinant for a finite orthorhombic crystal in an external
magnetic Geld is introduced. It yields interacting Gnite Peierls determinants, where the interaction terms
arise from distinct surfaces. This result is applied to the energy structure of wires and foils. The formation
of Landau levels is demonstrated. The gap widths obtained in films are applicable also to infinite crystals.
It is shown that the level broadening near the edges of the unperturbed band and the gap widths near
the center decrease exponentially with the magnetic field.

I. INTRODUCTION

"N view of the increasing importance attached to
~ - magnetic and galvanomagnetic effects much atten-
tion has been given to the eigenstates of electrons in a
crystal potential in the presence of a magnetic field B.
Until now this problem has been treated only for infinite
crystals, using either a high-field approach, "or the
E(k) operator' " introduced by Peierls, or general
symmetry considerations. ' "' These methods furnish
the well-known Landau 1evels at the energy band edges,
which are broadened according to the relative positions
of the magnetic vector potential and the lattice. Broad-
ening increases as the distance of the levels increases
from the band edges.

It is the objective of the present work to investigate
the energy structure of finite crystals. Ke use a one-band
tight-binding approximation; our procedure, therefore,
has several analogies to the Peierls' treatment. ' Peierls
shows that the Hamiltonian for infinite crystals can be
replaced by the operator E(k) where E(k) is the electron
energy for vanishing magnetic field and k obeys the
commutation relation Lk,kj = iB. Consideration of the
translational properties of E(k) yields a difference equa-
tion for the eigenfunctions and a secular determinant
for the corresponding energies. For an orthorhombic
lattice this determinant is three-diagonal, in the follow-

ing this will be referred to as Peierls' determinant.
Since in a finite lattice the wave vector k has only

discrete values, it is difIicult in this case to establish
a correspondence between k and k. Instead, we start
directly from the Hamiltonian of a finite orthorhombic
lattice (Sec. IIA) and construct auxiliary functions so
that the matrix elements of the Hamiltonian between

' J. Zak, Phys. Rev. 136, A776 (1964).' A. Jannussis, Phys. Status Solidi 6, 217 (1964).' R. Peierls, Z. Physik 80, "/63 (1933).
4%. Kohn and J. M. Luttinger, Phys. Rev. 97, 869 (1955).' G. E. Zilbermann, Zh. Eksperim. i Teor Fis. 30, 1092 (1956)

/English transl. : Soviet Phys. —JETP 3, 835 (1957)j.' W. Kohn, Phys. Rev. 115, 1460 (1959).
s R. G. Chambers, Can. J. Phys. 34, 1395 (1956).
E. J. Blount, Phys. Rev. 126, 1636 (1962).

9 L. M. Roth, J. Phys. Chem. Solids 23, 433 (1962).
' J. Schnakenberg, Z. Physi 171, 199 (1963)."E.Brown, Phys. Rev. 133, A1038 (1964).
"H. J. Fischbeck, Phys. Status Solidi 3, 1082 (1963).

the latter and all atomic orbitals vanish except those
at one surface (Sec. IIB).A variational treatment then
yields a secular determinant, which has the order E~
(Sec. IIC) and whose elements in the principal diagonal
are finite Peierls' determinants of the order 1Vr (Sec.
IID). cVr, 1Vs are the numbers of unit cells in the direc-
tions norma1 to the magnetic field. The remaining ele-
ments of this secular determinant originate from sur-
faces. They vanish with vanishing magnetic field and
increasing Ns (Sec. IIE).

In Sec. III the results obtained in Sec. II are applied
to wires and films. The surface terms yield a linear or
quadratic repulsion of degenerate levels in wires accord-
ing to the symmetry properties of the wave functions
(Sec. IIIA). The energy structure of films is represented

by the principal diagonal elements, which are handled

by a second-order perturbation treatment. %e obtain a
repulsion of the unperturbed energy levels at the band
edges and a concentration in the center of the band,
which indicates the manner of formation of Landau
levels in infinite crystals (Sec. IIIB).The width of the
adjoined energy gaps is determined in a high-field

approach in Sec. IIIC. A rigorous investigation of the
energy structure, carried out for infinite crystals and
special values of the magnetic Aux in Sec. IIID, verifies
the results obtained before and visualizes the transition
to weak fields.

II. A GENERAL FORMALISM FOR
FINITE CRYSTALS

A. Tight-Binding Matrix Elements

For an electron in a finite periodic crystal potential
G(r) and in a homogeneous magnetic field B described

by the vector potential A(r)=-,'LB,r] we have the
Schrodinger equation

For simplicity, we consider an orthorhombic crystal
with the basis vectors a; (i= 1, 2, 3) and magnetic fields
8 parallel to ae. Let the number of atoms in these three
directions be Xr, Es, Xs. ~n) denotes the normalized
electron orbital of an isolated atom at the position
N=P; rt;a; (rt;=1, 2, ~ ~ ., X;), the orbital being equal
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gauged' bymultiplication with the factor expL —irA (n)].
In order to separate the Hamiltonian with respect to the
direction of the 6eld we use the following expression

N3

Inrn283&=(2/(N3+1))'&2 P sinn383ln&. (2)
n3=1

The sine factor corresponds to the tight-binding wave
function of an electron in a 6nite crystal" without
magnetic field. The boundary conditions for

I
nin283& in

the a3 direction are satisfied if 83 takes the values
&ssrr/(Nb+1), (&is= 1, , N3). Forming matrix elements
of H Ewith l—nin283), we obtain

jlL BL
0 F 1 v

iL JE

I"n. 1. Wave functions con-
tained in the auxiliary function
l&»3)

(ni'n2'03'
I
H —E

I nin283) = (2/(N3+ 1)) g sinn3'03'
N3 3 733

&& sinn303e'"~i"'&(n' —n
I
H E I 0) . (3—)

In (3) the gauging relation

(n'
I
H—E

I n) = (n' —n
I
H—E

I
0)e'""i"'&

is utilized; ket
I 0) is introduced for simplicity.

%hen using a nearest-neighbor approximation only
those matrix elements are diferent from zero for which
n =n;, n;&1; ny =n; (i'�)Tak.ing (4) into account,
we de6ne the following abbreviations

H=&OIH —Elo),
E,=&1 0OIH —Elo)=(—100IH Elo&—",
K2= &0 1 0

I
H E

I 0)= (0 —1 0
I
H —E

I
0)*, (5)

Es= (o o 1IH—E
I
o)= (o o —1I H—E

I
0).

Ez, E., and E3 are interaction integrals, which depend
to a minor extent on the magnetic 6eld. For simplicity
this 8 dependence is neglected in the following. By
inserting (5) we obtain from (3)

(ni'n2'83'I II—Elnin283)
= 8(83 83)e'""i"'&{(Hs+2K3 cos83)b(ni', ni) 8(n2', n2)

+(K28(ni', ni+1)+K&*8(ni', ni 1))8(ns',n2)—
+(K28(ns', ns+1)+K2*8(n2', ns —1))8(nr',nr)) . (6)

The 8 function arises from the orthogonality relation

(1(&3(+oo, —co (v&+ ca)

with u„(1,v) = 1 and determine the coeff'&cients u„(ni, n2),
e~) 1 from the condition

&nr'n2'03 IH—E
I
liv83) =0 (9)

for n&'&p, , e2' arbitrary.
This means that the matrix elements of II—E between

the auxiliary functions and the original wave functions
are claimed to vanish for all wave functions except for
those on the plane a~= p. According to the particular
properties of l&sv03) the insertion of (8) into (9) yields

(n,n,0, IH —
E In»03)

+u„(ni+1, n2)(nin203IH —Elni+1, n203)=0 (10).

In order to reduce this determinant and to give it a
form which is related to that obtained from the Peierls
E(k) operator'4 "for infinite crystals, we now introduce
an appropriate auxiliary function

I
&rv83). For the moment

we consider a semi-infinite lattice with 1&nr&+c&,
—~ &ns&+~ and construct l&iv03) as a linear corn-
bination of those wave functions lnin283), which are
located within the triangle shown in Fig. 1. v denotes
the position and p the extension of this triangle. %e
define

Jl V+77 g—1

l&iv83) = P P u.(ni, n2) lnin283&
my=1 ng=v —ny+1

for
(2/(N;+1))g, . sinn, 8 sinn;8;= 8(8,8;), (7) From a further evaluation of (10) we obtain a recurrence

formula for u„(ni, n2)

8, 8;=up./(N;+1); p,;=1, , N;; i =1, 2, 3.

B. Construction of an Auxiliaxy Function by a
Diagram Technique

In the tight-binding method the solution of the
Schrodinger equation is expressed as a linear combina-
tion of the orbitals. Thus, the secular determinant fol-
lowing froln a variational treatment has to be built up
from the matrix elements (6).

"T.B. Grimley, J. Phys. Chem. Solids 14, 227 {1960).

LHs+2K3 cos83—Efu„(nr, ns)+Eie'& &'& "2u„(ni—1, n2)

+Elec 3 ~ u„(nl+ 1 ns)+E2e —i(b/2& tu (nl ns 1)
+Kpe'i'I'&"'u„(ni, ns+1) =0 (11)

with

u, (ni, ns) =0 for
I n2 v

I
&ni, —
u, (1,ns) = 8(n2 —v, 0) . (12)

b denotes the magnetic flux (Bt ar, as)) through the unit
cell. Since the boundary condition (12) depends only

'4 P. G. Harper, Proc. Phys. Soc. (London) A68, 8'N (1955).
r' A. D. llrsilsford, Proc. Phys. Soc. {London) 470, 275 {1957).
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on ns —v, we lnd that u. (nr, ns), except for a factor
expLibv(nt —1)/2], is also a function of ns —v. Writing
E;=

I E;
I

e' (, (j =1, 2), we represent u„(nr, ns) by

u„(ni, ns) =e((»»~(ar »-

Xe'(.I("I-I)+.~("~"»v(n —1 n —v) (13)

and obtain for v(nr, ns) the simplified recurrence
equation

n2 )E

Ho

-Ib

&o' V(nr, ns)+ I
Ei

I
e'('(»"'s(nI —1, ns)

+ I Ei1 e '(p~')"'s(ni+1, ns)

+ IEs
I
e *'(P")"'v(nI, ns 1)

+ I
Es

I
e'(o(»"'s(ni, no+ 1)=0

and the boundary condition

(14)
FIG. 3. Paths of diagrams contributing to s(2,0).

Hp
For evaluating s(nr, ns) it is convenient to introduce

a diagram technique. According to (14), contributions
to v(nr+1, ns) arise only from w(nr, ns), I)(nr, no+1),
and v(nI —1, ns). This can be represented by diagrams
between the corresponding lattice points, as. shown in
Fig. 2.

The factors adjoined to the diagrams in Fig. 2 are
taken from (14). ni aud ns refer to the positions desig-
nated by the dot at the origins of the diagrams.

v(ni, ns) is now obtained by drawing all arrangements
of the above diagrams connecting the points (0,0) and
(ni, ns) and by summing the adjoined products over
these paths.

As an example we calculate v(2,0). Figure 3 shows
the four possible paths and the products adjoined. The
sum over the paths yields

'V Sy,S2 =8 Sy, —C2 =8 Ãy, —S2

C. Variational Treatment of Finite Crystals

We now perform a variational treatment for the finite
crystal of Sec. IIA. We utilize the fact that the matrix
elements of H—E between the auxiliary functions

I
Niv8o), v= 1, , 1V s, which in the ai direction have the

same extension as the crystal, and the wave functions

I
nino8o) vanish except for those at the surface. In order

to exclude wave functions from outside the finite
crystal (to be consistent with the tight-binding ap-
proximation employed), we also change the auxiliary
functions which overlap the boundaries e2=1, cV2, so
that only wave functions of the 6nite crystal are in-
volved. Then, instead of (9), we claim that those matrix
elements vanish which are formed by the wave func-
tions of the crystal under consideration. This results in
a change of u„(ni, no) with v near the boundaries no ——1,
1Vs. We introduce a generalized function e(nr, ns, v),
which can be obtained from the diagram method by
drawing all paths from (Q,v) to (ni, n2), using n&

——ns v

for calculating the adjoined products and leaving out
all paths which cross the boundaries. V(nr, no, v) thus is
equal to v(ni, n&, —v) for v+n&, 2(1Vs+1)—v —n&&nr
and modified for v+ns, 2(1Vs+1)—v —ns&ni.

The variational treatment yields a secular determi-
nant closely related to those derived from the Peierls
treatment, if we transform the wave functions accord-
ing to

v(2,0)=(Po"+2IEoI'cosh IEII')/—IEII' (16)

The path resulting from the inversion of an arbitrary
allowed path from (0,0) to (ni, no) at the point (-,'ni, —,'ns)
is also allowed. The diagram technique adjoins to it the
same interaction integrals and, on the other hand, the
complex conjugate of the exponential factor; thus
v(ni, n&) is necessarily real. ReQection of an allowed
path from (0,0) to (ni, no) at ns ——0, on the other hand,

-b—(n&- n& )

s(nr ns) —Q for
I ns

I
)ni ~ s(0 ns) —$(0 ns) (15) yields an allowed Path from (0,0) to (ni, —ns). We again

have to adjoin the same interaction integrals and the
' is an abbreviation for Hp+2Eo cos8o—E. complex-conjugate exponential. Therefore, we conclude

~ b
)K &( &

( g+n~)

ibn2

FrG. 2. Allowed diagrams and adjoined factors.

I
1VI8s8o) = (2/(1Vs+1))ilseial(NI —I)

&&+„e '( i' ' a')" sinv8II1Viv8o) (18)
and

I
1VI8s8o) = (2/(1Vs+1))' '

&(Qa., e '('"') ""'sinns8sI 1VIns8o), (19)

8s ——)Is7r/(1Vs+1), )Is——1, , 1Vs. Using (10), (13), (18),
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and (19) the matrix element is found to be

(rg8. '83
I
&—E

I
Ãi8283)

I
Eg I P sinn282' sinv82v(1V&, n, ,v) . (20)

1Vg+1 ~s,~=1

In (20) the sum over n2 can be extended to —~ (nm(+~ if we maintain that paths crossing the boundaries
are disregarded in the calculation of v(iV~, n2, v). Using
again n2=n2 —v and taking (17) into account we obtain

+Ng

(I I) = Q v(X~,n2) cosn282 b(82', 82)
NP=NI

+op N2

P sinn282' sinv82 P g;(ng, v), (21)
+~+1 na—m v=i

where the Grst term originates from extending
v(Xq, nm, v) to v(Eq, ng —v). In the second term the
excess paths of the first are compensated, i.e. , j runs
over all paths from (O,v) to (N'~, n2) which cross the
boundary and g;(n2, v) designates the adjoined products.
It is noted that, owing to the 8 function in the first
term, the bulk of the crystal and the surfaces el= 1, Sl
inQuence only the principal diagonal of the secular
determinant, whereas the other elements arise from the
surfaces e2 ——1, Ã2. For convenience the first term will
be called bulk term.

For the proof of (24) we note that it satisfies the recur-
rence equations

IEgl I P(Kg+1, 8 )+P(1Vg—1, 82Mb)7
=

I
Ho'+2 I.Kml cos(82&-,'Xrb)7P(1Vy, 82+-', b) (25)

and the initial condition (23). Addition of the two re-
currence equations (25) yields (22).

Equation (24) can be interpreted as being a part of
an infinite Peierls' determinant for an orthorhombic
lattice. The fact that the order of the determinant is El
arises from the special choice of our auxiliary functions.
By rotation of these auxiliary functions by 2x around
the Geld direction, El, 02 could be changed into E2,01.
Our choice is reasonable for a crystal with X&&Ã2,
thus the surface terms in (21) are expected to be less
important than the bulk terms.

For foils the surface terms will vanish perfectly, and
we are left only with (24). This case will be discussed
in Sec. III.

E. The Surface Terms

We now investigate the second term of (21), which
contains all paths crossing the surfaces. Paths which
cross both of the boundaries F2= 1, E2 are excluded by
assuming E~(/~+2. In this case the sum over n2 and
v is split into partial sums with respect to the two
boundaries. In addition, we distinguish the cases where
e2 denotes positions inside or outside the crystal. From
(221) we obtain

D. The Bulk Term

For further evaluation of the erst term of (21) we
note that it is a polynomial of the order El with respect
to the energy E; we call it P(X&,82). Using the recur-
rence formula (14) for n(n&, n2) and the symmetry rela-
tion (17) we obtain a recurrence equation for P(37&,82):

I &i I {P(&i+1,82)

+-,'LP(37g —1, 82+b)+P(Ey 1, 8g —b)7)—
= g{L&0+2

I &2I cos(82 2+lb)7P(Vly 82+ 2b)

+LHO'+2
I
E'2I cos(82+-', A Ib)7P(%, 82——,'b)) . (22)

For the initial values we have

P (0 82) = 1' P(1,82) = (&0'+2
I
&2

I cos82)/I &1I ~ (23)

From (22), (23) we 6nd the following representation
for P(Ãg, 82):

IEzl 'P(Eg, 82) =det p„,„

p. ,~=&o'+2I&2I cos 8s, (E~ 2~+1)b—— —
L

N1—1 —1 NI—v

&Il)-.r= — {2 ( 2 + 2)
g 2+ 1, v 1 n 2=v-Ny ma=1

Ny+v

+ Z ( Z + Z))
v=N2+2 —N1 n2=2 (¹+1)—NI,—v n2=N2+2

X sinn282' sinv82 P g;(n2, v) . (26)

Now, we introduce a one-to-one correspondence be-
tween the paths starting and ending inside the crystal
and those starting inside and ending outside. Let a path
j starting and ending inside meet the lines F2=0 or
n2 ——1V2+1 for the 6rst time at n~ ——n~, . Let the corre-
sponding path j from the inside to the outside be that
which is the same for el&el, and folded around e2= 0
or n2 ——%~+1 for nq&nq, From th. e diagram technique
we conclude that the adjoined products of the two
paths are identical with respect to the interaction
integrals and differ in the exponentials. Changing e2
into —nq or 2(lV2+1)—nm in those sums of (26) which
run over positions inside the crystal, and utilizing the
fact that sinn282 is odd with respect to n2 ——0, JV2+1,
we obtain

(24) Ny —1 —1

&I I)".s=—(2/(&2+1)){Z 2 +
Ng+v

=0 otherwise; v=1 mP=v —Ng v Ã2+2—N j nm=Np+2

Xsinn282' sinv82 P Lg;(n2, v) —g;(—n~, v)7. (27)
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As a result of the introduced correspondence of paths,
the bracket in (27) is proportional to the magnetic flux
b. A further simplification of (27) is achieved by taking
into account that a reQection of a path at a line
f2=const generates the complex-conjugate adjoined
product. Thus, by reAection of the paths crossing the
upper boundary n2=E2, we obtain

¹-» —»

(I I) f= —(2/(N2+1)) Q P sinn&82' sinv82
v=1 n2=v —N»

XZ(I:g (, )—g (— )j

+(—1)v '+»Lg;*(n, ,v) —g;*(—n, , v)$), (28)

where we used the relation 82=@2~/(Nm+1).
We note the following properties of (28): Since the

number of terms to be summed depends merely on S»,
the matrix element is proportional to 1/(N~+1). If 82'

or 82 take small values, which corresponds to the energy
band edges for vanishing magnetic field, ( I I ),„,i becomes
small also. The brace in (28) is proportional to b for
p2'+ pg odd and to b' for p2'+@2 even. This is due to the
fact that the terms in each bracket differ merely in
their exponentials as described above. The properties
of (I I)„,i will reappear in the repulsion of the energy
levels of wires.

III. APPLICATION TO WIRES, FILMS AND
INFINITE CRYSTALS

A. Energy Levels of Wires

The general formalism developed in Sec. II furnished
a secular determinant of the order E2 whose principal
diagonal elements consist, essentially, of finite Peierls
determinants of the order E». Now, this result is applied
to the energy levels of electrons in wires in the u3
direction. Wires parallel to a» or u2 are discussed in con-
nection with films below. As is seen from (24) each bulk
term P(Ni, 82) is a quadratic function of b. Since its
eigenvalues are not degenerate for vanishing Gelds, the
level splitting arising from P(Ni, 82) is also quadratic
in b. We will show that the surface terms, on the other
hand, yield a linear splitting; thus they are more im-
portant in the case of small Gelds under consideration.

Degenerate levels for vanishing Geld belong to differ-
ent principal diagonal elements of the secular determi-
nant. In order to determine the splitting originating
from the surface terms, we apply the common perturba-
tion treatment for degenerate levels and are left with a
subdeterminant of the order of the degeneracy. For a
twofold degeneracy belonging to P(Ni, 82') and P(Ni, 82)
the level splitting is represented by the surface term (28)
divided by an energy denominator, which describes an
average distance from the remaining levels of P(Ni, 82')
and P(Ni, 82). From Sec. IIE we have the result that
splitting is proportional to b for y~'+@2 odd or to b' for
vm'+p& even, which corresponds to the symmetry prop-

Nl —2

X Q sinv82 sin(Ni —v—1)82'y~(v)+

~ ()=b'~(N —)'
= 2ibv(Ni —v),

y2(v) =b'v(Ni —v—1)L(Ni+2) v(Ni —v —1)—1g

=2ibv(Ni v 1)—(Ni—+1),
(29)

where the upper expressions are valid for p~'+@~ even,
the lower ones for p2'+p2 odd.

In order to apply (29) to the energy structure of a
wire with S»——E2=3, we remember that for vanishing
Geld the levels are given by

0 0
H, +IE,

I
+IE, I

=o.
+v2 +42

(30)

For IE'iI= IEuI we have a twofold degeneracy at
Ho' ——&02 and a threefold degeneracy at Ho'=0. These
degenerate levels are split in the magnetic Geld. Figure 4
shows the splitting owing to the bulk terms (24), which
near b=0 yield a quadratic dependence on b. The
dashed curves arise from solving P(3,4im) =0, the solid
ones from solving P(3,-,'m)=0 and the dashed-dotted
ones from solving P(3,~3~) =0. In Fig. 5 the infiuence
of the surface terms (29) is included. At Ho' ~42 the
level splitting is linear in b, whereas at Hp =0 the re-
pulsion is linear or quadratic. In both figures the curves
were continued to larger values of b by a numerical

erties of the wave functions. For p, 2'+p2 odd, one of the
wave functions is even, the other one odd with respect
to a reflection at em=-', N2, for p2'+ p2 even, both of the
two wave functions are even or both are odd. The de-
pendence of the splitting on the crystal dimension in the
a& direction is given by 1/(N2+1). Also, the splitting is
small at the band edges corresponding to the a2 direction
and large at the band edges corresponding to the a»
direction.

In order to visualize the above results, we investi-
gate those contributions in (28) which arise from
paths with ~—n2=E», E»—I and therefore describe
(28) completely up to Ni ——3, and plot the level scheme
for a wire with E»=E2——3. For s —e2=$» there is
only one path from (O,v) to (Ni, e2); we obtain the
adjoined product g(N2, v) = (—I

E'2/Ei I )~' and by fold-
ing g(—e2, v)=(—IE2/EiI)~'exp(ibvm2/2). For v —e2
=E»—1 we Gnd E» possible paths. Summing over j and
expanding for small b we obtain from (28)

IE'2I ~" 2

IE I~ N+1
¹

—l H 1

X Q sinv82 sin(Ni —v)82'yi(v)+
v~1
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H,
'

V2 i

Ho

Vz~
2

1 / // /
/

/

/ /
~ /

0 =.

/
/

/ ~ +it' / 2'Il'
/

/
/ j

/ /
/

Pr.o. 4. Level split-
ting owing to the
bulk terms for 1V1
=N2=3.

FIG. 5. Level split-
ting owing to the
bulk and surface
terms for N1 =N2
=3.

magn. flux b rnagn. flux

treatment. It is found that the bulk terms already yield
a rather good approximation; the surface terms inhuence
essentially the regions of degeneracy. The rule that the
splitting is linear or quadratic according to the sym-
metry properties of the wave functions is also valid at
b =m.. The strong dependence of the levels on b as shown
in Figs. 4 and 5 indicates the difhculties which are
involved in extrapolations from strong to weak mag-
netic fields.

B. Energy Levels of Films

Films parallel and wires perpendicular to the mag-
netic Geld can be described by V~ finite, E2 infinite, and
Es arbitrary. Thus, all surface terms vanish and the

secular determinant reduces to the product of all bulk
terms. In order to obtain the energy levels we transform
these finite Peierls' determinants E(X1,82) and carry
out a second-order perturbation calculation.

We perform the following sine transformation:

2
p(81',8l) = slllK 01 slnK01p„i „,

1V1+1 e,~=1 (31)

8 =p /(X+1); p =1, , 1V, .

This utilization of standing waves also in the a~ direc-
tion proves reasonable; it is in analogy to (2) and (18),
(19) and separates (24) for b=o. Summing over K' and
transforming the sum over I(. yields

p(01',01)= (&0 +2
i

E1
i
cos81+2

i
E 2

i
cos02]6(01',8l)

+ 4
~

E2
~ Q SinK81' sinK01 sin4(1V1 —2K+ 1)b

%1+1

—cos82 sin~1 (F1—2K+ 1)b
(32)

sln82 cos~(E1—2K+1)b

The first term in (32) describes the well-known energy structure for vanishing Geld. The upper expression in the
second term is valid for p&'+pl even, the lower for pl'+pl odd. We again have the result that the type of energy
shift depends on the symmetry properties of the eigenfunctions. As the level system for vanishing 6eld is not
degenerate, we have a quadratic repulsion for eigenfunctions of different symmetry (pl +11& odd) and a fourth-
power repulsion for equal symmetry (11&'+p& even). To be exact up to the order b', we have to carry out a second-
order perturbation treatment using wave functions of diferent symmetry. Summing over & and inserting
01——pier/(&Vi+1), Eq. (32) yields

—cos82 sin(El+1) b/21 sin8j' sine» sinb
p(0, ,01)= L~o'+2

I
E.

I
cos01jb(0.',8.)+ ) E2

1V1+1 Q sin)8&'a 8,ab j/2 sin82 cos(iV&+ 1)b/2
(33)

From Schrodinger's perturbation theory we obtain

sin(%1+ 1)b/2
Ho'+2iE1

i cos81+2[E2[cos82
A +1

cot~ 5
sin(81+-,'b) sin(81 ——,'b)

~

~4 E, '

sin201 sin201' cos2(%1+1)b/2
sin02 sinb

~

-=0. (34)
1V1+1~i El p' 2(cos01 —cos81)(cos(01 +b) —cos81) (cos(01 —b) cos01)

(p 1+)ii odd)
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Summation in (34) is feasible. We utilize the fact that the poles of the sum with respect to 8i are equidistant, cal-
culate the corresponding residues, and obtain from the Mittag-LefRer theorem the energy expression

E2»n82)' (&i+1)'+2
~=IIo+2IEiI cos8i 1

5 E, sin8, ) 8 sin'8~

(1Vi+1)'+ 2
+2IE2lcos82 1—b' +2

I
ES I cos83, (35)

4 sin'0~

8;=p,mj(X;+1),p;=1, 2, , X;;Xi finite, Xm infinite,
and Es arbitrary. Equations (34) and (35) are valid on
the condition that

Er (N'i+1)b

Ej 2 sing&
(36)

This means that no closed orbits are allowed, and the
electrons should move approximately on straight lines.
Straight-line orbits are guaranteed if the 6eld is weak
(b small) or if the foil is thin (Si small). Curvature is
also small if the electrons move very fast normal to the
surfaces (velocity 2IEiIsin8i large), or if the transition
probability parallel to the surfaces is low (I E'2

I
small).

Let us now discuss the energy levels following from
(34) and (35). 8& is continuous and yields bands which
are distinguished by the discrete parameter 8&. The
first-order perturbation term of (34) generates the cor-
rection term for 2

I

E'2
I
cos82 in (35). Owing to

8i&m/(1Vi+1), this bracket is always positive; it in-

creases with 8~ approaching —,'x. We obtain a narrowing
of the bands formed by 8~, where the exterior bands
become broader than the interior ones. As this term
leaves the level system unaltered at 02=-', x, -,'x, we And

an enlarging of the level spacing at the edges of the
complete level system and a concentration at the center.

The second-order perturbation term of (34) yields the
correction term for 2

I
E i

I
cos8i. This bracket is negative

for p,~= 1, X~, and otherwise positive. Thus, the extreme
exterior bands are shifted outward, all the others are
shifted inward. Again we obtain an enlarging of the
spacing at the edges and a concentration in the center
of the complete level system (see the solid lines in

Fig. 6). The second-order perturbation term has no
inhuence at 8~=0, m. The widths of the single 0~ bands
now remain unaltered except for the outermost.

Each of the perturbation terms discussed above has
its 82 maximum at the zero of the other one. The energy
shifts at 8~——0, -,'x, x as shown in Fig. 7 for Si=11,
therefore, arise. only from one of these terms. At
the edges of the complete level system an equal level
spacing is approached, which indicates equal-spaced
Landau levels of inhnite crystals.

C. Anisotroyic Films in Strong Magnetic Fields

By calculating the inAuence of a weak magnetic 6eld
on the energy structure of films (see Fig. 6) we obtained
a splitting which increases with increasing term density
and indicates the mode of formation of Landau levels.
For a deeper insight into this problem, and in order to
calculate the level spacings explicitly, we assume in this
section the crystal to be anisotropic with

I
E2I»

I EiI,
and thus can treat magnetic cruxes even of the order 1.
Since interaction integrals depend exponentially on
interatomic distances, this condition is satisfied even for
smaB anisotropies. A most lucid but merely qualitative
derivation of the level spacing for large Quxes is given in
Sec. IIID.

PzG. 6. The energy
levels in foils accord-
ing to the second-
order perturbation
treatment. Dashed
curve: unperturbed.
solid curve: per-
turbed.

FIG. 7. The energy shift at 82=0,
m./2, n. for Sr=11.
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We again start from the finite Peierls' determinant
(24) and solve it directly by a perturbation treatment.
Thus, in contrast to the last section, we do not investi-
gate standing waves in the a~ direction but electrons
localized in a single lattice plane. The first-order energy
expressions are

Hp +2
I Em I

cos(82 Kb—)=0;
~= ——,'(1Vg—1), ——,'(Eg—3), , —,'(1Vg —1) . (37)

Plotting H0' versus 82 (see Fig. 8) we obtain energy
curves which intersect at 82, m

—82= —~b(IVY —2),—~b(Eq —3), , 2b(cVq —2). Interaction of these levels

by the elements in the secondary diagonal of (24) yields
an energy shift for all 82 and a splitting at the inter-
sections. The shift of the state denoted by ~ is mainly
determined by the interaction with the states ~~1. We
have to solve a subdeterminant of the order 3 and obtain

Ho'+2
I
Eg

I
cos(82—Kb)

I
E,

I (
2

I
E2

I
&cosLt4—(x—1)b7—cosj 82—Kb7

1
(»)

cosj 82—(x+1)b7—cosL82 —ab7)

In (38) terms of the order IE~/E2I' are neglected be-
cause of the assumption IEmj)) IEgj. Such terms arise
from the interaction with the states ~&2, - . However,
these interactions are not negligible if we are interested
in the splitting at the intersections. As the state ~;
interacts with the state aj by all states a in between,
we obtain the splitting of their intersections at 02,

82= ,'b(a;+~;—) by i—nvestigating the subdeterminant
built up from all elements belonging to ~;&a&~j.

Inserting the corresponding erst-order. energy ex-
pression Ho'&2

I
E2

I

—', coskb =0, X=~;—~; into the princi-
pal diagonal for a;(A:(Kj yields a quadratic equation for
the level splitting. By solving this equation we again ob-
tain the shift (38) and, in addition, the gap width hH~ .

I'zo. 8. Level spac-
ing for electrons in
single-lattice planes.
Dashed curve: unper-
turbed; solid curve:
perturbed.

soon as E~b) 2m and the well-known Landau levels at
the edges result. They are broadened when approaching
the center of the level system and simultaneously the
gaps are narrowed.

As, in this section, we considered electrons chieQy
located in a single-lattice plane, the gaps now appear as
resonances for transitions between diferent planes. A
process in which the electron is hopping to an adjacent
plane yields a factor

I E&/E& j. We have to assign to it
the gap X=1. Terms quadratic in IEq/E~j arise from
transitions between next-nearest-neighbor planes. This
can be realized both by a virtual and by a real occupa-
tion of the plane in between. This yields the gap A, =2
and a quadratic contribution to the gap X=1 which was
neglected in (39) owing to the assumption

I E2/E2! «1.
Higher order processes can be interpreted in a similar

way.

D. The Energy Structure of Infinite Crystals

In order to visualize the generation of the electron
energy structure for both weak and strong fields and
arbitrary values of

I
E & I

and
I
E'2 I, we treat (24) for

iVq
—+ ~ and magnetic fluxes b = 2m /M, 3II integer. These

values for the Qux were introduced also by Harper, "
Brailsfordp and Fischbeck" for obtaining appropriate
boundary conditions. This choice of the Aux is only a
mild restriction. By the Floquet theorem (24) can be
reduced to a finite determinant of the order M:

~H, ' 4IE,/4E, I

~

2
I
E'2

I

sin'-'b sin'-'2b sin' —'(X—1)b

X= 1 ~ F)—1

From (39) we have the result that the splitting is large
for small gap indices X (near the edges of the complete
level system); it decreases with increasing X, i.e., when

approaching the center of the level system. In Fig. 8 we
plotted the unperturbed curves (37) and the levels
shifted and split according to (38) and (39). The gap
indicated by X is extended over a 82 region of length
(X&—X)b; it is still crossed by X energy curves As (38).
does not depend explicitly on S~, it is valid also for
infinite crystals. The crossing of the gaps vanishes as

i3SP—Ho'+2 IEml cos(82+b) IEil
Ho'+2

I Eml cos(82+2b)

E, je' ~ Ho'+2
I
E2

I cos(82+Mb)

=0. (40)

P is the separation parameter following from Floquet's
theorem; it can be reduced to the interval 0&& & 2'/3E.
The value of the determinant (40) is not changed if t4
is replaced by 8&+2m./M. The Fourier expansion of (40)
thus contains only the term independent of 82 and p,
which is a polynomial Q(M, ho') of the order M in
ho'=Ho'/(!Et j'+ IE2!')'I2 and the terms coscV8~,
cosMQ. By introducing the parameter P= IK&E2I/
(IE&j'+IE2!'), which is especially adapted to the
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symmetry of the crystal, we obtain

Q(M, h )=ho'~ —ho™2M

( 2')
+ho'~-' gM(M —3)—p'M~ 1+2 «»—

~

—+
Mi

M/21
2( 1)MPM/2

E2

M/2
2

cosMf+ — cosM82
Eg

(41)

Q (6, h', )
2

FIG. 9. Regions of allowed
and forbidden energies for
b=2m/6. I

V(5"V21)/2

ej
V3-YY

V3i V3'

V(5+VZ)/2

The solutions of (41) can be found by plotting Q(M, ho')

versus hp' and by looking for those values hp' for which

Q(M, h, ') lies between the extremes of the right-hand
side of (41) +P~/ P~Ei/Eg[~/+[E 2/Ei[~'/'j. This
is demonstrated for )Ei( = [Eg( and M=6 in Fig. 9.
We 6nd six allowed energy zones; the exact zone
boundaries are indicated. In general, the total number
of allowed energy zones is equal to M, which implies
that the number of zones and gaps increases with de-
creasing b. The amplitudes of Q(M, ho') increase with
increasing

~
ho'~; we obtain a broadening of the energy

zones and a narrowing of the gaps when going from the
edges to the center. Using the quasiclassical picture of
closed and open electron orbits in 8 space at the edges

and at the center of the band, respectively, we Gnd this
broadening to be in agreement with the fact that the
energies of closed orbits are more degenerate than those
of open orbits. For b approaching zero the energy
structure obviously becomes a continuum.

The zone boundaries can be calculated exactly from
(41) for several values of M up to M= 8. Thus the gap
widths are also known explicitly. Comparison of the
resulting expression with the gap width given in (39)
shows an exact agreement for (Ei(«~E2~ and also
indicates that (39) can be extended to arbitrary values
of (E&~ and (E&( by introducing P, too. Instead of (39)
this yields

AHp'

((Ei('+ (E2(')'/' 4"-' sin'-'b sin'-'2b ~ sin'-'(X —1)b

X=1, , M—1/2. (42)

The maximum gap index X is determined by the exten-
sion of the electron orbit. As in this section infinite
crystals are considered, X is given by the inverse mag-
netic field. For films the extension is either limited by
the thickness Si

~
ui

~

or in strong fields again by M. As
long as the first limitation is valid, we still have a
crossing of the gap X by X energy curves; this crossing
ceases as soon as the gap is limited by the Geld.

Equation (42) is expected to approximate the gap
width very closely at the center of the level system.
This is due to the fact that the energy shift, which is
large at the edges, was neglected when deriving the gap
formula (39). It is found that the gap widths decrease
exponentially when approaching the center, and that
the innermost gap depends exponentially on the mag-
netic field according to )

EiEg/(
~

E i )
'+

( E2
~

')
[
".This

is in agreement with qualitative conclusions of Harper. "
Equation (41) also allows an approximate determina-

tion of the energy-zone width (level broadening) at the
edges. The slope of Q(M, ho') as resulting from its leading
terms yields the inverse widths of the Grst zones (see
Fig. 9). We find these widths to be proportional to
exp( —const/b), which is in agreement with the level
broadening as discussed by Brailsford. "


