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In this paper the semiclassical condition for the quantization of magnetic energy levels of Bloch electrons
is extended to one order higher in the magnetic Geld. The result enables us to make a calculation of the
magnetic susceptibility of Bloch electrons which includes both the de Haas —van Alphen effect and the steady
susceptibility. While the basic calculation is made for fairly simple closed orbits, the results have been ex-
tended to include spin splitting, self-intersecting orbits, and open orbits, but omitting consideration of band-
ing of magnetic levels and magnetic breakdown. Possible new oscillations due to self-intersecting orbits
are discussed.

&~ERIVATIONS of the magnetic susceptibility of
Bloch electrons have either concentrated on the

Haas —van Alphen eBect,' or the steady suscepti-
bili. ty.2 4 In this paper we give a uniGed derivation of
both parts of the susceptibility based on a semiclassical
treatment of the levels which is valid when banding of
Landau levels' and magnetic breakdown' are not
important.

In Part I we discuss the magnetic levels. The primary
result (Sec. 1) is a generalization of Onsager'sr quanti-
zation condition for closed magnetic orbits. This
generalization amounts to replacing the constant of
integration p (see Eq. (1)$ by a function of energy,
and evaluating it to Grst order in the magnetic 6eld, .
An equation-of-motion approach is used to obtain the
result. In the remainder of part I the result is extended
in several ways. In Secs. 2 and 3 we include higher order
terms in the effective Hamiltonian obtained in R, and
in particular extend the method to cover spin splitting.
In Sec. 4 the problem of self-intersecting orbits is
discussed, and in Sec. 5 the results are extended to the
case of open orbits.

*Part of this work was supported by the National Science
Foundation, and part was carried out while the author was at
Massachusetts Institute of Technology, Lincoln Laboratory,
Lexington, Massachusetts, which is operated with support from
the U. S. Air Force.
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Part II is concerned with the magnetic susceptibility.
The main result (Sec. 6) is a calculation of the total
magnetic susceptibility for closed electron orbits by a
method quite similar to that of Lifshitz and Kosevich'
but which, because of the additional terms in y, gives
the correct steady susceptibility. The problem of the
variation of the period with the magnetic Geld is con-
sidered in Sec. 7. The extension of the results to more
complicated orbits is made in Sec. 8, and the possibility
of new oscillations due to self-intersecting orbits is
dIscussed.

Part I: MAGNETIC ENERGY LEVELS OF
BLOCH ELECTRONS

1. Basic Derivation

In describing the behavior of Bloch electrons in
electric and magnetic Gelds, semiclassical methods have
been most successful. The theory has been reviewed
extensively by Lifshitz and Kaganov. ' The semiclassical
quantization condition for magnetic levels is the well-
known Onsager equation,

A (6„)= (ts+y) (2sreB/c),

where 8 is the magnetic Geld, and A is the cross-
sectional area of the orbit in k space, which is the inter-
section of a constant-energy surface with the surface
k,= constant, where z is the direction of the magnetic
field S.This equation applies to orbits which are closed
and nonintersecting, and we shall make these assump-
tions in the present section.

Equation (1) has been derived by applying the Bohr-
Sommerfeld quantization condition to the problem, or
by using the %KB method. In this section we shall
derive Eq. (1)by an equation-of-motion method, which
is capable of generalization to higher order in the
magnetic Geld.

We begin with an effective one-band Hamiltonian
which appears in the momentum-space Schrodinger

I. M. Lifshitz and M. I. Kaganov, Usp. Fiz. Nauk 69, 419
(1959); 78, 411 (1962) (English transl. : Soviet Phys. —Vspekhi
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equation,

This equation has been obtained by the author in R
and by others. ""Here w is the kinetic-momentum
operator, given in k space by

pi= k+e/cA(iVo), (3)

where A is the vector potential for the magnetic Geld.
This is essentially equivalent to the real-space operator

1 e
P=-V+-A(r) .

Z

The components of x have the commutation relations

fx.,x„]= ieB/c,

assuming the magnetic Geld to be in the s direction.
Thus, except for a constant, the two components act
like a canonical coordinate and momentum.

The eifective Hamiltonian K(x) is defined to be the
symmetrized operator, that is, the components of x
always appear symmetrically. Thus, if we know X(k),
then the operator K(x) is defined. In R, an expression
of K(k) is given in powers of the magnetic field, the
first term of which is the band energy 8(k). In this
section we shall consider only this lowest order term,
extending the result to second order in the Geld in the
next section. Also, we assume nondegenerate bands,
neglecting spin eGects which will also be discussed in
Secs. 2 and 3.

We shall be dealing with symmetrized operators and
will need a multiplication theorem which is proved in R.
If A (x) and B(x) are symmetrized operators, then

(6)

where C(x) is the symmetrized operator obtained from

C(k) = )exp(—ih VoXVq )jA(k)B(k') ~o. q. (7)

Here, h=eB/2c. This theorem enables us to evaluate
products as expansions in powers of h of symmetrized
functions. The type of expansion involved is referred to
by Kohn" as a commutator expansion.

Consider now Eq. (2). Suppose we have a raising
operator, C+, such that C+P is a solution of the
Schrodinger equation

~C+p =(8+pd(8) )C+f. (g)

If we can Gnd C+ and o&(8), we can construct the
spectrum. Equation (7) holds if

L3'.,C+)=C+od (K) .
We now make the assumption that C+=C+(x) is a
symmetrized function of x. It is understood, however,
that this applies only to x, and x„;x,=k, is treated as

' G. H. Wannier and D. R. I'redkin, Phys. Rev. 125, 1910
{1962).

"W. Kohne Phys. Rev. 115e 1460 (1959).

2hX v eB
dX Vop. (12)

C

The last integral is just P, except for an arbitrary func-
tion of energy and k, . Now, in order for C+ to be single-
valued, P must change by integral multiples of 2m on
traversing the orbit. Therefore

2cce = (cree/eB)fdX/e, . (13)

For s= 1, we obtain the level spacing or cyclotron fre-
quency for coo, and the result is equivalent to the
Shockley integraP'.

cee eB/ceec fd'c/2ecc, =— (14)

It is interesting to relate P to the time spent by a
classical electron traversing the orbit'

dtd
=co pt (k),

t(k) = (c/eB) dpi/o, .

We shall return to this notation in considering the
electron spin.

Equation (14) can be related to the Onsager condi-
tion, Eq. (1), by writing the area in the form

d —= d/eedd„fd dfdA/e, =(16)

To calculate the level spacing from Eq. (1), we
differentiate:

BA
~p= 2m.eB/c.

88

But the derivative is just gdX/u&, according to Eq. (16),
which makes Eq. (17) equivalent to Eq. (14). To this
lowest order, y is then a constant of integration.

~~ W. Shockley, Phys. Rev. 79, 191 {1950).

a constant. Now a&(X), it should be pointed out, is not
a symmetrized function of x, since it is explicitly a
function of 3C. This distinction will become clearer
below. For now, let us try to Gnd C+ and co to lowest
order in the magnetic Geld. Since we expect co to be
proportional to 8, we need not consider further com-
mutation properties. The left side can be evaluated to
Grst order in 8, and we obtain

—2ih (Vg8(k))XVtCo+=Co+too(8, k,). (10)

Now, letting Co+= e'&+', and &~8= v, we have

2hXv Vtp=odo.

To solve this equation, we divide both sides by
e, = (e,o+v„o)'/P and integrate around the classical
cyclotron path:
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where we have written a=A/4ir. We now substitute
the expansions in Eqs. (20) and (24) into this equation,
and also the following expansion of C+

We could now attempt to obtain higher order correc-
tions to C+ and &u from Eq. (9), but it turns out to be
simpler to use a slightly diferent approach. Suppose vre

assume that Onsager's relation holds with y a function
of energy. This is equivalent to assuming that for the
eth eigenfunction

C+=Co++hCi++ O'C2+. (26)

2~eB
A (~)4-=(~+r(~))

We now equate like powers of h, but erst we can greatly
(Ig) simplify the expression by noticing that for any

function F(k)

where we have replaced p by I to distinguish it from
the final result of the next section, which includes the
Geld dependence of 3C. Then, by the same argument we
used before, and using h= eB/2c we have for C+,

fA (K)/4s —hr (3!),C+j=hC+. (19)

2~apVaaVpF= BF/8$, (27)

QCp+
i +Co+=0,

where @ is the function of Eq. (15). The resulting
equations for C+ are

We novr have, hovrever, the same situation with A
and r as we previously had with &u(K), namely that
instead of a symmetrized function of x, we have a
function of K. We can, however, find a function As(x)
which is an expansion of 3 in even povrers of h in terms
of symmetrized functions of x. The corresponding
function Aa(k) is given by

Aa(k) =A (h)+O'A2(k)+h4A, + ~ ~ . (20)

We shall need only A2 here, and it is given by

Ag(k) = —(1/12)e pe, g(3A"B,Bpi+2A"'i) v78pi), (21)

BC1+ dl'p BCp+
i +Ci+=i

8$ da Bp

BC2+ 81'p BC1+
i +C2+=i

8$ Ba 8$

Br1 BCp+
+2i 2iea—pV aa2V pCO+

Ba 8$

(29)

as is shovrn in Appendix A. We have here introduced a
notation for the numerous cross-products which occur.
The Greek indices represent two-dimensional vector or
gradient components (i.e., 8 p= V~Vp8= 8'8/BA~Bkp)—
and e is a 2X2 antisymmetric tensor:

612= —&2] = 1 ) 611=622= 0. (22)

We use sununation convention, and the prime represents
diGerentiation with respect to energy.

For I', we shall assume an expansion in h of r (K)

r =r, (3'.)+2', (K)+ (2h)'r, (H) ~, (23)

and now symmetrizing, we obtain

r, (k) =r, (a)+2ar, (s)+h2(r„(h)+4r, (a))
+h'(2rig(8)+ Sr 3(6))+, (24)

where the second subscript, if any, corresponds to the
symmetrization. We shall actually calculate only the
6rst two terms of the expansion. It is possible in

principle to go to higher order, in vrhich case we see
from Eq. (24) that in any order, the symmetrization
terms depend only on lower order terms, so that the
procedure is consistent.

We now apply our multiplication theorem to Eq. (19),
giving"

+(i/3)(..pV.V't)'~(k)CO'(k') I. . (30)

Looking first at Eq. (28), we see immediately that
the solution Cp+= e'& is the same function we met before.
Equation (29) is an inhoinogeneous equation, and in
order for it to have a solution, the right-hand side must
be orthogonal to the solution of the homogeneous
equation, i.e., Cp . But since the right-hand side is
proportional to BCO+/BP=iCO+, it can only be orthog-
onal if dro/du=0. Thus we must have ro a constant,
which is the Onsager result. In Eq. (30) we apply the
same argument, i.e., requiring the right-hand side to be
orthogonal to Co+ to evaluate dr i/da. Thus, multiplying
by e '" and integrating around the cyclotron orbit we
have

2(Bri/Bg) = 2 —g pT g2V+
2'

i dg+- —& *'(~-t)V-V'n)'~(k)~+""'~ ~=~, (31)
3 2Ã

where we have used d&=2vrdl), /a'e, as the integration
variable.

The erst term of Eq. (31) can be simplified by the
following equation for a function F (k)

—2'i sin (ke~pV~VI) )
X(as(k) —hI'8(k))C+(k') ~), ),.=hC+(k), (25) &O'ITP(ic)= ddt)(r. A)P( ), (32)

"This form of the commutator is essentially that found in

J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1947). which can be derived from the two-dimensional Green's
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theorem

d' rr,r(k) =fdXnP(k), (33)

by expressing dsk as ddt/2s, and by differentiating
with respect to A. Thus the first term of Eq. (31)
becomes

(34)

with a& obtained from Eq. (21). Equation (35) now
contains a combination of energy and area functions,
and it is straightforward to put all derivatives in terms
of energy. The result is

The spcold term of Eq. (31) is much more diKcult to
reduce, and we defer the calculation to Appendix 3,
stating only the result which, combined with Eq. (34)
gives

Br 18 dP 18'—g +— —s ps„s8 Cps, (35)
88 2 8 2x 6 882 2a

minimum. The result, vrhich is obtained in Appendix C,
is 1'p= ~ and 1»=0. In Sec. 4 vre shall show how to
construct a bridge betvreen two regions separated by a
self-intersecting orbit. The result indicates that the
choice l'p= —,

' and I'»=0 applies for all closed orbits,
except in the immediate vicinity of a self-intersecting
orbit. The case of open orbits is considered in Sec. 5.

We have thus achieved our goal of extending
Onsager's equation one further order in B. The par-
ticular form of rz, Eq. (37), leads directly to the
Landau-Peierls" term in the susceptibility, as vre shall
shovr in Sec. 6.

We should note in concluding this section that the
present method is directly applicable to the more usual
WEB situation and extends the result one higher order
in Planck's constant. The expansion is related to
Wigner's classical expansion of the partition function. "

2. Inclusion of Interband Terms

In this section vre generalize the above result to in-
clude spin and interband effects. These tvro can be
included by considering the one band effective Hamil-
tonian of E and others' " to second order in h. If we
assume nondegenerate bands we can write

enpsys ~ay~ps )
88 96n. 88'

(36) BC(s) =Xs(x)+hRg(x)+h'Xs(L), (38)

so that integrating and carrying out the sums

8 dX
r,=r,+ —(h.,8„„—B.„'),

48m 88
(37)

where F» is a constant independent of energy.
We now wish to evaluate the constants I"' and to

discuss the range of validity of the solutions. Let us
consider the cyclotron orbits on a given k, plane for
various values of the energy. (For more detail see
Sec. 5.) The topology of the orbit changes at maxima,
minima, and saddle points. In the vicinity of a maxi-
mum or minimum, the orbits are simple and closed.
Hovrever, at a saddle point, the orbits may change from
closed to open, or two orbits may merge into one.
Examples appear in Figs. 2 and 3; we shall concentrate
on Fig. 2 for the present, as it involves only closed
orbits. Since our whole scheme of approximation de-

pends on the character of the orbit it breaks dovrn at
saddle points where, for example, F» is singular, as we
shall see in Sec. 4. The solutions C+ are completely
separate for regions of k space separated by orbits
through saddle points, or self-intersecting orbits. In
particular vre should evaluate I'p and I'» for each such
region separately.

The simplest case is that of an orbit close enough to
a maximum or minimum so that the extremum can be
reached from the given orbit by changing the energy
without passing through a saddle point. Then 1 p and 1"

»

can be calculated in the vicinity of the maximum or

with Ks(k)= h(k). The interesting case for particles
with spin is, hovrever, doubly degenerate in the absence
of the field for a crystal with inversion symmetry. This
case is discussed in some detail in the next section, and
it is shovrn hovr to obtain the spin splitting. We shall
assume here that we have a representation in which the
Zeeman interaction is diagonal (such a representation
is derived in fact in Sec. 3) in which case we can replace
X» by &K», the sign depending on the spin state.

We now need an expression for the area function for
the modified Hamiltonian, expanded in povrers of h.
We can use the following expansion for a volume
integral:

GP(C) +e1(C) & 8

( 1)n gn

dkg(k)LBr (k)j", (39)
Rt 88"

where 8» comprises here the second two terms of Eq.
(38). Eq. (39) is proved by writing the integral I as

I= d 8p 8» —8 g (40)

where f is a step function (or Fermi function for zero
temperature) and expanding formally in powers of h&.

"L.D. Landau, Z. Physik 64, 629 (1930};R. Peierls, ibid. SO,
76' (&933}.

"K.P. Wigner, Phys. Rev. 4P, 749 (1932).
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Using this result we can write for the area function

A =A (Rp}—f(dX/v, }(+hR&+O'KI}

so that with Eqs. (18) and (37) and using I'O=2 and
1'&=0, we 6nally obtain the generalized Onsager
quantization condition as Eq. (1) with p now given as

dX eB dA,

Xg+— BCg

4Ã$L c 4&8g

3. The Zeeman Interaction

In this section we shall consider in more detail the
Zeeman interaction or spin splitting for Bloch electrons.
In R and other work' " it is shown that this is given

by
Ki(~)=goysso B+p~B xX(p+mv), (43)

where go and so are the free-electron g factor and spin,
and p~ is the Bohr magneton. x is the periodic part of
the coordinate operator with matrix elements

action, so that in principle at least the bands are non-
degenerate. We shall assume that inversion symmetry
is present, and note that the results would apply to a
crystal lacking inversion symmetry if the mk1'-Nk&

splitting is very small.
When a magnetic Geld is applied the Kramers

degeneracy is split. For our crystal with inversion
symmetry it has been shown by Blount and Cohen'~
that it is possible to deduce a form for the Zeeman
interaction in terms of an effective spin s, which is no
longer the free spin because of spin-orbit interaction.
The result is the 2)&2 effective Hamiltonian

se~(k)=pgs g(k) B, (46)

where g is a g tensor which is not necessarily sym-
metric. "The form of Eq. (46) is dictated by the fact
that the linear term in 8 must change sign under the
operation gX. The actual behavior of K under time
inversion is altered when k is replaced by x, but this
does not change the form of Eq. (46).

The eGect of the Zeeman interaction on a band elec-
tron can be described classically in a rather simple way.
We can let ~~g(k) B be an effective magnetic Geld

acting on the electron. As the electron traverses the
cyclotron orbit in the Inagnetic Geld its spin feels a
time-varying magnetic Geld. Here the time is related to
the wave vector k for a point on the orbit by Eq. (15).
The problem is thus reduced to solving the equation of
motion of a classical spin in a time varying magnetic
field:

x („k„). i=dr .N,*(r)q, Ng(r), (44) ds/dt= pa(8(t) B)Xs. (47)

with N„g the periodic part of the Bloch function, and p
is the momentum operator whose diagonal part is mv.

For zero magnetic Geld the Hamiltonian commutes

with the time-inversion operator"

X=—ifTy6, (45)

where a-„ is the y component of the Pauli spin vector
which results in a spin reversal, and 8 is the complex-

conjugation operator. The invariance of X, under time
inversion implies a double degeneracy, the well-known

K.ramers degeneracy. "For crystals without spin this

implies that the states ek and m —k, for nondegenerate

bands, are degenerate, since 8 takes e'"' into e '"'.
The same is true with spin except that the degeneracy
is between eke and m —k J,. However, if the crystal also

has inversion symmetry, the operator gX, with g the
inversion operator, also commutes with 3'., giving
degenerate states eke and eke, since g undoes the
reversal by X of k. We should note that in the presence
of spin-orbit interaction the states $ and 1 are not pure
spin states but mixtures, a fact which does not change
our argument. For crystals without inversion symmetry
the nkvd ek Jdegen-era, cy is removed by spin-orbit inter-

"A. Messiah, Qguntgm Mechanics (North-Holland Publishing
Company, Amsterdam, 1963), Vol. II, pp. 667-676.

Quantum-mechanically there appear to be two
methods to approach this problem. One is the equation-
of-motion method of the last section, and the second is
the Gnding of a unitary transformation which diagonal-
izes the Zeeman interaction. We shall discuss the
equation-of-motion method 6rst and then use the result
to obtain the desired transformation.

For the spin problem we shall be interested in a
raising operator D+ which reverses the spin Let us
assume the form

D+=0 D(x)

where D(x) is a symmetrized vector function of ~.
Since the spin cannot be raised more than once, we
must have (D+)2=0. If we are interested in the result
to lowest order in 8, we neglect noncommutivity of x
and this implies

D D=O (49)

[8+p}}sg B,e D]=e Dcug. (SO)

We shall evaluate this to lowest order in B. Thus for

"E.I. Blount and M. Cohen, Phil. Mag. 5, 115 I',1960).

as a condition on D. LSince D is complex, Eq. (49) does
not imply that D vanishes. ] Using Eq. (9) we have
now to require that
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=)(5))(g B)XD+ippiD.
Bt

(52)

We see that the equation for D is almost the same as
the classical equation of motion for s, Eq. (47). In fact
the equation for De '"5' is identical except that l is not
now ogcially the time. Thus a solution of the classical
equations of motion is closely related to a solution for
D. Equation (52) is a coupled set of linear equations
for which the boundary condition is single-valuedness
of D or, in terms of 1,, periodicity with the cyclotron
period. We also have the condition, Eq. (49). In regard
to this, we can dot D into Eq. (52) to give

1 8
——D D=p(piD D
2 Bt

(53)

so that if Eq. (49) holds for t=0, it holds for all t The.
eigenvalues p)& of Eq. (52) include the spin splitting, as
we shall see below, or classically the precession fre-
quency of the spin.

A special case of Eq. (52) which is readily solved is
when p&g B—=W is in the s direction, but may vary
with t in a periodic fashion. We can then combine the
x and y component equations of Eq. (52) and, defining
D,&iD„as D+, we have

BD~/p)t=i((pi&W)D~, (W =W„=O). (54)

Assuming 8', to be positive, we have the solution

t

D+——D+P exp i Ck'((pi& W,), (W =W„=O), (55)

the 8 commutator we use the multiplication rule,
Eq. (7), to first order, and for the Zeeman part we
ignore the x noncommutativity. Thus we have

2ikp—.pp„&pe D+ip(ie (g B)XD=(didr D. (51)

The first term on the left, from Eqs. (27), (17),and (15)
can be written as the "time" derivative i(—8/Bt)e D.
We can also omit e, as the result must hold for all
components of D, giving

FIG. 1. Magnetic energy
levels showing two ways of
de6ning spin splitting.

raising operator,

(0 D—
~D(.=dr D=I (W,=W„=O),

EO 0) (5g)

kr = (1+yy*)-'I I; A = (1+yy*)-'I I, (59)
(11
E—y) &1)

where y=D, /D = D+/D„ the lat—ter equality from
Eq. (49). It is readily shown that e BP& vanishes, and
that dr Df p gives a multiple of Pt. Let us now transform
to a system in which f& and P& become

which takes a spin-down state to a spin-up state. Note,
however, that taking the upper sign and s= 1 also gives
a positive frequency (i.e., p)p —cc)i). Thus there are two
basic choices of raising operators, which corresponds to
the transitions u and b in Fig. 1.We can always multiply
D+ by e"+=e""&' to obtain a combination of spin
splitting and cyclotron frequencies, but we have
already found out what we need about the level
structure.

The spin splitting, however dined, comes from
averaging S; over the cyclotron orbit. This is entirely
consistent with using Eqs. (1) and (42) for the energy
quantization, since our case corresponds to having
found a representation for which the Zeeman interaction
is diagonal. For the general case for which the Zeeman
interaction is not diagonal, we revert to Eq. (52) which
cannot in general be reduced to quadratures. However,
we can show that once a solution for D+ has been found
the Zeeman interaction can be diagonalized. For,
knowing D+ and D, we can take the states

In order for D+ to be single-valued we must have
respectively. The transformation matrix T is to be
unitary, and we shall assume it to be a symmetrizedefd ~'+*w" (+' +" ) ' (5 ) function oi e. Let us write to drst order in 5

where s is an integer. Taking the lower sign and s=0,
we 6nd

/5 fdrttr , (Pr.=W„=O), (55.)

where
T= Tp+ATi,

(1
To= (1+yy*) 'I

E—y 1)'

(60)

We shall assume that ppi((pp (if ppi)(pp we can choose s which is unitary ignoring noncommutativity, and where
tomake(pibetweenzeroandp)p). Ourchoicecorresponds Ti corrects this to first order in h, and need not be
to taking D ' finite and D+' zero, and gives for D+, the stated explicitly. We now transform 8(pd) using the
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method for the case in which the energy is nearly equal
to the height of the barrier. "

For energies close to 82, the energy of the self-
intersecting orbit, the area has an infinite slope. In fact
for energies slightly above 8s, (assuming energy
increases outward) we have

A- —(4ea/c)x lnlxl, (66)

FIG. 2. Magnetic orbits in the vicinity of a self-intersecting
"6gure 8" orbit. 8 is in the s direction.

multiplication rule of Eq. (7), to first order in h. Thus

Tp
—'8(x)Tp —=

l 8(k){1—ih Vt, To+XVt To)

,'iTp '(c—)T—o/r)t)+', (i&Tp/ctt)-'To]g „,—(62)

where we have put in the t derivative as in Eq. (52).
The second term in the curly brackets must be exactly
canceled by T& if T is to be unitary, since the right side
must give 1 if 8(x) is replaced by 1.The last two terms
are equal since (ct/itt)(Tp 'Tp) =0. We also transform
W s, to lowest order in h, giving altogether a new
Zeeman interaction

where x= (8—8s) (c/2eH) (8„8»)'", and the energy
derivatives are evaluated at k=0 in Fig. 2 with axes
chosen so that 8 „=O. For energies below 82, the
singularity is equally divided between the two orbits.
The cyclotron frequency goes to zero as 8 —+ 82, since
c)A/c) 8 has a logarithmic divergence.

By the use of the proper connection formulas, Azbel
obtained the quantization condition

cos (At+As)+io
288

C= —Le4 *+1] 't' cos (Ar —As), (67)
2eB

where
I'(-,'+ix)

y= pop
——2xlnlxl/e+i ln —tan ' tanhsrx, (68)

I'(-', —ix)
W' s=Tp 'W sTp i—Tp '(i)To—/ctt). — (63)

It is straightforward now to obtain

W,'= W,—-', (W y+W+y*), (64)

4. Self-Intersecting Orbits

In this section we shall discuss the generalization of
the results of Sec. 1 to the case of orbits which are close
to saddle points. For this case we must use another
method, as our present scheme breaks down. The
simplest example of such an orbit is the "6gure-eight"
orbit structure shown in Fig. 2, which has been con-
sidered by Azbel, "who used the extension of the %KB

ss M. Ya. Azbel, Zh. Eksperim. i Teor. Fiz. 39, 1276 (1960)
LEnglish transl. : Soviet Phys. —JETP 12, 891 (1961)g.

with W, '=W„'=0. We can also transform rr D into
o D', where D' has only the component

D '=D (1+yy*).

Summing up, the Zeeman interaction in a crystal
with inversion symmetry can be reduced to a diagonal
form provided the equations of motion, Eq. (47) or
(52), have been solved. Thus we are led again to Eqs. (1)
and (42) for the levels. We should note however that
the transformation of Eq. (63), should really be carried
out to second order in h, as Xs, Eq. (38) will now be
modiaed. We shall not carry this through but in the
following section we shall calculate the susceptibility
assuming that the correct K2 has been obtained.

2srI" h 1/96x x&0
-1/48x x&0,

(69)

provided that we take F~=O. The difference in F~
between the two signs of x comes in because of the
change from two orbits to one. Upon examining the
limiting values of Eq. (66) as x —& oo (+ oo), we see
that oo goes into —4srI'rh (—2sri'rh), with I'p ——-,'. Thus
we see that it is consistent to take F~=O above as well
as below the singularity.

If we combine the results of the present analysis
with those of Azbel, the more general quantization
condition can be obtained which is Eq. (67) with io

» P. M. Morse and H. Feshback, 3fethocts of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), pp. 1103,
1399, 1567-8.

+ E. Jahnke, F. Kmde, and F. Losch, Tables of Higher J Nnctiogs
(McGraw-Hill Book Company, Inc. , New York, 1960), p. 5.

and where A ~ and A2 are the areas to the left and right
of the line k =0, respectively. The area includes the
singularity, which we might note is just subtracted off
by the erst term in oo. Equation (67) shows how the
levels below the orbit 8s go smoothly into those above
it over a range of energy, (eH/c) ( l 8„8»l

)'ts.
The interesting feature of this calculation for our

present discussion is the fact that for large values of x,
io goes as —1/48x, which can be shown from the
asymptotic expansion of the gamma function. "How-
ever, if we calculate I' according to our methods,
Eq. (38), we find that near the singularity
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replaced by
(4' 1

I
f'&+

E2) 48m
(70) COhSt

/

s B

with ys given by Eq. (68). Thus we include 1'& in our
equation but, near the singularity, we replace the
singular part of I'& by Eq. (68).

Azbel also considers the case of a "dimple. " Other
analogous situations which can arise are the transition
from electron to hole orbits, and from open to closed
orbits. The latter case is discussed in the next section.
The conclusion of the present section is that it is
probably correct to take I"0——-,'and 1"&——0 for all closed
orbits except in the innnediate vicinity of self-
intersecting orbits.

$. Oyen Orbits

It is well known' that another type of cyclotron orbit
is possible in a solid, namely an open orbit. If we extend
8(k) as a periodic function in reciprocal space, such
orbits are never closed, as can be seen by the example
in Fig. 3 (orbit 3). The energy levels connected with
such orbits are continuous, and the subject of this sec-
tion is to exhibit such continuous levels in the present
formalism.

Actually I'ig. 3 represents the special case in which
the magnetic Geld is parallel to a crystal axis. In this
case for constant k, the total orbit structure is doubly
periodic in k space and the open orbit is periodic. A
somewhat more general case occurs if the magnetic
Geld is along any lattice vector; we shall refer to this as
a rational direction. The constant k, plane then tilts
through several cells in reciprocal space before the orbit
structure repeats itself. That is, the orbit structure is
still doubly periodic but with a larger two-dimensional
unit cell. The definition of k, has now become a little
ambiguous since through one Brillouin zone there will
be a set of k, planes. The treatment of Blount' helps to
clarify the situation. Blount redefines the unit cell of
the crystal so that the magnetic Geld is along one side
of the unit cell. The corresponding reciprocal lattice

unit cell can now be deGned so that two of the axes are
perpendicular to the magnetic Geld so that the repetition
area is again the cross section of the unit cell as in
I'ig. 3.The scheme is illustrated in Pig. 4. If the prima-
tive lattice vector along the Geld is rather long, the new
reciprocal-lattice unit cell becomes rather Qat until in
the limit of an irrational direction it becomes a plane or
a strip. ' We shall deal here with rational directions" —"
and periodic open orbits, and shall regard the irrational
directions as limiting cases.

We consider Grst a set of Inagnetic translation
operators" which under certain circumstances commute
with the Hamiltonian. These can be defined in terms of
an operator P', which is given for a gauge in which A is
a linear function of r (i.e., A=r VA) by

P'=y+%VA r,

where y= (1/i)V. The magnetic translation operator
for a displacement y is then defined as

T,=exp(iy P'). (72)

The operators P' and T, can readily be shown to com-
mute with the kinetic-momentum operator P= p+eA/c
of Eq. (4). T, thus conunutes with the kinetic energy
part of the Hamiltonian, but only commutes with the
periodic potential when y is a lattice vector R.

The operator P' can be related to "orbit-center"
coordinates. ' 's For, subtracting P from P we obtain

(b)

FIG. 4. Redeiinition of unit cell according to Blount (Ref. 3)
to give magnetic unit cell for a cubic lattice with a axis out of the
page: (a) real lattice, (b) reciprocal lattice. A typical set of
k, =const. pl.anes is shown, and we see that the reciprocal lattice
magnetic unit cell has only one of these planes through it, whereas
the original cubic lattice has three.

(P—P') =%BXr, (73)

Fro. 3. Magnetic orbits for an orthorhombic crystal, with field
in the s direction, showing closed-electron (1) and hole (4) orbits,
an open orbit (3) and a self-intersecting orbit (2).

"The introduction of special "rational" values of the magnitude
of the magnetic field, for which a rational fraction of a Aux
quantum (27rhc/e) goes through a unit cell, as in the work of
Brown (Ref. 22), is not necessary in our approximation. This is
related to the fact that open orbits extend in one direction only.
For two-dimensional orbit arrays (Ref. 23) sometimes involved
in magnetic breakdown, the rationality of the magnitude of the
field is important.

ms E. Brown, Phys. Rev. 133, A1038 (1964).
~A. B. Pippard, Phil. Trans. Roy. Soc. London A256, 317

(1964); W. G. Chambers, Phys. Rev. 140, A135 (196&).~ R. Kubo, N. Hashitsume and S. J. Miyake, in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc. , New York, 1965), Vol. 17."M. H. Johnson and B.A. Lippman, Phys. Rev. 76, 828 (1949).
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and crossing this into Bc/eB', we have

r, = (P—P') XBc/eB'. (74)

The raising operator must again obey Eq. (9), but,
since T,' commutes with K, we can remove it from the
equation, giving

The right-hand side of this equation can be interpreted
as the sum of a relative coordinate PXBc/eB' and an
orbit center coordinate rp ———P'X Bc/eB'. The x and y
components of the orbit-center coordinate act like a
canonical coordinate and momentum pair with the
commutation relations"

[xp,yp] =c/ieB.

PC,C,+(x)]=C,+(x)pop(3'.), (82)

C+= e'&
P

k

f= (p/pc/eH) dX/p, .

(83)

which has the same form as Eq. (9). We can now use
the same arguments to obtain, to lowest order in 8,

where
T,'= exp(iy xP)

x'=k+e/cvA pv,,.

(76)

Because of the commutation relations, yo is proportional
to the generator for a translation of xo, and vice versa,
so that our translation operator Tp translates the orbit-
center coordinate by y.

We should remark that in the case of free electrons for
which xo and yo commute with the Hamiltonian, the
degeneracy of levels can be obtained by con6ning xo
and yo to the area I.,I,„of the crystal, and noting that
the number of levels in the (eB/c)'"xp, (eB/c)'@yp phase
space is given by 1/2m. times the area, so that each
level has a degeneracy eBL,L„/2~c.

Let us now consider the momentum-space operator
corresponding to T„

Suppose we consider the case of Fig. 3 in which we
assume for simplicity that the unit cell axes are at right
angles. For closed orbits, such as orbit j. we can again
use the condition that C+ be single valued to obtain
the quantization condition, Eq. (1). The condition of
Eq. (82) for extending P to other zones can be met by
simply defining C+ to have a different phase factor in
each unit cell. If we take s=0 in Eq. (13), we have the
result that C+ electively commutes with B for these
levels, so that the levels have the same degeneracy as in
the free electron case, at least in the semiclassical
approximation.

For an open orbit like orbit 3 in Fig. 3, however, we
see that Eq. (80) imposes the condition on f, for, e.g. ,
the upper trajectory,

f (7r/a) P( 7r/a) =—27r (s——p /a),
so thatThe operators x' and Tp conunute with x. But since 3'.

is a function of x, T,' commutes with K, no matter
what y is. However, only for y equal to a lattice vector
is T,' periodic in k space. Thus we see that we must
impose periodicity in k space in order to obtain the same
physical information we had before.

Since the operators Ta', where R is a lattice vector,
commute with R and are periodic in k, if we have an
eigenfunction f, then Ta P is also an eigenfunction with
the same energy. We are interested however in raising
operators C+ for which C+f is an eigenfunction with a
higher energy. We have previously assumed that C+
was a function of x alone. Let us now consider the more
general function

n/a dg- —i

u p
= (2z.eH/c)

~

s——
~

—w/a &i-
(86)

Since p can be arbitrarily small, we see that oro can
have any value, so that the levels are continuous in the
semiclassical approximation.

We can now ask whether the argument of Sec. 1 can
be continued to higher order in 8 for open orbits. In
fact, it can. Suppose that we let f= (s—p,/a)P where

(87)dX/'vi d p/vi

[a—hr, C,+]= (s p,/a)hC, +. —

Equation (27) now becomes

i(BC,+/By)+ (s—p,/a)C, +=0, (89)
C+(x+K) =C+(x),

where K is a vector of the reciprocal lattice. But since
and the left sides of the following equations are similar.

(80) By entirely analogous reasoning, we find r,= rp ——const
and

T,'(k+K) = exp[iK y]Tp'(r),

C+= C,+(x)T,', (78) Then, we let a be 1/4m times the area enclosed by the
upper trajectory 3, the x axis, and sides of the zone.

in which we have a product of a magnetic translation The desired extension of Eq. (19) is
operator and function of x. We now require that C+ be
periodic in x, that is,

we must have

C,+(x+K) = exp[—iK.y]Cp+(L) .

m/a

r,=r,+ (dX/ei) (hiihpp —hipP) . (90)
48m 88
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We now have no direct way of evaluating I'0 and I'~.
We can, however, construct a bridge between the open
orbits and closed orbits by considering the region near
the self-intersecting orbit 2 of Fig. 3. The calculation is
of course interesting in itself, and is similar to that of
the last section. The result has not to this author' s
knowledge been published, but some unpublished work
by Kohn has been discussed by Blount, ' and the result
has been obtained in an unpublished calculation by
Hohenberg and the author. The quantization condition
for energies close to that of the self-intersecting orbit
is given by

cos~ A+y ~=L1+e '
g

'i' cos(2sxo/a), (91)
&2ea

where y is given by Eq. (67) with x defined below
Eq. (68) and with the energy derivatives evaluated
again at the saddle point. xo is the x component of the
"orbit-center" coordinate which is a good quantum
number, and A is the area which goes into the area of
orbit 1.

If we let x —+ —~ in Eq. (91), the right side goes to
zero and we obtain the generalized Onsager condition
with I'0=-'„r'~ ——0 and 21'~k 1/48vrx, all as in Sec. 4.
As x goes toward zero from below, the levels begin to
broaden. If we let x —+ = ~, the gaps between the
broadened levels close up and the levels become
continuous. The quantization condition becomes

where i is the Fermi energy. In terms of F, the magnetic
moment is given by

M = —(BIi/BB) . (94)

The degeneracy of the Landau levels is the same as in
the free-electron case, as we have shown in Sec. 5, so
that we have (for unit volume),

P~ (k/2m') dk, P.

Here, k, is the wave vector in the magnetic-field
direction, which we have thus far left suppressed, and p
is surruned over the spin states. The levels are given
by Eq. (1) which we can rewrite as

a(8„„,k.)= (e+y„(8 „,k,))k,

Zf(~)= Z dg, e2 wint f(yg)
~ 1(~o(0 (97)

It is convenient to take no= —&. We then have

kTh 00

dk. g
2'

d~(h„„)

with y given to first order in 8 by Eq. (42).
We now apply the Poisson summation formula" in

the form

( xo
~/2=2~eW.

I
~~—+

a 96m'
(92)

p, t+0 ~

d+ y(h )e2ninr (98)

The appropriate area here is 2/2, and the two signs
refer to the upper and lower trajectories. The last term
in the parentheses can be interpreted as 2I'~h, consistent
with Eq. (90). The result shows that we should take
I'0=1 ~=0 for open orbits.

where we have written the r =0 term separately. The
upper limit is taken to be ~, as we assume that P
vanishes sufficiently far above the Fermi level. The
second term can be integrated by parts to give

&=El.—kT Q y(h, );

P=ln(1+ exp —(h;—i )/k T) (93)

Part II: MAGNETIC SUSCEPTIBILITY OF
BLOCH ELECTRONS

6. Basic Derivation

We now apply the results of part I to calculate the
magnetic susceptibility and de Haas —van Alphen e8ect.
We shall assume that we are dealing with a band, or
region of a band, with closed orbits and for which the
the energy is an increasing function of area, i.e., electron
orbits. We also assume that the conditions for I'0=-,'
and I'&= 0 Eq. (37) are met. In the next section we shall
discuss the extension to holes states, and to more general
orbits. We begin with the expression for the free energy

.ao gy gg e2winr

dk, p Re dl
—&/2 8v np BS 27K'f

&2 m'i nr

—g Re@(8„„)
p,g)0 2%A n=—]./2

(99)

The boundary term here vanishes, and in the remaining
term, we can use

Bp/Bh= —(1/kT) fo(8), (100)

where fo is the Fermi function. We now suppose that
we can continue the integrand into the complex e plane,
and that the only singularities are poles of fo. Then we
can add and subtract the integral along the positive
imaginary axis, and so separate the result into a steady

"P.M. Morse and H. Feshback, Ref. 19, p. 467.
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Therefore

kTh 1
Il2 ——p —Re dk,

u)&—(i/2)

X P exp{22rir22„({'+[2m+ 1j2rikT) }. (112)

kTh 1
P —Re

e(f)&—(1/2)

exp[22rir22„({ )j
X — . (113)

2 sinh(2n rkT(8n/8{'))

We now approximate by expanding 22 about t, and
keeping the linear term in T. We expect the next order
term to be of order kT/{', so that the assumption here
is kT/{ «1. Carrying out the sum over m, we have

P2= dk,

Now the integral over k, can be evaluated by noting
that the exponential is a rapidly oscillating function
since I a/k, so that the major contribution comes
from an extremal area. ' Expanding n to second order
in k, and carrying out the Gaussian integral, we have

1/2kTh 1 1
F2— p —Re

22r2 ~..» r r(d222/dk, 2) „
exp [22rir22„({')W2ri/4jX, (114)
sinh(221 rkT(8n/8{ ))

where the subscript ns means extremal and the W de-
pends on the type of extremum, the upper sign applying
to a maximum.

We can now use our expression Eq. (96) to evaluate
n, giving Gnally.

kT(eB)'~' cos{[(y+—y )2rrj cos{(rAc/eB) 2'(y++y—)+2r/4}

22r'4 c ) ~» r'~
~
(1/22r)(d A/dk, )( 'I sinh(22r2rkT/~2)

(115)

where we have reverted to the original notation, and
have omitted p except in the oscillatory part. This leads
directly to the desired result for the de Haas —van Alphen
eGect, in essential agreement with previous work. ' The
de Haas —van Alphen period is 6 (1/B) = 2 e2/rA c= e/2ac.
The Grst cosine factor is due to the g factor. For free
electrons with spin, this would give a minus sign and
simply reverse the phase of the effect. This is believed
to occur for Bi electrons" where the spin splitting is
equal to the Landau level spacing. The amplitude de-
pends on temperature and Geld through the sinh factor.
We should actually modify Eq. (115) to include lifetime
broadening eGects 4 by multiplying the pth cpm-
ponent by the Dingle factor exp( —22r2nkT'/o1&), where
T' is an eGective temperature.

'7. Change in de Haas —van Alyhen
Period with Field

Since we have calculated the dependence of y on h to
Grst order, it is appropriate to consider the change in
de Haas —van Alphen period with magnetic Geld. As in
Sec. 6, we limit ourselves to the case of closed electron
orbits. It is important to include here the eGect of the
change in Fermi level with magnetic Geld, which will
affect the area function. (We assume here that the
number of carriers is constant. ) We replace the usual
area function by

({o)= (to)+(~ /d{)({' to) 27 k' — (—116)

Here, p1 is the first order part of y from Eq. (42). ln
order to calculate the change in Fermi level, we use the

"R.B. Dingle, Proc. Roy. Soc. (Lo11do11) A211, 517 (1952).
'9 L. M. Roth and P. N. Argyres, in Semiconductors and Semi-

metals, edited by R. Willardson and A. C. Beer (Academic Press
Inc. , New York, 1966), Vol. 1.

—',(d~/d{.)B2

dN2/d{

Using Eqs. (116) and (119),we have

k'du/d{ d

(d/d{) J'dk fo d{'

Bfo
X fo5('2 — {e(611622—&12')—23'P}

8

(119)

A 8 dX—k2 X2+-
42rv1 8{' 42rv2

X{-',(&11~22 h12) 213"} . (120)

Several things can be noticed about this expression. It
depends on the difference between quantities on the
extremal orbit and on averages over k,. If we have a
constant H2 term, this does not contribute. However,
for the free-electron case, there is a contribution. from

relationship
dZ/dg=o=(d/g)[Nt. yZ,] (117)

to preserve the number of particles. Here we have
omitted the oscillatory term in determining the Fermi
level. The latter will a6ect only higher harmonics. Now,
using the deGnition of the susceptibility, we have

N= (d/d{)—P' ({)I o l*B-'3—
=No({)+2'/d{ B2=N2(t 2).

Therefore, to lowest order in 8,
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the first term, though not the second. Evaluating this
we find

(a—a)q ——h'/24@= a(1/24(e+y)'j, (121)

which gives the relative change in period, which is
proportional to 1/a. This result applies also to ellipsoids.
We see that the correction term in Eq. (121) is unim-
portant except for small m, where the theory breaks
down anyway. We can expect a similar situation to
apply more generally.

We can also calculate an extra Geld dependence for
the amplitude of the oscillations, which depends prima-
rily upon the sinh term. The dependence is through the
inverse cyclotron frequency, a&. '=h 'Ba/By, where u
is given by Eq. (120).

8. Extension to More General Orbits and a
Possible New Effect

We now discuss the extension of the susceptibility
calculation to more general orbits. The discussion is
necessarily rather qualitative as we shall Gnd that
questions are raised which would take some labor to
answer precisely.

The simplest extension is that to the case of hole
orbits in an almost flied band. For this case if we let
h'= —8, f'= —f, we can rewrite F as

F=Q h;+Kg'

kT P in(1—+expL —(h —f')/kTj), (122)

where the sum i goes over the one band. The Grst term
is the zero degree free energy for the flied band, and
the last two give Eq. (93) but for holes, with iV& the
hole density. The result from the second two terms will

just give Eq. (115) again for the oscillations, if we keep
(oo& 0. The steady result from these two terms just
subtracts the hole part from the flied band normal
susceptibility as calculated by the usual methods. Thus
the result agrees with previous work provided that we
assume that the 6rst term of Eq. (122) indeed gives
rise to the usual filled-band normal susceptibility. This
is not obvious since in going from the bottom of the
band to the top we always encounter self-intersecting
orbits and usually open orbits, as can be seen in Fig. 3,
and our derivation of the susceptibility is not valid
for these.

The calculation of the susceptibility in the vicinity
of open orbits is considerably simplified by the fact
that the levels are continuous. For the example of
Sec. 5, the sum over states involves an integration
over xo, the orbit center x component, from Eq. (92).
For one unit cell we can integrate xo from —u/2 to
+a/2, the number of states per unit interval of xp being
eBL„/4''c for 2 dimensions from the argument after
Eq. (75) in Sec. 5. It is convenient simply to multiply
this degeneracy by the number of unit cells in the x
direction L,/a, since otherwise we would have to

redefine m. The sum over states now including k: and
per unit volume is then

1/2

P ~ (h/2x ) dk g d(xo/g) . (123)
AP

Now looking at Eq. (92) we see that the integration
over xo simply turns the sum oven e into an integration
so that we need keep only the r=0 term in the sum-
mation corresponding to Eq. (97). Thus there are, as
expected, no de Haas —van Alphen oscillations for open
orbits. Inclusion of the p& term essentially as in Eq. (42)
leads to the usual normal susceptibility, except for
possible boundary terms which we have not investi-
gated, but which are related to the discussion below.

Thus far we have found nothing unexpected. How-
ever, if we consider the case of self-intersecting orbits,
there is certainly a possibility of extra contributions,
even for filled bands. In the Grst place there will un-
doubtedly be nonanalytic contributions to the steady
susceptibility. Since, however, the regions of k space
involved are quite small for low Gelds these terms are
probably small in an asymptotic sense. More interesting
is the possibility of oscillatory contributions to the
susceptibility. If we consider the "Ggure 8" situation
of Sec. 4 we Gnd that at the energy 82 two types of
orbits cease to exist and a third type appears. This
situation is quite analogous to there being Fermi-surface
cross sections corresponding to the three areas. Thus
we might expect to find oscillations with periods corre-
sponding to Aq, A2, and A q+Am. If we use the simple
Onsager condition, Eq. (1), these show up in the
susceptibility as additional boundary terms, e.g., in
Eq. (99), since the several N summations now have
finite limits. The areas of transition between open and
closed orbits could also contribute periods.

In the more rigorous treatment of Sec. 4 we see from
Eqs. (67)—(68) that the change over takes place over a
small range of energy. Thus there is a built-in broaden-
ing which decreases the amplitude of the oscillations,
and may wipe them out completely. A detailed investi-
gation is being made to see whether there are conditions
under which such oscillations could be observed. If so,
they would have some unusual properties since they
would not be related to the Fermi surface, and since
their amplitudes would not depend on temperature.
Since no experimental observations of such periods
have been reported, it seems rather doubtful that they
exist, but the matter deserves further study.

Finally the most general closed-electron or hole orbit
is one which may have self-intersecting orbits within
it (i.e., for different energies). The extension of the
theory to this case gives the expected results for the
de Haas —van Alphen effect and steady susceptibility,
partly as a result of the expressions for 1"0 and I'z, from
Sec. 4, and with the possible addition of effects due to
the self-intersecting orbits themselves as discussed
above, Thus, the work of this paper essentially conGrms
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previous results for the susceptibility for the various can write this term, except for a factor of 6m, as
types of bands.
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5at35ygfpv d ~ayp,

Xp ltlps„——i(ltlpgb„+$pltlll, +lily'„)+/pe&fail„j. (81)

In reducing this expression, we shall suppress the e's,
but shall use repeatedly the antisymrnetry between the
pairs aP, y8, and pi. Letting the 6rst term of Eq. (81)
be Ei, we have, using Eq. (32),

APPENDIX A. SYMMETRIZATION OF A
FUNCTION OF K(x) 8

E] tE g~yy p$p d G~ypcp $p 82
BQ

8
d4 (V.I:&-«&pA.j &-«&—pA ~.) (83)

BG

Given a function F(K), we wish to obtain a sym-
metrized function FB(x), as an expansion in powers of
h=eH/2c. We shall obtain the result by induction, Differentiating by parts gives
under the assumption that F can be expanded in a
Taylor series in X. We first suppose that Ii~ can be
expanded as follows:

Fa(L) =F(L)+hF1(lc)+hmF1(g)+ ' ' ' . (Ai)

We can now obtain the expansion for (FII)s in terms
of the coeKcients of Eq. (A1) using the multiplication
theorem of Eq. (7). Since 3'. coniinutes with F, we can
use the symmetrical product (H,F)8, and we obtain
for the function of k,

(F~)8=F86+ (h'/2) p p~«~ (Fs) «&p~+ ''
l '(A2)

The second term goes into itself if we interchange 6 and
v, 7 and p and n and P. The 6rst two of these give a
plus sign from the e's but the last gives a minus sign,
so that the result vanishes. Let us call this "argument
1."Again applying Eq. (32) to the first term, we have

82
Xi= — dQG~G~«Gppgp.

882

The 6rst term (with p„„) vanishes from Eq. (27). The
second term has a minus sign which can be eliminated

by interchanging p, and v. Thus, we have merely inter-
changed the a and P symbols in Eq. (84). Let us call
this "argument 2."Now we have

(FX)g, F,B ', e~p e«—gF.«Sp—ll-
=F28 2p pe«ll(PB «Spy+—F—"il v«8pgj, (A3)

where the primes represent derivatives with respect to
energy. We can rewrite these derivatives as

82
Ei= dQ Q~c~«GpGlJp ~

882
(86)Fl 1$(Fg)/l Fl!gj.

Fll 1L(Fg)ill Fill@7 (A4)

using the notation of Eq. (21). Because of the sym-
metric product, all of the odd-order terms vanish here. Consider the first and last factors in Eq. (84); we have
Since we can take F successively as 1, K, GC' we see that
no odd order terms in h appear, so that F~=O. For F~ Cpfpp= VS(Spltl~) iipbpu ~ (85)
we have, from Eq. (A2),

Suppose now that F2 is given by

F1=—(1/12)e,pp«pg3F"8 «Spi+2F"'e, e«hpgj. (AS)

Equation (AS) is valid for F= 6m, as can be readily
verified. Also from Eqs. (A3) and (A4) if F& has the
form (A5), (FK)1 has the same form. Thus the form
of F&, Eq. (A5), is established by induction. The
expansion can be carried out to higher order in the
same manner.

APPENDIX B

82
Ei=+ dP a «apg.

882
(87)

This is antisymmetric in p and P, as we can see by
interchanging p and P, v and n, which gives a plus sign,
and y and 5 which gives a minus sign. Since it is also
antisymmetric in p, and v, we might ask whether we can
interchange P and v. In fact, we can interchange them
if we also multiply by 2, a fact that can be veri6ed by
writing out components. This we shall call "argument
3."Applying Eq. (27) as well, we obtain Gnally

The object of this Appendix is to obtain the second Now, having amassed our arguments, we can dispose
term in Eq. (35) from the second term in Eq. (31).We of the remaining terms. A typical middle term of
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Eq. (B1) gives

+2= & d ~ay@, p8 v

Va ~yp p8 v ~yy p5 av ~

term of Eq. (C1) (with k —+ x) are (2m+1)nh as is well
known. We then use second-order perturbation theory
for the second term, and first-order perturbation theory
for the third term, remembering to use the completely
symmetrized products. The terms are readily evaluated
using the creation and annihilation operators

/& 1
i=(2h) 'k

&a i

8.= (2~+1) h+h p(N+-', ) +-,'j~++
8

Em= —~ dQ a Q„„$pgu„,
88

(B9) (I+-', )'h'
(P+++-P -+—9P++ P +-)—

3Q
which also vanishes from argument 1. Now, for the
last term in Eq. (Bl), we have

(5P+++P +9—P+-+ P +)-—(C2)
36o,

+3= d ~ayp, p s v

The second term vanishes from argument 1. We apply
Eq. (32) to the first term, but first interchange the giving
first u and the last P in the bracket (argument 2),
giving

Va ~yy p 8 v 2~yga p a8 v ~

In both terms, we use argument 2 to interchange the
first u and the last p. We then use argument 3 in the
second term to interchange a and p. Meanwhile,
integrating the first term, we have

In order to calculate F, we must obtain the eigen-
values of the area function a(X). The function a(8) can
be calculated by treating the second two terms of
Eq. (C1) as small and using the expansion of Eq. (39).
The result is

dA, 1 8 dP
8=Cp- 8i+- g~

tv~ 2 Bh 4n.v,

8 182
Y++-

2e 8 0.'

We can now reduce both terms with Eq. (27), and then
integrating the second term, we find that it cancels the
first, so that Kg=0.

We are thus left with E~, and restoring the e's, we
obtain for the second term of Eq. (31)

1 82

+— (P+++P —+9P++—P-+) . (C3-)
24 o,4

We now substitute Eq. (C2) into Eq. (C3), keeping
terms up to second order in h, to obtain

8
dQ E~p6y)c~yopp ~

6X Bu2

APPENDIX C

(B12) u„=(e+ I'p(0)+21"g(0)h)h,

where I'p(0) =-', as expected, and

(C4)

We wish to evaluate the constants I"p and 1'~ in the
vicinity of a maximum or minimum. Choosing a mini-

mum, we must evaluate F for 8=0, measured from the
minimum. We choose an origin so that the minimum is
at k=0, and then transform to a coordinate system for
which the energy contours are circles near the minimum.
Using k~= (1jv2)(k,&ik„) as variables, with indices pv
running over + and —,we assume an expansion for
8(k),

21'g(0) = 7++ 5P+++P —-+9P++ P—+-—
(C5)

1 8 d~
I',—I',= —(8~ '—8~+8 ) . (C6)

48m 88

However, we have another expression for F~ in

Eq. (37). Writing this in terms of k+ and k, we have

8(k) —~k k yIP k k k„y(1/24)& „k k k k (C1) The right-hand side can also be evaluated at 8=0 by
using our expansion, Eq. (37), differentiated with

We first calculate the eigenvalues of 8(x) for small respect to 8. It turns out to be exactly equal to the

I and to second order in h. The eigenvalues of the first right-hand side of Eq. (C5), so that we have I'z ——0.


