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In this paper the semiclassical condition for the quantization of magnetic energy levels of Bloch electrons
is extended to one order higher in the magnetic field. The result enables us to make a calculation of the
magnetic susceptibility of Bloch electrons which includes both the de Haas—van Alphen effect and the steady
susceptibility. While the basic calculation is made for fairly simple closed orbits, the results have been ex-
tended to include spin splitting, self-intersecting orbits, and open orbits, but omitting consideration of band-
ing of magnetic levels and magnetic breakdown. Possible new oscillations due to self-intersecting orbits

are discussed.

ERIVATIONS of the magnetic susceptibility of
Bloch electrons have either concentrated on the
de Haas—van Alphen effect,! or the steady suscepti-
bility.2~* In this paper we give a unified derivation of
both parts of the susceptibility based on a semiclassical
treatment of the levels which is valid when banding of
Landau levels® and magnetic breakdown® are not
important.

In Part I we discuss the magnetic levels. The primary
result (Sec. 1) is a generalization of Onsager’s” quanti-
zation condition for closed magnetic orbits. This
generalization amounts to replacing the constant of
integration v [see Eq. (1)] by a function of energy,
and evaluating it to first order in the magnetic field.
An equation-of-motion approach is used to obtain the
result. In the remainder of part I the result is extended
in several ways. In Secs. 2 and 3 we include higher order
terms in the effective Hamiltonian obtained in R, and
in particular extend the method to cover spin splitting.
In Sec. 4 the problem of self-intersecting orbits is
discussed, and in Sec. 5 the results are extended to the
case of open orbits.
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Part IT is concerned with the magnetic susceptibility.
The main result (Sec. 6) is a calculation of the total
magnetic susceptibility for closed electron orbits by a
method quite similar to that of Lifshitz and Kosevich!
but which, because of the additional terms in v, gives
the correct steady susceptibility. The problem of the
variation of the period with the magnetic field is con-
sidered in Sec. 7. The extension of the results to more
complicated orbits is made in Sec. 8, and the possibility
of new oscillations due to self-intersecting orbits is
discussed.

Part I: MAGNETIC ENERGY LEVELS OF
BLOCH ELECTRONS

1. Basic Derivation

In describing the behavior of Bloch electrons in
electric and magnetic fields, semiclassical methods have
been most successful. The theory has been reviewed
extensively by Lifshitz and Kaganov.® The semiclassical
quantization condition for magnetic levels is the well-
known Onsager equation,

4 (8,)= (n+)(2meB/c) ¢Y)

where B is the magnetic field, and 4 is the cross-
sectional area of the orbit in k space, which is the inter-
section of a constant-energy surface with the surface
k,=constant, where z is the direction of the magnetic
field B. This equation applies to orbits which are closed
and nonintersecting, and we shall make these assump-
tions in the present section.

Equation (1) has been derived by applying the Bohr-
Sommerfeld quantization condition to the problem,® or
by using the WKB method.® In this section we shall
derive Eq. (1) by an equation-of-motion method, which
is capable of generalization to higher order in the
magnetic field.

We begin with an effective one-band Hamiltonian
which appears in the momentum-space Schrodinger

81. M. Lifshitz and M. I. Kaganov, Usp. Fiz. Nauk 69, 419
(1959); 78, 411 (1962) [English transl.: Soviet Phys.—Uspekhi
2, 831 (1959); 5, 878 (1962) 7.
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equation,

() (k)= &y (k). @

This equation has been obtained by the author in R
and by others.3101! Here x is the kinetic-momentum
operator, given in k space by

x=k+e/cA(iVy), 3)

where A is the vector potential for the magnetic field.
This is essentially equivalent to the real-space operator

1 e
P=-v+-A(r). 4
i <C
The components of x have the commutation relations
[xaney 1= ieB/c, ®)

assuming the magnetic field to be in the z direction.
Thus, except for a constant, the two components act
like a canonical coordinate and momentum.

The effective Hamiltonian 3C(x) is defined to be the
symmetrized operator, that is, the components of x
always appear symmetrically. Thus, if we know 3¢ (k),
then the operator 3C(x) is defined. In R, an expression
of 3¢(k) is given in powers of the magnetic field, the
first term of which is the band energy 8(k). In this
section we shall consider only this lowest order term,
extending the result to second order in the field in the
next section. Also, we assume nondegenerate bands,
neglecting spin effects which will also be discussed in
Secs. 2 and 3.

We shall be dealing with symmetrized operators and
will need a multiplication theorem which is proved in R.
If A (x) and B(x) are symmetrized operators, then

A®)B(x)=C(x), (6)
where C(x) is the symmetrized operator obtained from
C(k)=[exp(—th- VX V) 1A K)B&')|w=x. (7)

Here, h=¢B/2¢c. This theorem enables us to evaluate
products as expansions in powers of % of symmetrized
functions. The type of expansion involved is referred to
by Kohn'! as a commutator expansion.

Consider now Eq. (2). Suppose we have a raising
operator, C*, such that C*/ is a solution of the
Schrédinger equation

CHy=[8+w(8)]CHy. 8)

If we can find C*t and w(8), we can construct the
spectrum. Equation (7) holds if

[5e,Ct]=Ctw(5e). 9)

We now make the assumption that Ct=C*(x) is a
symmetrized function of . It is understood, however,
that this applies only to x, and x,; .=k, is treated as

1 G. H. Wannier and D. R. Fredkin, Phys. Rev. 125, 1910

(1962).
1W. Kohn, Phys. Rev. 115, 1460 (1959).
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a constant. Now w(3¢), it should be pointed out, is not
a symmetrized function of x, since it is explicitly a
function of J¢. This distinction will become clearer
below. For now, let us try to find C* and w to lowest
order in the magnetic field. Since we expect w to be
proportional to B, we need not consider further com-
mutation properties. The left side can be evaluated to
first order in B, and we obtain

—2th- (Ve8(k)) X ViCot=Cgtwo(8,k,).  (10)
Now, letting Cgt=¢"® and Vx8=v, we have
2hX V- Vip=w,. (11)

To solve this equation, we divide both sides by
1= (v2+7,2)!2 and integrate around the classical
cyclotron path:

EgA B 2hXv
wo —=/ dl
UL

U

eB [k
Vip=—
c

The last integral is just ¢, except for an arbitrary func-
tion of energy and k.. Now, in order for C* to be single-
valued, ¢ must change by integral multiples of 27 on
traversing the orbit. Therefore

2ws=(cwo/eB) P d\/vy. (13)
For s=1, we obtain the level spacing or cyclotron fre-
quency for wo, and the result is equivalent to the
Shockley integral'?:

m*= eB/woc=fd)\/27rvL. (14)

It is interesting to relate ¢ to the time spent by a
classical electron traversing the orbit®

¢=w0t(k) ’

x (1)
t(k)=(c/eB)/ d\/vy.
We shall return to this notation in considering the
electron spin.
Equation (14) can be related to the Onsager condi-
tion, Eq. (1), by writing the area in the form

A= / kb= / a8 f dN/vs.

To calculate the level spacing from Egq. (1), we
differentiate:

(16)

an

—uwo=2mweB/c.
a8

But the derivative s just $'d\/v,, according to Eq. (16),
which makes Eq. (17) equivalent to Eq. (14). To this
lowest order, v is then a constant of integration.

12 W. Shockley, Phys. Rev. 79, 191 (1950).
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We could now attempt to obtain higher order correc-
tions to C*+ and w from Eq. (9), but it turns out to be
simpler to use a slightly different approach. Suppose we
assume that Onsager’s relation holds with v a function
of energy. This is equivalent to assuming that for the
nth eigenfunction

2weB
4 (GC)'pn:' (n+T (gc))_—c—‘l’n ) (18)

where we have replaced v by T' to distinguish it from
the final result of the next section, which includes the
field dependence of 3C. Then, by the same argument we
used before, and using k= eB/2¢ we have for C*,

[4 (3c)/4w— KD (3), Ct]=hC*. (19)

We now have, however, the same situation with 4
and T' as we previously had with w(3¢), namely that
instead of a symmetrized function of x, we have a
function of 3¢. We can, however, find a function 4 s(x)
which is an expansion of 4 in even powers of % in terms
of symmetrized functions of x. The corresponding
function 4 5(k) is given by

As(k)=A(8)+ A (k)+rAt---.
We shall need only A4, here, and it is given by
As(K)=— (1/12) eapers{34" EanEps+24" 000,855} , (21)

as is shown in Appendix A. We have here introduced a
notation for the numerous cross-products which occur.
The Greek indices represent two-dimensional vector or
gradient components (i.e., 8u=VaVs8=09?8/dka0ks)
and eis a 2)X2 antisymmetric tensor:

(20)

(22)

We use summation convention, and the prime represents
differentiation with respect to energy.
For I, we shall assume an expansion in % of T'(3C)

ere=—en=1, en=e2=0.

I'=T(3€)4-2AT1(50)+ (2h)*T5(H) - - -, (23)
and now symmetrizing, we obtain
T'5(k) =T'o(8)+2hT'1(8)+1*(T'o2(8)+-4T(8))
+ 12T 12(8)+-8T5(8)+- -+, (24)

where the second subscript, if any, corresponds to the
symmetrization. We shall actually calculate only the
first two terms of the expansion. It is possible in
principle to go to higher order, in which case we see
from Eq. (24) that in any order, the symmetrization
terms depend only on lower order terms, so that the
procedure is consistent.

We now apply our multiplication theorem to Eq. (19),
giving!?
— 24 sin(keagVaVs')

X (a5 (k)— AT s ()C+ (k') | ko = hCH (k) , - (25)

18 This form of the commutator is essentially that found in
J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1947).
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where we have written a=A4/4r. We now substitute
the expansions in Egs. (20) and (24) into this equation,
and also the following expansion of C*+

Cr=Cgt+hCit+hCqt. (26)
We now equate like powers of %, but first we can greatly
simplify the expression by noticing that for any
function F (k)

24V 0aVF=093F /¢, (27)

where ¢ is the function of Eq. (15). The resulting
equations for C* are

aCot
% +Cot=0, (28)
d¢
aC1+ dI‘o (9Co+
’i +C 1+ =1 (29)
a da 0¢
dCs+ oy aC1+
s +Cot=1—
do da 0¢
or'; aC¢t+
22— —21€,6V «02VsCo"
da
+(5/3) (easV aV'8)’a (&) C* (K') | kmier.  (30)

Looking first at Eq. (28), we see immediately that
the solution Cot = ¢?¢ is the same function we met before.
Equation (29) is an inhomogeneous equation, and in
order for it to have a solution, the right-hand side must
be orthogonal to the solution of the homogeneous
equation, i.e., Co*. But since the right-hand side is
proportional to dCgt/dp=1Cqt, it can only be orthog-
onal if dT'¢/da=0. Thus we must have I'y a constant,
which is the Onsager result. In Eq. (30) we apply the
same argument, i.e., requiring the right-hand side to be
orthogonal to Cg¢t to evaluate dI'1/da. Thus, multiplying
by ¢ % and integrating around the cyclotron orbit we
have

d¢
2(0T'y/da)=2 f —€agV al2VpP
27

i (d$
+_f—_e~z¢ (Gaﬂv avlﬁ)3a (k)e+i¢ & l k=k’ (31)
3J 2x

where we have used d¢=2wd\/a’v, as the integration
variable.

The first term of Eq. (31) can be simplified by the
following equation for a function F (k)

aJ
f WVF ) =— & ds (v AFG),  (32)
0A

which can be derived from the two-dimensional Green’s
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theorem

/ @v.F(k)= @ dinF(k), 33)

by expressing d% as dAd¢/2w, and by differentiating
with respect to A. Thus the first term of Eq. (31)
becomes

a9 do 9 [do
'—Zf*eaﬁ (Vad)asVso=— P —as. (34)
da 27 <] 27

The second term of Eq. (31) is much more difficult to
reduce, and we defer the calculation to Appendix B,
stating only the result which, combined with Eq. (34)
gives

ary 19

da 290

dep

2w

+1 & rdo
a _—— ——€af€ysClaylps ,
60a) 2w

(35)

with @, obtained from Eq. (21). Equation (35) now
contains a combination of energy and area functions,
and it is straightforward to put all derivatives in terms
of energy. The result is

ar:y 1 8 fan
a_é’—=976; Y ;:éaﬁé'yaga'y &ss s (36)
so that integrating and carrying out the sums
1 9 [dx
I'i= f‘l—l——— — _(g:cxgw_ 81112) ) (37)

487 38/ v,

where I'; is a constant independent of energy.

We now wish to evaluate the constants I'* and to
discuss the range of validity of the solutions. Let us
consider the cyclotron orbits on a given k, plane for
various values of the energy. (For more detail see
Sec. 5.) The topology of the orbit changes at maxima,
minima, and saddle points. In the vicinity of a maxi-
mum or minimum, the orbits are simple and closed.
However, at a saddle point, the orbits may change from
closed to open, or two orbits may merge into one.
Examples appear in Figs. 2 and 3; we shall concentrate
on Fig. 2 for the present, as it involves only closed
orbits. Since our whole scheme of approximation de-
pends on the character of the orbit it breaks down at
saddle points where, for example, I'y is singular, as we
shall see in Sec. 4. The solutions C* are completely
separate for regions of k space separated by orbits
through saddle points, or self-intersecting orbits. In
particular we should evaluate 'y and T for each such
region separately.

The simplest case is that of an orbit close enough to
a maximum or minimum so that the extremum can be
reached from the given orbit by changing the energy
without passing through a saddle point. Then I'o and Ty
can be calculated in the vicinity of the maximum or
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minimum. The result, which is obtained in Appendix C,
is T'o=% and I';=0. In Sec. 4 we shall show how to
construct a bridge between two regions separated by a
self-intersecting orbit. The result indicates that the
choice T'y=% and T';=0 applies for all closed orbits,
except in the immediate vicinity of a self-intersecting
orbit. The case of open orbits is considered in Sec. 5.

We have thus achieved our goal of extending
Onsager’s equation one further order in B. The par-
ticular form of Ty, Eq. (37), leads directly to the
Landau-Peierls™ term in the susceptibility, as we shall
show in Sec. 6.

We should note in concluding this section that the
present method is directly applicable to the more usual
WKB situation and extends the result one higher order
in Planck’s constant. The expansion is related to
Wigner’s classical expansion of the partition function.®

2. Inclusion of Interband Terms

In this section we generalize the above result to in-
clude spin and interband effects. These two can be
included by considering the one band effective Hamil-
tonian of R and others®'® to second order in 4. If we
assume nondegenerate bands we can write

30 (x) = 3Co (1) +3C1 (1) +425C2 (xe) (38)

with 3Co(k)= 8(k). The interesting case for particles
with spin is, however, doubly degenerate in the absence
of the field for a crystal with inversion symmetry. This
case is discussed in some detail in the next section, and
it is shown how to obtain the spin splitting. We shall
assume here that we have a representation in which the
Zeeman interaction is diagonal (such a representation
is derived in fact in Sec. 3) in which case we can replace
3C1 by ==3C1, the sign depending on the spin state.

We now need an expression for the area function for
the modified Hamiltonian, expanded in powers of A.
We can use the following expansion for a volume
integral :

I=/ dkg (k)
8o(x) e1(x) <&

(_ 1)n on
dkg (k)L 81(k) 1",

n! 08 ./so(k)<a

where &; comprises here the second two terms of Eq.
(38). Eq. (39) is proved by writing the integral I as

=2 (39)

1= [ gouw+8,09-0500, o

where f is a step function (or Fermi function for zero
temperature) and expanding formally in powers of &;.

41. D. Landau, Z. Physik 64, 629 (1930); R. Peierls, bid. 80,
763 (1933).
15 F, P. Wigner, Phys. Rev. 40, 749 (1932).
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Using this result we can write for the area function

A=A (GCo) —f(d)\/vl) (:l:h:ic1+h25€2)
1 dx
+- @ —ese2, (41)
2 UL

so that with Eqs. (18) and (37) and using T'o=% and
T''=0, we finally obtain the generalized Onsager
quantization condition as Eq. (1) with ¥ now given as

a\ eB ax
y=%+ f 3C1+— 3Co

47y, ¢ 47,

eB 9 A L
‘c— 5},: %vl{%(gmgw— 8@112 _55012} .

(42)

3. The Zeeman Interaction

In this section we shall consider in more detail the
Zeeman interaction or spin splitting for Bloch electrons.
In R and other work®™ it is shown that this is given
by

3C1(x) = gounso: B+usB-xX (p+mv), (43)

where go and s are the free-electron g factor and spin,
and up is the Bohr magneton. x is the periodic part of
the coordinate operator with matrix elements

Xnn (K)=1 / At o (0)Vittnrk (1) (44)

with #.x the periodic part of the Bloch function, and p
is the momentum operator whose diagonal part is mv.

For zero magnetic field the Hamiltonian commutes
with the time-inversion operator!®

(45)

where o, is the y component of the Pauli spin vector
which results in a spin reversal, and @ is the complex-
conjugation operator. The invariance of 3¢ under time
inversion implies a double degeneracy, the well-known
Kramers degeneracy.!® For crystals without spin this
implies that the states zk and n—k, for nondegenerate
bands, are degenerate, since @ takes e’ into ek,
The same is true with spin except that the degeneracy
is between #kt and n—k|. However, if the crystal also
has inversion symmetry, the operator gX, with g the
inversion operator, also commutes with 3C, giving
degenerate states #k? and nk|, since g undoes the
reversal by & of k. We should note that in the presence
of spin-orbit interaction the states 1 and | are not pure
spin states but mixtures, a fact which does not change
our argument. For crystals without inversion symmetry
the nk1-nk| degeneracy is removed by spin-orbit inter-

R=—10,C,

16 A. Messiah, Quantum Mechanics (North-Holland Publishing
Company, Amsterdam, 1963), Vol. II, pp. 667-676.
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action, so that in principle at least the bands are non-
degenerate. We shall assume that inversion symmetry
is present, and note that the results would apply to a
crystal lacking inversion symmetry if the nkf-nk|
splitting is very small.

When a magnetic field is applied the Kramers
degeneracy is split. For our crystal with inversion
symmetry it has been shown by Blount and Cohen!?
that it is possible to deduce a form for the Zeeman
interaction in terms of an effective spin s, which is no
longer the free spin because of spin-orbit interaction.
The result is the 2X2 effective Hamiltonian

%e1(k)=pps-G(k)-B, (46)

where G is a g tensor which is not necessarily sym-
metric.'” The form of Eq. (46) is dictated by the fact
that the linear term in B must change sign under the
operation gX. The actual behavior of 3¢ under time
inversion is altered when k is replaced by x, but this
does not change the form of Eq. (46).

The effect of the Zeeman interaction on a band elec-
tron can be described classically in a rather simple way.
We can let 1G(k)-B be an effective magnetic field
acting on the electron. As the electron traverses the
cyclotron orbit in the magnetic field its spin feels a
time-varying magnetic field. Here the time is related to
the wave vector k for a point on the orbit by Eq. (15).
The problem is thus reduced to solving the equation of
motion of a classical spin in a time varying magnetic
field:

ds/dt=ps(g(t)-B)Xs. 47)

Quantum-mechanically there appear to be two
methods to approach this problem. One is the equation-
of-motion method of the last section, and the second is
the finding of a unitary transformation which diagonal-
izes the Zeeman interaction. We shall discuss the
equation-of-motion method first and then use the result
to obtain the desired transformation.

For the spin problem we shall be interested in a
raising operator D+ which reverses the spin Let us
assume the form

Dt=¢-D(x) (48)

where D(x) is a symmetrized vector function of .
Since the spin cannot be raised more than once, we
must have (D1)2=0. If we are interested in the result
to lowest order in B, we neglect noncommutivity of «

and this implies
D-D=0 (49)

as a condition on D. [Since D is complex, Eq. (49) does
not imply that D vanishes.] Using Eq. (9) we have
now to require that

[8+uss-G-B,o-D]=0-Dw;. (50)
We shall evaluate this to lowest order in B. Thus for

17 E. 1. Blount and M. Cohen, Phil. Mag. 5, 115 (1960).
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the & commutator we use the multiplication rule,
Eq. (7), to first order, and for the Zeeman part we
ignore the x noncommutativity. Thus we have

— 2iheqg0aVpo- D+iugo- (G- B)XD=wio-D. (51)
The first term on the left, from Egs. (27), (17), and (15)
can be written as the “time” derivative —i(9/dt)o- D.
We can also omit ¢, as the result must hold for all
components of D, giving

aD
_5;=#B(g.B)><D+iw;D- (52)

We see that the equation for D is almost the same as
the classical equation of motion for s, Eq. (47). In fact
the equation for De—1¢ is identical except that ¢ is not
now officially the time. Thus a solution of the classical
equations of motion is closely related to a solution for
D. Equation (52) is a coupled set of linear equations
for which the boundary condition is single-valuedness
of D or, in terms of ¢, periodicity with the cyclotron
period. We also have the condition, Eq. (49). In regard
to this, we can dot D into Eq. (52) to give

10
- —D-D=4w;D-D,
2 ot

so that if Eq. (49) holds for {=0, it holds for all 2. The
eigenvalues w; of Eq. (52) include the spin splitting, as
we shall see below, or classically the precession fre-
quency of the spin.

A special case of Eq. (52) which is readily solved is
when ppG-B=W is in the z direction, but may vary
with ¢ in a periodic fashion. We can then combine the
x and y component equations of Eq. (52) and, defining
D,+iD, as D,, we have

(83)

aDi/6t=i(w1:th)Di ) (Wx= Wg= 0) . (54)

Assuming W, to be positive, we have the solution
D,=D,° exp[i/ tdt' (wlthz)] , W.=W,=0), (55)
In order for D, to be single-valued we must have

W= :Fwo/ZWfdthi-swo, W.=w,=0), (56)

where s is an integer. Taking the lower sign and s=0,
we find

w1=5)15wo/27rfdtW,, W.=w,=0), (57)
We shall assume that @1<wo (if @1>we we can choose s

to make wy between zero and wo). Our choice corresponds
to taking D_° finite and D, zero, and gives for D+, the
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F16. 1. Magnetic energy ‘*
levels showing two ways of -
defining spin splitting. ——
2

raising operator,
0 D—
Dt=¢-D= (0 0 ) , (W.=W,=0), (58)

which takes a spin-down state to a spin-up state. Note,
however, that taking the upper sign and s=1 also gives
a positive frequency (i.e., wo—@1). Thus there are two
basic choices of raising operators, which corresponds to
the transitions ¢ and b in Fig. 1. We can always multiply
D* by e*¢=e¢i*%t to obtain a combination of spin
splitting and cyclotron frequencies, but we have
already found out what we need about the level
structure.

The spin splitting, however defined, comes from
averaging W, over the cyclotron orbit. This is entirely
consistent with using Eqgs. (1) and (42) for the energy
quantization, since our case corresponds to having
found a representation for which the Zeeman interaction
is diagonal. For the general case for which the Zeeman
interaction is not diagonal, we revert to Eq. (52) which
cannot in general be reduced to quadratures. However,
we can show that once a solution for D+ has been found
the Zeeman interaction can be diagonalized. For,
knowing D, and D, we can take the states

K
). o

1
Yr= (1+yy*)‘1< ); Y= (1+yy*)‘1(
—9 1

where y=D,/D_=—D*/D,, the latter equality from
Eq. (49). It is readily shown that e- Dy vanishes, and
that - Dy, gives a multiple of 4. Let us now transform
to a system in which ¥+ and ¢4 become

() =€)

respectively. The transformation matrix 7 is to be
unitary, and we shall assume it to be a symmetrized
function of x. Let us write to first order in 4

T=To+hT, (60)
where

1 y*
To= (1+3’3’*)—1< ) ’ (61)

which is unitary ignoring noncommutativity, and where
T corrects this to first order in %, and need not be
stated explicitly. We now transform &(x) using the
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F16. 2. Magnetic orbits in the vicinity of a self-intersecting
“figure 8” orbit. B is in the z direction.

multiplication rule of Eq. (7), to first order in %. Thus

T8 To=[8(k){1—ik- VT X ViTo}
— %iTo—l (6T0/6t)+% (’I:aTo/at)—lTojk—)x )

where we have put in the ¢ derivative as in Eq. (52).
The second term in the curly brackets must be exactly
canceled by Ty if T is to be unitary, since the right side
must give 1 if (k) is replaced by 1. The last two terms
are equal since (9/9%)(T¢7)=0. We also transform
W-s, to lowest order in %, giving altogether a new
Zeeman interaction

(62)

W.s= T W -sTo—1Tg l(aTo/at) (63)
It is straightforward now to obtain
W =W,—3(W_y+W,y%), (64)

with W,/=W,/=0. We can also transform ¢-D into
o-D’, where D’ has only the component

D_'=D_(1+yy*).

Summing up, the Zeeman interaction in a crystal
with inversion symmetry can be reduced to a diagonal
form provided the equations of motion, Eq. (47) or
(52), havebeen solved. Thus we are led again to Egs. (1)
and (42) for the levels. We should note however that
the transformation of Eq. (63), should really be carried
out to second order in %, as 3C,, Eq. (38) will now be
modified. We shall not carry this through but in the
following section we shall calculate the susceptibility
assuming that the correct 3C; has been obtained.

(65)

4. Self-Intersecting Orbits

In this section we shall discuss the generalization of
the results of Sec. 1 to the case of orbits which are close
to saddle points. For this case we must use another
method, as our present scheme breaks down. The
simplest example of such an orbit is the “figure-eight”
orbit structure shown in Fig. 2, which has been con-
sidered by Azbel,'® who used the extension of the WKB

18 M. Ya. Azbel, Zh. Eksperim. i Teor. Fiz. 39, 1276 (1960)
[English transl.: Soviet Phys.—JETP 12, 891 (1961)]
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method for the case in which the energy is nearly equal
to the height of the barrier.!?

For energies close to &, the energy of the self-
intersecting orbit, the area has an infinite slope. In fact
for energies slightly above &,, (assuming energy
increases outward) we have

A~—(4eH/c)x In|x| , (66)
where x=(8— 8,)(c/2¢H)(8..84y)"/?, and the energy
derivatives are evaluated at k=0 in Fig. 2 with axes
chosen so that &,,=0. For energies below &, the
singularity is equally divided between the two orbits.
The cyclotron frequency goes to zero as § — &s, since
dA/98 has a logarithmic divergence.

By the use of the proper connection formulas, Azbel
obtained the quantization condition

c
cos{—(41+49)+ ¢
2¢B

c
=—[etmo 1712 cos— (41— A43), (67)
2eB
where
T'(3+ix)
o=@o=2xIn|x|/e+1 ln—i————— tan—! tanhrx, (68)
r(}—ix)

and where 4; and A4, are the areas to the left and right
of the line %k,=0, respectively. The area includes the
singularity, which we might note is just subtracted off
by the first term in ¢. Equation (67) shows how the
levels below the orbit &, go smoothly into those above
it over a range of energy, (eH/c) (| 82:84y])* "%

The interesting feature of this calculation for our
present discussion is the fact that for large values of z,
o goes as —1/48x, which can be shown from the
asymptotic expansion of the gamma function.?’ How-
ever, if we calculate T' according to our methods,
Eq. (38), we find that near the singularity

27T1h~1/96x %<0
~1/48x x<0, (69)
provided that we take I'y=0. The difference in T,
between the two signs of x comes in because of the
change from two orbits to one. Upon examining the
limiting values of Eq. (66) as x— o (4 =), we see
that ¢ goes into —4# Tk (—27T'1h), with To=%. Thus
we see that it is consistent to take I';=0 above as well
as below the singularity.

If we combine the results of the present analysis
with those of Azbel, the more general quantization
condition can be obtained which is Eq. (67) with ¢

1 P, M. Morse and H. Feshback, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), pp. 1103,
1399, 1567-8.

2 E. Jahnke, F. Emde, and F. Losch, Tables of Higher Functions
(McGraw-Hill Book Company, Inc., New York, 1960), p. 5.
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replaced by

4 1
oo

X—> o,
48x

(70)

with ¢o given by Eq. (68). Thus we include I'y in our
equation but, near the singularity, we replace the
singular part of I'; by Eq. (68).

Azbel also considers the case of a “dimple.” Other
analogous situations which can arise are the transition
from electron to hole orbits, and from open to closed
orbits. The latter case is discussed in the next section.
The conclusion of the present section is that it is
probably correct to take T'y=% and I';=0 for all closed
orbits except in the immediate vicinity of self-
intersecting orbits.

5. Open Orbits

It is well known® that another type of cyclotron orbit
is possible in a solid, namely an open orbit. If we extend
8(k) as a periodic function in reciprocal space, such
orbits are never closed, as can be seen by the example
in Fig. 3 (orbit 3). The energy levels connected with
such orbits are continuous, and the subject of this sec-
tion is to exhibit such continuous levels in the present
formalism.

Actually Fig. 3 represents the special case in which
the magnetic field is parallel to a crystal axis. In this
case for constant &, the total orbit structure is doubly
periodic in k space and the open orbit is periodic. A
somewhat more general case occurs if the magnetic
field is along any lattice vector; we shall refer to this as
a rational direction. The constant k. plane then tilts
through several cells in reciprocal space before the orbit
structure repeats itself. That is, the orbit structure is
still doubly periodic but with a larger two-dimensional
unit cell. The definition of %, has now become a little
ambiguous since through one Brillouin zone there will
be a set of %, planes. The treatment of Blount? helps to
clarify the situation. Blount redefines the unit cell of
the crystal so that the magnetic field is along one side
of the unit cell. The corresponding reciprocal lattice

—35

2
—
I

/?_

Fi1G. 3. Magnetic orbits for an orthorhombic crystal, with field
in the z direction, showing closed-electron (1) and hole (4) orbits,
an open orbit (3) and a self-intersecting orbit (2).
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F16. 4. Redefinition of unit cell according to Blount (Ref. 3)
to give magnetic unit cell for a cubic lattice with a axis out of the
page: (a) real lattice, (b) reciprocal lattice. A typical set of
k;=const. planes is shown, and we see that the reciprocal lattice
magnetic unit cell has only one of these planes through it, whereas
the original cubic lattice has three.

unit cell can now be defined so that two of the axes are
perpendicular to the magnetic field so that the repetition
area is again the cross section of the unit cell as in
Fig. 3. The scheme is illustrated in Fig. 4. If the prima-
tive lattice vector along the field is rather long, the new
reciprocal-lattice unit cell becomes rather flat until in
the limit of an irrational direction it becomes a plane or
a strip.2 We shall deal here with rational directions?~2
and periodic open orbits, and shall regard the irrational
directions as limiting cases.

We consider first a set of magnetic translation
operators® which under certain circumstances commute
with the Hamiltonian. These can be defined in terms of
an operator P9, which is given for a gauge in which A is
a linear function of r (i.e., A=r-VA) by

Po=p+e/cVA-r, 71)
where p= (1/7)v. The magnetic translation operator
for a displacement g is then defined as

T,=exp(ip-P9). (72)
The operators P? and 7', can readily be shown to com-
mute with the kinetic-momentum operator P=p-eA/c
of Eq. (4). T, thus commutes with the kinetic energy
part of the Hamiltonian, but only commutes with the
periodic potential when g is a lattice vector R.

The operator P9 can be related to “orbit-center”
coordinates.?2?5 For, subtracting P? from P we obtain

P-P)=e¢/cBXr, (73)

2 The introduction of special “rational” values of the magnitude
of the magnetic field, for which a rational fraction of a flux
quantum (27fc/e) goes through a unit cell, as in the work of
Brown (Ref. 22), is not necessary in our approximation. This is
related to the fact that open orbits extend in one direction only.
For two-dimensional orbit arrays (Ref. 23) sometimes involved
in magnetic breakdown, the rationality of the magnitude of the
field is important.

2 E. Brown, Phys. Rev. 133, A1038 (1964).

% A. B. Pippard, Phil. Trans. Roy. Soc. London A256, 317
(1964) ; W. G. Chambers, Phys. Rev. 140, A135 (1965).

#R. Kubo, N. Hashitsume and S. J. Miyake, in Solid State
Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc., New York, 1965), Vol. 17.

2 M. H. Johnson and B. A. Lippman, Phys. Rev. 76, 828 (1949).
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and crossing this into Bc/eB2, we have

ri=P—PY)XBc/eB2. (74)
The right-hand side of this equation can be interpreted
as the sum of a relative coordinate PXBc/eB? and an
orbit center coordinate ro=—P°X B¢/eB2. The x and y
components of the orbit-center coordinate act like a
canonical coordinate and momentum pair with the
commutation relations?®

Exo,yu] = C/’I:BB .

Because of the commutation relations, ¥, is proportional
to the generator for a translation of x,, and vice versa,
so that our translation operator 7', translates the orbit-
center coordinate by p.

We should remark that in the case of free electrons for
which ®o and y, commute with the Hamiltonian, the
degeneracy of levels can be obtained by confining x,
and v to the area L,L, of the crystal, and noting that
the number of levels in the (eB/c)'/2xo, (eB/c) >y, phase
space is given by 1/2r times the area, so that each
level has a degeneracy eBL,L,/2mwc.

Let us now consider the momentum-space operator
corresponding to 7',

(75)

T,'=exp(ig-¥"), (76)

where

W=k+e/cVA-1Vy. (77)
The operators «° and 7',’ commute with x. But since 3¢
is a function of %, 7,/ commutes with 3¢, no matter
what g is. However, only for g equal to a lattice vector
is T, periodic in k space. Thus we see that we must
impose periodicity in k space in order to obtain the same
physical information we had before.

Since the operators Tr’, where R is a lattice vector,
commute with 3¢ and are periodic in k, if we have an
eigenfunction ¢, then TRy is also an eigenfunction with
the same energy. We are interested however in raising
operators Ct for which Ct{ is an eigenfunction with a
higher energy. We have previously assumed that C*+
was a function of x alone. Let us now consider the more
general function

Cr=C;*(W) T, (78)
in which we have a product of a magnetic translation
operator and function of x. We now require that C* be
periodic in x, that is,

Ctx+K)=C*(x), (79)

where K is a vector of the reciprocal lattice. But since

T,/ (k+K)=exp[iK- 017, (), (80)
we must have
CH(x+K)=exp[—iK-p]C,T(x). (81)
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The raising operator must again obey Eq. (9), but,
since T,/ commutes with 3¢, we can remove it from the
equation, giving

[36,Ct (1) ]=Cot (®)wo (30) (82)

which has the same form as Eq. (9). We can now use
the same arguments to obtain, to lowest order in B,

Cir=ev, (83)

Y= (woc/eH)/k d\/v;. (84)

Suppose we consider the case of Fig. 3 in which we
assume for simplicity that the unit cell axes are at right
angles. For closed orbits, such as orbit 1 we can again
use the condition that C* be single valued to obtain
the quantization condition, Eq. (1). The condition of
Eq. (82) for extending ¢ to other zones can be met by
simply defining C*+ to have a different phase factor in
each unit cell. If we take s=0 in Eq. (13), we have the
result that C* effectively commutes with H for these
levels, so that the levels have the same degeneracy as in
the free electron case, at least in the semiclassical
approximation.

For an open orbit like orbit 3 in Fig. 3, however, we
see that Eq. (80) imposes the condition on ¢, for, e.g.,
the upper trajectory,

Y(r/a)—¢(—n/a)=2m(s—ps/a),

oo [2]-

Since p, can be arbitrarily small, we see that wy can
have any value, so that the levels are continuous in the
semiclassical approximation.

We can now ask whether the argument of Sec. 1 can
be continued to higher order in B for open orbits. In
fact, it can. Suppose that we let = (s—p,/a)¢ where

k T/a —1
¢=27l'/ dA/?}J_[/‘ d)\/vl} .
—7/a

Then, we let @ be 1/4r times the area enclosed by the
upper trajectory 3, the x axis, and sides of the zone.
The desired extension of Eq. (19) is

(85)
so that

(86)

87

[a—#T, C;*]= (s—pz/a)hC,*. (88)
Equation (27) now becomes
1(9C+/3¢)+ (s—pz/a)C,; =0, (89)

and the left sides of the following equations are similar.
By entirely analogous reasoning, we find I'y=T'y= const
and
_ 1 9
r=rt-——
487 98

w/a
(ANv,) (811822— 812%).

—7/a

(90)



145 SEMICLASSICAL THEORY OF

We now have no direct way of evaluating T'y and T';.
We can, however, construct a bridge between the open
orbits and closed orbits by considering the region near
the self-intersecting orbit 2 of Fig. 3. The calculation is
of course interesting in itself, and is similar to that of
the last section. The result has not to this author’s
knowledge been published, but some unpublished work
by Kohn has been discussed by Blount,? and the result
has been obtained in an unpublished calculation by
Hohenberg and the author. The quantization condition
for energies close to that of the self-intersecting orbit
is given by

coS<—C—A+ 90) [14-e=]12 cos(2mxo/a), (91)
2¢B

where ¢ is given by Eq. (67) with x defined below
Eq. (68) and with the energy derivatives evaluated
again at the saddle point. x, is the £ component of the
“orbit-center” coordinate which is a good quantum
number, and 4 is the area which goes into the area of
orbit 1.

If we let x— — o« in Eq. (91), the right side goes to
zero and we obtain the generalized Onsager condition
with Ty=%, T'1=0 and 2I'}h~1/487x, all as in Sec. 4.
As x goes toward zero from below, the levels begin to
broaden. If we let x— = o, the gaps between the
broadened levels close up and the levels become
continuous. The quantization condition becomes

X0 1
4/2= 27reB/c<n:l:—+———> .

a 96wy,

(92)

The appropriate area here is 4/2, and the two signs
refer to the upper and lower trajectories. The last term
in the parentheses can be interpreted as 2T'y%, consistent
with Eq. (90). The result shows that we should take
T'y=T,=0 for open orbits.

Part II: MAGNETIC SUSCEPTIBILITY OF
BLOCH ELECTRONS

6. Basic Derivation

We now apply the results of part I to calculate the
magnetic susceptibility and de Haas-van Alphen effect.
We shall assume that we are dealing with a band, or
region of a band, with closed orbits and for which the
the energy is an increasing function of area, i.e., electron
orbits. We also assume that the conditions for T'y=%
and I';=0 Eq. (37) are met. In the next section we shall
discuss the extension to holes states, and to more general
orbits. We begin with the expression for the free energy

F=Nt—kT Y (6);

¢=In(1+4-exp— (8:—¢)/kT), (93)
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where { is the Fermi energy. In terms of F, the magnetic
moment is given by

M=—(dF/dB). (94)
The degeneracy of the Landau levels is the same as in
the free-electron case, as we have shown in Sec. 5, so
that we have (for unit volume),

> (b/222) / b Y. (95)

Here, k, is the wave vector in the magnetic-field
direction, which we have thus far left suppressed, and p
is summed over the spin states. The levels are given
by Eq. (1) which we can rewrite as

a ( 8nn,kz) = (”+7n ( gﬂu;kz))h )

with y given to first order in B by Eq. (42).
We now apply the Poisson summation formula® in
the form

(96)

> fm)y= 2 / dn ™ f(n); —1<n0<0. (97)
n=0 r=—% J ny
It is convenient to take #o=—%. We then have

F— N;'————— dk. Y

b Jay2

dmi(é’n»)

__/dkz > Re/ dn ¢(8np)et™r,  (98)
—1/2

>0

where we have written the =0 term separately. The
upper limit is taken to be «, as we assume that ¢
vanishes sufficiently far above the Fermi level. The
second term can be integrated by parts to give

kETh -
————/dkz! > Re/ d
w? #,r>0 —1/2

— 2= Rep(8n)

§r>0

a¢ agn“ g2mint
08, On 2mir

621r1'm' ©

} . (99)
2wy n=—1/2

The boundary term here vanishes, and in the remaining
term, we can use

a¢/06=— (1/kT) fo(6),

where fo is the Fermi function. We now suppose that
we can continue the integrand into the complex # plane,
and that the only singularities are poles of fo. Then we
can add and subtract the integral along the positive
imaginary axis, and so separate the result into a steady

26 P, M. Morse and H. Feshback, Ref. 19, p. 467.

(100)



444 LAURA

2=0. é

Fi16. 5. Contour integral for Eq. (103).

part F and an oscillatory part Fs. The result is

F=N¢+Fi+Fo; (101)
kTh o
F1=——Z /dk,f dn ¢(8,)
—1/2+1400 e21r'mr
— z Re / dk, f dnfo ;(102)
72 p,r>0 —1/2 on 2mir
e21rmr
F2=—— > Re [ dk, / dnfo (103)
2 1r>0 on 2mir

The contour C is shown in Fig. 5. It can be closed in the
upper half-plane so that only the poles contribute.
These are near #({), so that F, is indeed oscillatory.

Let us first calculate Fy, to second order in z. We
let x= (n+%)% and evaluate 8(x) to second order in
the form

a(§)=a+v'k, (104)
where v,'=v,—%. The result for & is
&= 8+ (vi//a)h+d/dé(v\*/2a)i*.  (105)

Now for the first term of Eq. (102), we have

f dnp(8)= [ dx{qs(é’no)
0 0
a 4 1 0 /2
¢ (ﬁh_l____:"‘_hz)
38\d" o 98 24
1 9%

+ o(&%zelh)z' ‘ } (106)

1 0
dog (89— —
26(89) kT/

0

_ f dé’{ Forh
0
19 V.
“(rtm)l, o
+2 ag(foa' )} (107)

where we have changed from the variable x (=¢ for
zero field) to &, and have used Eq. (100). In the second
term of (102), we integrate by parts once, and keep only
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the boundary terms as the remainder is higher order
inh:

o 98 @mifg/h—1/2]

> dxfo—
>0 J o ox 2mwir
A a8 ——nf/a8a| , (108)
T () dwl e 80
where we have used the result?
i(—l)"*l/r2= 2/12

and converted from x to & as a variable. We now have
for F;

(P po=2n / i3> { /0 " 8ot

,Y“/2 72 fo

24’

1 o
— } (109)
&=0 24: a, =0

We now evaluate the v’s from Eq. (64), remembering
to omit the §. The first term of Eq. (109) is then second
order in %, and involves

Z / dé’fo‘y,,'hr— 2]12/ dgfol:f H2
kJo 0 4aro,
ax

{§(811822— 8122)—%1712}:' . (110)

d
-
d8J 4mv,
Now integrating the second term of this equation by
parts, the derivative is transferred to the fo, and we are
left with a boundary term. It is easy to show that this
boundary term exactly cancels the second two terms of
Eq. (109). The remaining integrals can be changed into
integrals over k by Eq. (16). Finally, we obtain

72
- (Fl)h=0=—~/dkl:+foyz
48

+ 20 3(6ns
ag 6 11022

8122)+%H12}:| . (1)
This result is in agreement with similar expressions
obtained by other methods.2—5

We now turn to Eq. (103), which reduces to the sum
of the residues of the poles shown in Fig. 5 These poles
lie inside the contour as long as Re #>—%. When all the
poles are outside this region, the integral vanishes, so
that this sets the limit on k.. We shall assume we can
merely take #(8r)>—%. The poles of f, are at §—¢
= (2m~+1)7ikT, with m a non-negative integer. Since
& is an increasing function of %, the poles with plus
signs lie within the contour, at least for small enough .

27 Jahnke et al., Ref. 20, p. 40.



145 SEMICLASSICAL THEORY OF

Therefore
kTh 1

Fop=—ro Z - Ref dks
w2 oue>0 7 n()>—(1/2)

X i exp{2mirn,(¢+[2m~+1]mikT)}. (112)

We now approximate by expanding # about ¢, and
keeping the linear term in 7. We expect the next order
term to be of order 27/¢, so that the assumption here
is kT /¢<1. Carrying out the sum over 7, we have

kTh 1
Fy~—— % —Re / dk,
n(§)>—(1/2)

pr>0 7

exp[2mirn, (¢)]
2 sinh(2n?rkT (91/9%)) '

(113)
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Now the integral over &, can be evaluated by noting
that the exponential is a rapidly oscillating function
since n~a/h, so that the major contribution comes
from an extremal area.! Expanding » to second order
in k, and carrying out the Gaussian integral, we have

7 ETh > IR 1 12
~—— Y - Refl—
o woy r(@n/dk?) | m
exp[ 2mirum (§) Fmi/4]

, (114)
sinh(2n2r kT (3n/3%))

where the subscript 7 means extremal and the & de-
pends on the type of extremum, the upper sign applying
to a maximum.

We can now use our expression Eq. (96) to evaluate
n, giving finally.

cos{[ (v4—r_)mr] cos{ (rAc/eB)—wr (y.+v_)Fr/4}

kT feB\3"?
)
2w\ ¢ >0

where we have reverted to the original notation, and
have omitted v except in the oscillatory part. This leads
directly to the desired result for the de Haas—van Alphen
effect, in essential agreement with previous work.! The
de Haas—van Alphen period is A(1/B)=2ne/Ac=¢/2ac.
The first cosine factor is due to the g factor. For free
electrons with spin, this would give a minus sign and
simply reverse the phase of the effect. This is believed
to occur for Bi electrons!” where the spin splitting is
equal to the Landau level spacing. The amplitude de-
pends on temperature and field through the sinh factor.
We should actually modify Eq. (115) to include lifetime
broadening effects®?®:2® by multiplying the rth com-
ponent by the Dingle factor exp(— 272#kT’/wo), where
T’ is an effective temperature.

7. Change in de Haas—van Alphen
Period with Field

Since we have calculated the dependence of v on % to
first order, it is appropriate to consider the change in
de Haas—van Alphen period with magnetic field. As in
Sec. 6, we limit ourselves to the case of closed electron
orbits. It is important to include here the effect of the
change in Fermi level with magnetic field, which will
affect the area function. (We assume here that the
number of carriers is constant.) We replace the usual
area function by

ao)=a(fo)+ (8a/ds) §—5o0)—2vi2.  (116)

Here, v, is the first order part of v from Eq. (42). In
order to calculate the change in Fermi level, we use the

28 R. B. Dingle, Proc. Roy. Soc. (London) A211, 517 (1952).

2 L. M. Roth and P. N. Argyres, in Semiconductors and Semi-
metals, edited by R. Willardson and A. C. Beer (Academic Press
Inc., New York, 1966), Vol. 1.

; (115)

P (1/27) (d24/dk2)| w12 sinh (2n2rkT fero)

relationship
dF/dg =0=2(d/d})[N¢+Fi] (117)

to preserve the number of particles. Here we have
omitted the oscillatory term in determining the Fermi
level. The latter will affect only higher harmonics. Now,
using the definition of the susceptibility, we have

N=—(d/d5)[F1(5) | rmo—52B%]
= No()+3da/de B2=No(5o) .-

Therefore, to lowest order in B,
1
§—5o= —%. (119)
Using Eqgs. (116) and (119), we have
wdajd  d
@@ i a

X I:f omz—a—ﬂ){%(gngzz— 5122)“%5@12}]

8
_ hzl:

(118)

d\
——3ert
47y L

d ax

9 ;- 47,

X{%(gugzz"&zz)—%ﬁcz}:l . (120)

m

Several things can be noticed about this expression. It
depends on the difference between quantities on the
extremal orbit and on averages over k.. If we have a
constant H, term, this does not contribute. However,
for the free-electron case, there is a contribution from
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the first term, though not the second. Evaluating this
we find

(G— @) tree=H?/24a=0a[1/24(n+v)?], (121)

which gives the relative change in period, which is
proportional to 1/a. This result applies also to ellipsoids.
We see that the correction term in Eq. (121) is unim-
portant except for small #, where the theory breaks
down anyway. We can expect a similar situation to
apply more generally.

We can also calculate an extra field dependence for
the amplitude of the oscillations, which depends prima-
rily upon the sinh term. The dependence is through the
inverse cyclotron frequency, ws™'=/%"19d/d¢, where a
is given by Eq. (120).

8. Extension to More General Orbits and a
Possible New Effect

We now discuss the extension of the susceptibility
calculation to more general orbits. The discussion is
necessarily rather qualitative as we shall find that
questions are raised which would take some labor to
answer precisely.

The simplest extension is that to the case of hole
orbits in an almost filled band. For this case if we let
&'=—§, {'=—¢, we can rewrite F as

F=Y 8N’

—FT T In(+exp[— (8/~¢)/ATD), (122)

where the sum ¢ goes over the one band. The first term
is the zero degree free energy for the filled band, and
the last two give Eq. (93) but for holes, with Ny the
hole density. The result from the second two terms will
just give Eq. (115) again for the oscillations, if we keep
wo>0. The steady result from these two terms just
subtracts the hole part from the filled band normal
susceptibility as calculated by the usual methods. Thus
the result agrees with previous work provided that we
assume that the first term of Eq. (122) indeed gives
rise to the usual filled-band normal susceptibility. This
is not obvious since in going from the bottom of the
band to the top we always encounter self-intersecting
orbits and usually open orbits, as can be seen in Fig. 3,
and our derivation of the susceptibility is not valid
for these.

The calculation of the susceptibility in the vicinity
of open orbits is considerably simplified by the fact
that the levels are continuous. For the example of
Sec. 5, the sum over states involves an integration
over %, the orbit center # component, from Eq. (92).
For one unit cell we can integrate x from —a/2 to
~+a/2, the number of states per unit interval of x, being
eBL,/4n% for 2 dimensions from the argument after
Eq. (75) in Sec. 5. It is convenient simply to multiply
this degeneracy by the number of unit cells in the «
direction L,/a, since otherwise we would have to
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redefine ». The sum over states now including %, and
per unit volume is then

d (xo/ a) .

—1/2

> (h/21r2)/dk 2 (123)

Now looking at Eq. (92) we see that the integration
over x, simply turns the sum oven # into an integration
so that we need keep only the »=0 term in the sum-
mation corresponding to Eq. (97). Thus there are, as
expected, no de Haas-van Alphen oscillations for open
orbits. Inclusion of the v term essentially as in Eq. (42)
leads to the usual normal susceptibility, except for
possible boundary terms which we have not investi-
gated, but which are related to the discussion below.

Thus far we have found nothing unexpected. How-
ever, if we consider the case of self-intersecting orbits,
there is certainly a possibility of extra contributions,
even for filled bands. In the first place there will un-
doubtedly be nonanalytic contributions to the steady
susceptibility. Since, however, the regions of % space
involved are quite small for low fields these terms are
probably small in an asymptotic sense. More interesting
is the possibility of oscillatory contributions to the
susceptibility. If we consider the “figure 8” situation
of Sec. 4 we find that at the energy &; two types of
orbits cease to exist and a third type appears. This
situation is quite analogous to there being Fermi-surface
cross sections corresponding to the three areas. Thus
we might expect to find oscillations with periods corre-
sponding to Ay, As, and A1+ A.. If we use the simple
Onsager condition, Eq. (1), these show up in the
susceptibility as additional boundary terms, e.g., in
Eq. (99), since the several # summations now have
finite limits. The areas of transition between open and
closed orbits could also contribute periods.

In the more rigorous treatment of Sec. 4 we see from
Eqgs. (67)-(68) that the change over takes place over a
small range of energy. Thus there is a built-in broaden-
ing which decreases the amplitude of the oscillations,
and may wipe them out completely. A detailed investi-
gation is being made to see whether there are conditions
under which such oscillations could be observed. If so,
they would have some unusual properties since they
would not be related to the Fermi surface, and since
their amplitudes would not depend on temperature.
Since no experimental observations of such periods
have been reported, it seems rather doubtful that they
exist, but the matter deserves further study.

Finally the most general closed-electron or hole orbit
is one which may have self-intersecting orbits within
it (i.e., for different energies). The extension of the
theory to this case gives the expected results for the
de Haas-van Alphen effect and steady susceptibility,
partly as a result of the expressions for I'y and Ty, from
Sec. 4, and with the possible addition of effects due to
the self-intersecting orbits themselves as discussed
above. Thus, the work of this paper essentially confirms
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previous results for the susceptibility for the various
types of bands.
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APPENDIX A. SYMMETRIZATION OF A
FUNCTION OF 3C(x)

Given a function F(3C), we wish to obtain a sym-
metrized function Fg(x), as an expansion in powers of
h=eH/2c. We shall obtain the result by induction,
under the assumption that F can be expanded in a
Taylor series in J¢. We first suppose that Fg can be
expanded as follows:

Fs(x)=F (0)+hF1(x)+m2Fa()+- - .

We can now obtain the expansion for (FH)g in terms
of the coefficients of Eq. (A1) using the multiplication
theorem of Eq. (7). Since 3¢ commutes with F, we can
use the symmetrical product {H,F}gs, and we obtain
for the function of k,

(F30)s=F 38+ (1*/2) €apeys (F5)arEpst-- -,

using the notation of Eq. (21). Because of the sym-
metric product, all of the odd-order terms vanish here.
Since we can take F successively as 1, 3¢, 3C? we see that
no odd order terms in % appear, so that F;=0. For F,
we have, from Eq. (A2),

(F3C)a=F28— G €apeysF ayEss
= Fgé’—-%eap 675[F/é’a—, 855+F"'Ua‘v7 é’ﬁa] )

(A1)

(A2)

(A3)

where the primes represent derivatives with respect to
energy. We can rewrite these derivatives as

F'=\[(P8)'~F"§];

A
FII= %I:(FS)III_FIIIg:I . ( 4)
Suppose now that Fj is given by
F2= - (1/12) €af 675[3F”6a-, 8,93+ 2F"" Valy 8,35] . (AS)

Equation (AS) is valid for F= &, as can be readily
verified. Also from Egs. (A3) and (A4) if F, has the
form (AS), (¥3C); has the same form. Thus the form
of Fy, Eq. (AS), is established by induction. The
expansion can be carried out to higher order in the
same manner.

APPENDIX B

The object of this Appendix is to obtain the second
term in Eq. (35) from the second term in Eq. (31). We
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can write this term, except for a factor of 6, as

K= ea,aeyae,.,.fddzaaw

X[ —dsr—i(ppststdpdortdscss) +dpdss,].  (B1)
In reducing this expression, we shall suppress the €’s,
but shall use repeatedly the antisymmetry between the
pairs af, v8, and uv. Letting the first term of Eq. (B1)
be K1, we have, using Eq. (32),

a
K= —fd‘ﬁ CayuPssy= _3‘ A Gorulsbsy - (B2)
a

Differentiating by parts gives

d
K= —;Jd¢{Vp[aayaﬂ¢Bv]—aa‘YaﬂI‘¢5V} . (B3)

The second term goes into itself if we interchange § and
v, v and x and « and B. The first two of these give a
plus sign from the ¢’s but the last gives a minus sign,
so that the result vanishes. Let us call this “argument
1.” Again applying Eq. (32) to the first term, we have

92
K1= _——
da?

d¢ayaayaﬂ¢ﬁv . (B4)

Consider the first and last factors in Eq. (B4); we have

@hsy=Vs (aud’v) — @5y (BS)
The first term (with e,,) vanishes from Eq. (27). The
second term has a minus sign which can be eliminated
by interchanging s and ». Thus, we have merely inter-
changed the ¢ and ¢ symbols in Eq. (B4). Let us call
this “argument 2.” Now we have

62
Ki=——
da?

d¢ ¢,,aa7a,9a,;,, . (Bé)

This is antisymmetric in g and B3, as we can see by
interchanging u and 8, » and e, which gives a plus sign,
and v and § which gives a minus sign. Since it is also
antisymmetric in g and », we might ask whether we can
interchange 8 and ». In fact, we can interchange them
if we also multiply by %, a fact that can be verified by
writing out components. This we shall call “argument
3.” Applying Eq. (27) as well, we obtain finally

62

Ki=+— QP do aaas:s. (B7)
da?

Now, having amassed our arguments, we can dispose
of the remaining terms. A typical middle term of
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Eq. (B1) gives

K= ""ifd(ﬁ CoyuDpsdy

= .fd(ﬁ{Va (aw‘ﬁﬂﬁ‘ﬁv) - a7u¢ﬁ6¢av} . (BS)

The second term vanishes from argument 1. We apply
Eq. (32) to the first term, but first interchange the
first ¢ and the last ¢ in the bracket (argument 2),
giving

3
Ky=——i § db achrbpsts, (B9)
a

which also vanishes from argument 1. Now, for the
last term in Eq. (B1), we have

Ky=— fd‘ﬁ CoaypPsdsDy

—— f 0OV Lanbsbir]— 2embaasts} . (B10)

In both terms, we use argument 2 to interchange the
first ¢ and the last ¢. We then use argument 3 in the
second term to interchange « and ». Meanwhile,
integrating the first term, we have

i)
K= _a—'afdﬁb aa¢’ﬁ¢w¢8av+fd¢ CaPsP1uPsy. (B11)

We can now reduce both terms with Eq. (27), and then
integrating the second term, we find that it cancels the
first, so that K5=0.

We are thus left with K, and restoring the €’s, we
obtain for the second term of Eq. (31)

Lo d B12
a 5(; D €apeysGary@ps - (B12)
APPENDIX C

We wish to evaluate the constants I'y and T'; in the
vicinity of a maximum or minimum. Choosing a mini-
mum, we must evaluate T’ for §=0, measured from the
minimum. We choose an origin so that the minimum is
at k=0, and then transform to a coordinate system for
which the energy contours are circles near the minimum.
Using ky= (1/V2)(k,=4=1k,) as variables, with indices u»
running over + and —, we assume an expansion for

&(k),
g (k) = Otk+k_,+ %ﬂu v)\knk vk)\_l_ (1 / 24‘) Yu v)\akpk Pk)nkll .

We first calculate the eigenvalues of 8(x) for small
n and to second order in k. The eigenvalues of the first

(&)
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term of Eq. (C1) (with k— x) are (2n+1)ak as is well
known. We then use second-order perturbation theory
for the second term, and first-order perturbation theory
for the third term, remembering to use the completely
symmetrized products. The terms are readily evaluated
using the creation and annihilation operators

(f) — )k,

En= (2n+Voh+ [ (n+5P+iTv++—

(n+3)h?
— (Bt +B——F 9By B——+)

43

giving

h2

—— (584 ++8———+9B4+-B——1). (C2)
36a

In order to calculate I', we must obtain the eigen-
values of the area function ¢(3¢). The function ¢(8) can
be calculated by treating the second two terms of
Eq. (C1) as small and using the expansion of Eq. (39).
The result is

a\ 19 a
a=ao—f 1t — &
47['1)]_ 2 65 4’7['1)_]_
& 1&
me——— Y
2¢ 8o i
1 &

—_— 49 __4+). (C3
+24a4(5+++ﬁ +9B4+-B--1). (C3)

We now substitute Eq. (C2) into Eq. (C3), keeping
terms up to second order in %, to obtain

aw=(n+To(0)+2T1(0)), (C4)
where I'g(0)=1% as expected, and
— 5 __+984+-B——
2F1(O)=|:7++ B+++8 B+ +-B +:| . (©3)
8a 7202

However, we have another expression for I'y in
Eq. (37). Writing this in terms of &4 and k_, we have

T L d)\(é’f’é’é’) (Co)
—T=—— P —(8,2—8,,6_).

s 487 98/ v, " o

The right-hand side can also be evaluated at §=0 by
using our expansion, Eq. (37), differentiated with
respect to &. It turns out to be exactly equal to the
right-hand side of Eq. (CS5), so that we have I';=0.



