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The heat capacity of high-purity beryllium (Rso0/Rs.2=1100) was measured from 1.4°K to 30°K. The
results can be expressed by the sum of contributions proportional to T, 73, and T® with the coefficients
(0.1714-£0.0008) mJ/M (°K)2, (0.598=+0.020)X10~% mJ/M (°K)%, and (0.184-0.04) X106 mJ/M (°K)8, re-
spectively. The Debye theta at 0°K (@) is (14814-16)°K. The results are in good agreement with some of
the recent lattice-dynamical and band-structure calculations and with ©, derived from elastic constants.
Phonon enhancement of the density of states does not appear important in beryllium. The heat capacity
is smaller than the work of previous investigators indicated.

I. INTRODUCTION

HE low-temperature heat capacity of beryllium
was first measured by Christescu and Simon! on
a sample of 999, purity at temperatures above 10°K.
They observed an anomaly at 11°K, which to them
appeared similar to the anomalies which had been
found in the heat capacities of superconductors. These
observations motivated Hill and Smith? to repeat the
measurements on a sample of 99.59, purity. Hill and
Smith started their measurements at 5°K. They did
not observe the anomaly reported by Cristescu and
Simon. They analyzed their results in terms of an
electronic and a lattice contribution and found 0.226
m]J/M (°K)? for the electronic term and a low-tempera-
ture Debye theta of 1160°K. The electronic term is in
excellent agreement with the value 0.23, which was
obtained from the band-structure calculations of
Herring and Hill® by Seitz*. However, more recent
calculations® show that this theoretical result is only
very approximate, and that the agreement is fortuitous.
This will be discussed in detail later. The Debye theta
is considerably lower than 1462°K, the value derived
from recent measurements of the elastic constants.®
Reich et al.” deduced a value of 1240°K for the Debye
theta of beryllium samples somewhat purer than those
used in the previous work from electrical-resistance
measurements. The trend towards smaller heat capaci-
ties with higher purities caused Gmelin® to measure the
heat capacity of a very pure sample between 1.2 and
4.4°K. Gmelin’s sample had been zone-refined and
contained less than 100 ppm impurities. It had a
residual resistance ratio of 200. Gmelin obtained an
electronic contribution to the heat capacity of 0.184
#£0.002 mJ/M (°K)? and a Debye theta of 1390°K. The
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trend towards lower heat capacity with increasing
purity is thus continued. Gmelin’s electronic term is
clearly lower than that indicated by the band-structure
calculations of Herring and Hill. The value of the Debye
theta is still slightly lower than the value obtained from
the elastic constants.®

Recently there has been considerable interest both
in the electronic properties®® and in the lattice
dynamics® of beryllium. Also, very high-purity
beryllium has become more readily available. The heat
capacities of two samples, one of them a single crystal
with a resistance ratio of 1100, were therefore measured
between 1.4 and 30°K.

II. EXPERIMENTAL
A. Apparatus, Method, and Errors

The apparatus, measuring techniques, and the
temperature scale are identical to those described
elsewhere.!

Measurements of the heat capacity of beryllium
present some special problems. The heat capacity is
extremely small, and large high-purity samples are
difficult to obtain. Thus, the heater, thermometer, and
varnish which must be attached to the sample con-
tribute appreciably to the total heat capacity. Often
this contribution is estimated and subtracted. A correc-
tion of this type would lead to serious errors when the
sample heat capacity is small. It was therefore con-
sidered preferable to mount the heater and thermom-
eter on a sample holder and to measure the holder
separately. The holder was described elsewhere.!” The
necessary material in the holder does, of course, further
increase the correction. But the correction could be
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TaBiE I. Relative contribution of the sample heat capacity
to the total heat capacity and estimated errors in the sample
heat capacity.

Contribution (%) Estimated

T of sample error P
(°K) 1 2 (%)

2 65 73 0.5

4 49 56 0.5

10 22 26 0.5

20 13 18 1

30 cee 18 2

measured with errors of less than 0.29. In order to
determine the reliability of this method, two samples
were measured, each in a different holder. Within the
experimental errors these experiments yielded identical
results. The ratio of the sample heat capacity to the
total heat capacity is given in Table I.

B. The Samples

The samples were spark cut from a 1-in-diam rod
manufactured by Nuclear Metals, Incorporated!® for
W. A. Reed. The rod had been obtained by seven zone-
refining passes from vacuum-distilled starting material.
Sample 1 weighed 58.13 g and included the polycrystal-
line trailing end of the zone refining. The portion of
sample 1 which was a single crystal had a resistance
ratio of 380. Sample 2 weighed 37.98 g and was spark
cut from the center section of the rod. It was a single
crystal and had a resistance ratio of 1100.

III. RESULTS

The heat capacities of samples 1 and 2 were measured
from 1.4 to 20°K and 1.4 to 30°K, respectively. The
smoothed heat capacities of the sample holders were
subtracted. For beryllium, 30°K corresponds to
T/0~0.02; and therefore it should be possible to
express the results in the form

N
C=3 4%, ®

7=l
where A1=7v, A2=a, and 43=4 in customary notation.

TaBiE II. Parameters for Eq. (1) and sample 2 based on
least-squares fits using two to four parameters, and root-mean-
square deviations Q. The unit of energy is the millijoule.

No. of Parameters

2 3 4
Ay 0.1608 0.1712 0.1713
A2X108 0.6561 0.6008 0.5971
A35X 108 oo 0.178 0.205
Ay X100 e . —0.04
Q%) 2.6 0.6 0.6

18 Nuclear Metals, Inc., Metallurgical Research and Develop-
ment, West Concord, Massachusetts.
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Inspection of the data for sample 1 revealed that
above 10°K appreciable systematic deviations from a
two-parameter fit were present. However, the maximum
temperature of the measurements (20°K) was too low
to assign a reliable value to the third parameter. The
results for sample 1 were therefore used only in the
determination of v. In order to determine v the data for
the two samples were separately fitted to Eq. (1) by
the least-squares method. A weight of (PC,)~ was used,
where P is the estimated error given in Table I, and
C; is the heat capacity. The coefficients 4 ; obtained for
sample 2 with N=2 to N=4 (see Eq. 1) are given in
Table II. It is clear that three parameters must be
used and that more parameters would be superfluous.
The values obtained for v with three parameters are
0.1716 and 0.1712 mJ/M (°K)? for samples 1 and 2,
respectively. The value 0.1714 was therefore adopted
as the best estimate.

Estimates of « and B are based entirely on sample 2.
The lattice heat capacity Cr was obtained by sub-
tracting 0.17147 from the total heat capacity and a
two-parameter least-squares fit to C' with an additional
weight of (Cr/C;)? was obtained. The results are
collected in Table III.

Tasie III. v, a, B, and @, for beryllium. The unit of
energy is the millijoule.

Parameter Value
oY 0.1714-0.0008
aX10? 0.5984-0.020
BX108 0.1854-0.040
®(°K) 148116

Figure 1 shows the relative difference (C;—yT—aT?
—BT%)/C; between the measured heat capacity and the
heat capacity calculated from the parameters in Table
IIT for the two samples. There are no appreciable
systematic differences between the heat capacities of
the two samples.

The Debye theta was calculated from each point
after the term y7T was subtracted. The values obtained
for sample 2 are shown in Fig. 2. The Debye theta
values for sample 1 are essentially identical to those for
sample 2. The solid line through the data is the one
derived from a and B in Table III. The effect of a
0.29, error in the total measured heat capacity on ©
is shown at the top of the figure. Also shown in Fig. 2
are the theoretical results of DeWames et al.1*'1% and of
Gupta and Dayal.!® These calculations will be discussed
later. The value obtained from elastic constants,® and
the measurements of Gmelin® are likewise indicated.

The Debye theta at 0°K, @, is best determined from
a. If it were determined graphically from Fig. 2, then
the large effect of small systematic errors in C at low
temperatures could be misleading and might result in

B R. E. De Wames, T. Wolfram, and G. W. Lehman (private
communication).
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a poor extrapolation. The value of ©, as determined
from a is (1481416)°K.

IV. DISCUSSION
A. General

Although both samples are purer than any previously
studied, they differ considerably in resistance ratio.
However, both samples have the same heat capacity
within experimental error. It is thus very likely that
impurities do not contribute to the heat capacity in
either sample and that the observed heat capacity is
that of pure beryllium. Both the lattice heat capacity
and the electronic heat capacity are smaller than those
observed by Gmelin,® and much smaller than those
reported by Hill and Smith.2 It is somewhat surprising
that the results of Gmelin differ from the present re-
sults, since the resistance ratio of his sample was only

a little smaller than that for one of the present samples.
It must be remembered, however, that various heat-
capacity contributions and the resistance ratio are all
affected differently by different impurities, and that the
resistance ratio is only a qualitative measure of purity.
The possibility of systematic errors in Gmelin’s re-
sults, due for instance to incorrect estimates of his
addenda, cannot be ruled out.

B. The Lattice Heat Capacity

The experimental value of 1481°K for the Debye
theta at 0°(®,) is in good agreement with the value
1462°K obtained from elastic constants.® Theta is
strongly temperature-dependent. At 30°K (7/00=0.02)
it has dropped to 1365°K or (92.24-2.5)%, of @,. This
strong temperature dependence of ® appears to be
characteristic of some other hexagonal metals.2—%
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However, the strong temperature dependence of © is
not a general property of the hexagonal lattice, for it
is not found in solid helium* and solid hydrogen.?
These latter solids have a temperature dependence of
© very similar to that observed in the cubic inert gas
solids?+?7 and at T/©,~0.02 the value of © has dropped
below ©¢ by only about 19,. From a purely pheno-
menological viewpoint one is thus led to suspect that
the electrons have a strong effect on the lattice dynamics
of hexagonal metals. This idea was recently supported
also by lattice dynamical calculations. The results of
some of these calculations will be compared with the
experimental lattice heat capacity below 30°K. Gen-
erally, in such a comparison not much significance can
be attached to agreement between the experimental
and theoretical value of @, because most of the theore-
tical models utilize the experimental elastic constants
as parameters. Thus, unless the model is internally
inconsistent, the correct value of ®, should be predicted
if ®p as derived directly from the elastic constants
agrees with the calorimetric ®,. At low temperatures
the only meaningful comparison must thus be made
between experimental and theoretical values of 8[43
in Eq. (1)1

Slutsky and Garland!? presented a lattice dynamical
model (SG model) in which the nonshear experimental
elastic constants were corrected for the bulk modulus
of the free-electron gas before the elastic constants
were used to calculate the frequency spectrum. The
bulk modulus of the electron gas was determined from
the deviation from the Cauchy relation. However, this
model yielded a much weaker temperature dependence
of © than is found experimentally for beryllium.* An
extended version of the SG model as developed by
Schmunk ef al.** was not satisfactory for the quantitative
interpretation of the dispersion relations determined by
neutron scattering.

Recently Gupta and Dayal'® questioned the validity
of the SG Model and introduced the electron effect
directly into the matrix elements of the dynamical
matrix. This could not be done rigorously, and the
model of Sharma and Joshi?® was used to calculate the
electronic contributions to the matrix elements. The
calculated dispersion curves were in fair but not exact
agreement with the experimental data.’* A calculation
of the lattice heat capacity based on the Gupta-Dayal
modification of the SG Model'® yielded good agreement
with the experimental data of Hill and Smith? at high
temperatures; but below 80°K the calculated Debye
theta rose much more rapidly with decreasing tem-
perature. The mesh of points in the Brillouin zone was

27, S. Dugdale and J. P. Franck, Phil. Trans. Roy. Soc.
London A257, 1 (1964).

2 G. Ahlers, J. Chem. Phys. 41, 86 (1964).

26 P, Flubacher, A. J. Leadbetter, and J. A. Morrison, Proc.
Phys. Soc. (London) 78, 1449 (1961).

27R. H. Beaumont, H. Chihara, and J. A. Morrison, Proc.
Phys. Soc. (London) 78, 1462 (1961).

28 P. K. Sharma and S. J. Joshi, J. Chem. Phys. 39, 2633 (1963).
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too coarse to permit calculations of ® below 60°K. But
at 0°K the model should yield 1388°K for @, the value
obtained from the elastic constants used to determine
the force constants. If this value of ®, is used to
determine the coefficient of the 7% term in the heat
capacity expansion, then the theoretical heat capacity
at 60°K yields a value of 0.12)X10~% mJ/M(°K)® for
the coefficient of the 7' terms, if higher order terms are
assumed to be negligible. This is in reasonable agree-
ment with the experimental value found in this work
and at 30°K yields a drop of ® to 959, of ®,. This
deduction of the 7' coefficient yields only an approxi-
mate value because at 60°K or T'/@=0.04 higher order
terms are probably already important. It is regrettable
that Gupta and Dayal changed the elastic constants
of Smith and Arbogast® since this change shifted their
calculated values and caused the difference between the
present calorimetric and the theoretical Debye theta
at 0°K. However, this change should have had little
effect on the temperature dependence of theta. The
extrapolation of Gupta and Dayal’s calculations is
shown in Fig. 2.

Another approach to the lattice dynamics of beryl-
lium was taken by DeWames et al.'* They used their
previously developed axially symmetric (AS) model,® of
which the SG model is a restricted form. The AS model
takes into consideration nonzero-bond bending force
constants, and the total energy of the system includes
a volume-dependent term for the electron-gas self-
energy. In general, good but not exact agreement with
the available experimental dispersion curves is obtained.
The Debye theta at low temperatures'® agrees very
well with the experimental data from this work. How-
ever, © dropped below ©¢ by only about 29, at 30°K.
At higher temperatures the theoretical theta drops
more rapidly than that derived from the SG mode]
for hexagonal metals and agrees with the experimental
data of Hill and Smith? and the calculations of Gupta
and Dayal'¢ above 100°K.

It appears that for beryllium the theoretically de-
duced temperature dependence of © at low temperatures
agrees at least semiquantitatively with the experi-
mentally determined dependence when the model used
takes the effect of the electrons on the elements of the
dynamical matrix into consideration, as was done by
Gupta and Dayal.l®

C. The Electronic Heat Capacity

As mentioned earlier, band-structure calculations
yield a value of 0.23 m]J/M(°K)? for v.3* However, it
must be realized that these calculations are for a finite
number of points in the Brillouin zone (BZ) and that
therefore the density-of-states curve is defined with
limited accuracy from a purely statistical viewpoint.

2 J, F. Smith and C. L. Arbogast, J. Appl. Phys. 31, 99 (1960).
% G, W. Lehman, T. Woliram, and R. E. De Wames, Phys.
Rev. 128, 1593 (1962).
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The calculations are particularly poor in a region where
the density of states changes rapidly. In beryllium the
Fermi energy lies near a sharp minimum in the density-
of-states curve. Calculations for the vicinity of the
Fermi surface, therefore, are not likely to be very
accurate unless very many points near the Fermi surface
are used. The only calculation in which a sufficient
number of points were calculated is the recent one by
Loucks.? Loucks calculated conduction-electron eigen-
values at the equivalent of 80 000 points in the first
BZ in the immediate vicinity of the Fermi surface.
However, he did not derive a density-of-states curve
from his calculations; but he does give the virtual Fermi
energy as a function of volume in 1/24th of the BZ.
The density of states in the immediate vicinity of the
Fermi surface can be derived from the slope of this
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function.®® It yields an electronic heat-capacity coe-
ficient of 0.166 mJ/M(°K)? in excellent agreement
with the present experimental value. This agreement
is indicative of the fact that phonon enhancement3?
does not play a major role in beryllium.
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Formation and migration energies and atomic configurations have been calculated for interstitials and
vacancies in an fcc lattice, and the interaction of close Frenkel pairs has been studied. A mathematical model
was used in which the atoms in a spherical crystallite of about 530 atoms are treated as individual particles,
each with three degrees of freedom, while the remainder of the crystal is treated an an elastic continuum
with atoms imbedded in it. A two-body central force previously used in calculations for a-iron (a bcc metal),
was used to simulate the interaction of atoms in the fcc lattice. Configurations were found using a digital
computer by choosing a starting configuration roughly approximating the situation under consideration
and successively adjusting the value of each variable occurring in the energy equation so that the magnitude
of the generalized force associated with it was zero until equilibrium was reached. The object of this calcula-
tion was to investigate the consequences of using an interatomic interaction for an fcc metal with a form
similar to that used for previous bce calculations. The interaction used should be reasonably appropriate for
both y-iron and nickel and the results are compared with experimental values for both metals. The stable
interstitial was a “split” configuration in which two atoms were symmetrically split in a (100) direction
about a vacant normal lattice site. The formation energy was 4.08 eV and the activation energy for motion
was 0.15 eV. A number of metastable configurations were found, the most important of which was the (111)
“split” interstitial, which was metastable by 0.16 eV and had a migration energy of 0.13 eV. The vacancy
formation energy and activation energy for migration were 1.49 and 1.32 eV, respectively. The interaction
between a vacancy and an interstitial was very complex and short in range. Configurations were found which

were bound, repulsive, and trapped, and there were 32 unstable lattice sites.

INTRODUCTION

EXTENSIVE lattice calculations pertaining to the
nature of point defects in metals have been carried
out since the introduction of the high speed digital
computer as a research device available to physicists.
In such calculations a model is devised which matches
various known physical properties of a metal and which,
one hopes, can be extrapolated to yield results about
unknown properties of the metal, e.g., configurations
and energies associated with lattice defects. These
models normally represent the solid by a crystallite in

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

which the atoms interact, one with another, by two-
body central forces and are given full freedom of motion,
surrounded by a boundary region which is meant to
simulate the remainder of the lattice. An energy equa-
tion is written which includes the interatomic forces and
the boundary forces, and parameters in this equation
are adjusted to yield a reasonable approximation of the
perfect lattice. Then the energy equation is investigated
in a region of configuration space where it represents the
defect lattice, i.e., the whole process may be thought of
as very complicated and sophisticated curve fitting to
one section of configuration space and extrapolation to
another section. There is, of course, no unique way of
fitting the perfect lattice : Any number of quite different



